

Arterial Connectivity Study along I-595 Corridor FM#441954-1-12-01

Existing Conditions Analysis Technical Memorandum #2

August 2020

Arterial Connectivity Study along I-595 Corridor

FM# 441954-1-12-01

Existing Conditions Analysis Technical Memorandum #2

Prepared for:

Broward Metropolitan Planning Organization 100 W. Cypress Creek Road, Suite #650 Fort Lauderdale, FL 33309

and

Florida Department of Transportation District Four 3400 W. Commercial Boulevard Fort Lauderdale, FL 33309

August 2020

THIS PAGE LEFT INTENTIONALLY BLANK

TABLE OF CONTENTS

1. In	trodu	ıction	1-1
1.1	Intr	oduction	1-1
1.2	Stu	dy Area	1-1
2. Ex	kisting	g Traffic Volumes	2-1
2.1	Dev	velopment of Existing (2019) Traffic Volumes	2-1
2.2	Exis	sting (2019) Annual Average Daily Traffic	2-1
2.3	Exis	sting (2019) Turning Movement Volumes	2-10
3. Ex	kisting	g Conditions Traffic Analysis	3-1
3.1	Tra	ffic Analysis Methodology	3-1
3.2	Lev	rel of Service Targets and Performance Measures	3-1
3.3	Stu	dy Roadways Level of Service Analysis	3-2
3.4	Exis	sting (2019) Condition Intersection Operational Analysis	3-4
4. Cı	rash [Data and Safety Analysis	4-1
4.1	Saf	ety Analysis Methodology	4-1
4.2	Tot	al Crashes Study Roadways	4-2
4.3	Fata	al Crashes Study Roadways	4-3
4.4	Pec	destrian and Bicycle Crashes Study Roadways	4-3
4.5	Cra	sh Hotspots and High Crash Locations	4-7
4.6	Saf	ety Assessment for Hotspots and High Crash Locations	4-13
4.	6.1	NW/SW 136th Avenue at NW 8th Street	4-13
4.	6.2	NW/SW 136th Avenue at NW 2nd Street	4-14
4.	6.3	Flamingo Road at Broward Boulevard	4-14
4.	6.4	Flamingo Road at SW 8th Street	4-15
4.	6.5	Hiatus Road at Broward Boulevard	4-16
4.	6.6	Nob Hill Road at Broward Boulevard	4-17
4.	6.7	Nob Hill Road at Hawks View Boulevard	4-18

4.6.8	Pine Island Road at New River Canal Road	4-18
4.6.9	Pine Island Road at Peters Road	4-19
4.6.10	Pine Island Road at SW 6th Court Crash History	4-19
4.6.11	Pine Island Road at SW 3rd Street	4-20
4.6.12	University Drive/SR 817 at Peters Road	4-20
4.6.13	University Drive/SR 817 at Nova Drive	4-21
4.6.14	University Drive/SR 817 at S 1900 Block	4-22
4.6.15	University Drive/SR 817 at S 2300 Block	4-22
4.6.16	University Drive/SR 817 at SW 10th Street	4-23
4.6.17	University Drive/SR 817 at SW 13th Place	4-23
4.6.18	University Drive/SR 817 at the Fountains	4-24
4.6.19	Davie Road at Nova Drive	4-25
4.6.20	SR 7/US-441 at SW 20th Street	4-25
4.6.21	SR 7/US-441 at Oakes Road	4-26
4.6.22	Westbound SR 84 at NW/SW 136th Avenue	4-27
4.6.23	Westbound SR 84 at Flamingo Road	4-27
4.6.24	Westbound SR 84 at Hiatus Road	4-28
4.6.25	Westbound SR 84 at Nob Hill Road	4-28
4.6.26	Westbound SR 84 at Pine Island Road	4-29
4.6.27	Westbound SR 84 at University Drive/SR 817	4-29
4.6.28	Westbound SR 84 at Davie Road	4-30
4.6.29	Eastbound SR 84 at NW/SW 136th Avenue	4-31
4.6.30	Eastbound SR 84 at Flamingo Road	4-31
4.6.31	Eastbound SR 84 at Hiatus Road	4-32
4.6.32	Eastbound SR 84 at Nob Hill Road	4-32
4.6.33	Eastbound SR 84 at Pine Island Road	4-33
4.6.34	Eastbound SR 84 at University Drive/SR 817	4-34
4.6.35	Eastbound SR 84 at Davie Road	4-34
4.6.36	Eastbound SR 84 at SW 75th Avenue	4-35

5.	Intel	ligent Transportation Systems (ITS) and Transportation Systems Management &	
Ope	eratio	ns (TSM&O) Existing Conditions Analysis	5-1
5.	.1 A	nalysis Methodology	5-1
5.	.2 A	nalysis Results	5-1
	5.2.1	Closed-Circuit Television (CCTV) Cameras	5-1
	5.2.2	Microwave Vehicle Detection System (MVDS)	5-2
	5.2.3	Dynamic Message Signs (DMS)	5-2
	5.2.4	Bluetooth Reader	5-2
5.	.3 [Deficiencies	5-3
6.	Pede	strian and Greenway Facilities Existing Conditions Analysis	6-1
6.	.1 P	edestrian Mode Analysis Methodology	6-1
6.	.2 P	edestrian Mode LOS Analysis Results	6-1
6.	.3 P	edestrian Mode Deficiencies	6-4
6.	.4 P	ercent Coverage of Pedestrian Facilities	6-5
7.	Bicyc	le Facilities Existing Conditions Analysis	7-1
7.	.1 B	icycle Mode Analysis Methodology	7-1
7.	.2 B	icycle Mode LOS Analysis Results	7-1
7.	.3 B	icycle Mode Deficiencies	7-4
7.	.4 P	ercent Coverage of Bicycle Facilities	7-4
8.	Trans	sit Facilities Existing Conditions Analysis	8-1
8.	.1 S	tudy Roadway Bus LOS Analysis Methodology	8-1
8.	.2 S	tudy Roadway Bus LOS Analysis Results	8-1
8.	.3 T	ransit Stop Locations and Existing Amenities Assessment	8-4
8.	.4 T	ransit Services and Park-and-Ride Performance	8-14
	8.4.1	Transit Services	8-14
	8.4.2	Park-and-Ride Lots	8-15
8.	.5 T	ransit and Park-and-Ride Deficiencies	8-18
	8.5.1	Transit Services and Stop Locations	8-18
	8.5.2	Park-and-Ride Lots	8-18

9.	Su	ımma	ary of Existing Conditions Deficiencies	9-
	9.1	Exi	sting Traffic Operational Analysis	9-
	9.1	1.1	Study Roadways Level of Service Analysis	9-
	9.1	1.2	Existing (2019) Condition Intersection Operational Analysis	9-
	9.2	Cra	sh Data and Safety Analysis	9-2
	9.2	2.1	Total Crashes Study Roadways	9-2
	9.2	2.2	Fatal Crashes	9-2
	9.2	2.3	Pedestrian and Bicycle Crashes	9-2
	9.2	2.4	Crash Hotspots and High Crash Locations	9-2
	9.3 Ope		elligent Transportation Systems (ITS) and Transportation Systems Management & ns (TSM&O) Existing Conditions Analysis	9-(
	9.4	Pec	lestrian Facilities Existing Conditions Analysis	9-4
	9.5	Bic	ycle Facilities Existing Conditions Analysis	9-4
	9.6	Tra	nsit Facilities Existing Conditions Analysis	9-!
	9.6	5.1	Study Roadway Bus LOS Analysis Results	9-!
	96	5.2	Transit Ston and Park-and-Ride lot Assessment	9_1

LIST OF TABLES

Table 3-1: Study Roadways Level of Service Analysis	3-3
Table 3-2: Existing (2019) Conditions Study Intersection LOS	3-6
Table 4-1: Safety Analysis Study Segments	4-1
Table 4-2: Number of Fatal Crashes (5-Years)	4-3
Table 4-3: Number of Pedestrian and Bicycle Crashes (5-Years)	4-3
Table 4-4: Crash Hotspots and High Crash Locations	4-8
Table 4-5: Crash Hotspots and High Crash Locations – Crash Patterns	.4-10
Table 6-1: Pedestrian Multimodal LOS Major Inputs, Service Measure, and LOS Determinator	6-1
Table 6-2: Pedestrian LOS Thresholds	6-1
Table 6-3: Study Roadway Pedestrian Score/LOS	6-2
Table 6-4: Westbound SR 84 Pedestrian Score/LOS	6-2
Table 6-5: Eastbound SR 84 Pedestrian Score/LOS	6-2
Table 6-6: Pedestrian Deficiencies	6-4
Table 6-7: New River Greenway Crossing Location, Type and Sufficiency	6-5
Table 7-1: Bicycle Multimodal LOS Major Inputs, Service Measure, and LOS Determinator	7-1
Table 7-2: Bicycle LOS Thresholds	7-1
Table 7-3: Study Roadway Bicycle Score/LOS	7-2
Table 7-4: Westbound SR 84 Bike Score/LOS	7-2
Table 7-5: Eastbound SR 84 Bike Score/LOS	7-2
Table 7-6: Bicycle Mode Deficiencies	7-4
Table 7-7: Percent Coverage of Bicycle Facilities	7-4
Table 8-1: Bus Multimodal LOS Major Inputs, Service Measure, and LOS Determinator	8-1
Table 8-2: Bus LOS Thresholds	8-1
Table 8-3: Study Roadway Bus Mode Frequency LOS	8-2
Table 8-4: Westbound SR 84 Bus Mode Frequency LOS	8-2

Table 8-5: Eastbound SR 84 Bus Mode Frequency LOS	8-2
Table 8-6: Transit Stop Existing Conditions Summary Table	8-12
Table 8-7: Local and Express Bus Routes Reported On-Time Performance for 2019	8-14
Table 8-8: Community Shuttle Routes Reported Passengers per Revenue Hour for 2019	8-14
Table 8-9: Five-Year Parking Occupancy Rate for the Davie Park-and-Ride Lot	8-16
Table 8-10: Five-Year Parking Occupancy Rate for the BB&T Center Park-and-Ride Lot	8-17
Table 8-11: Stop Locations with No Existing Shelter	8-19
Table 8-12: Stop Locations with No Existing Bench	8-20

LIST OF FIGURES

Figure 1-1: Study Area	1-2
Figure 2-1: Existing (2019) Annual Average Daily Traffic	2-2
Figure 2-2: Existing (2019) Peak Hour Turning Movement Volumes	2-11
Figure 4-1: Safety Analysis Study Segments	4-1
Figure 4-2: Total Number of Crashes (5-Years) Study Roadways	4-2
Figure 4-3: Pedestrian Crashes in Study Area	4-4
Figure 4-4: Bicycle Crashes in Study Area	4-5
Figure 4-5: Pedestrian and Bicycle Crashes in Study Area	4-6
Figure 4-6: High Crash Locations	4-9
Figure 5-1: Existing ITS Coverage	5-4
Figure 6-1: Pedestrian Level of Service	6-3
Figure 7-1: Bicycle Level of Service	7-3
Figure 8-1: Bus Level of Service	8-3
Figure 8-2: Existing Fixed Transit Stops within the Study Area	8-5
Figure 8-3: Existing Fixed Transit Stops along Study Arterials	8-6
Figure 8-4: Davie Park-and-Ride Parking Space Occupancy Five-Year Trend	8-16
Figure 8-5: BB&T Center Park-and-Ride Parking Space Occupancy Five-Year Trend	8-17
Figure 9-1: Total Number of Crashes (5-Years) Study Roadways	9-2

LIST OF APPENDICES

<u>Appendix A - Peak Hour Factors, Bicycle and Pedestrian Crossing Volumes</u>

Appendix B – Signal Timing Plans

<u>Appendix C - HCM2000 Intersection Operational Analysis Reports & Summary Tables</u>

<u>Appendix D – Safety Analysis Field Review Notes & Fatal, Bicycle, and Pedestrian Crash Details</u>

<u>Appendix E – Crash Probable Causes and Potential Countermeasures Summary Tables</u>

Appendix F – ARTPLAN Reports

<u>Appendix G – Bus Stop Information</u>

1. INTRODUCTION

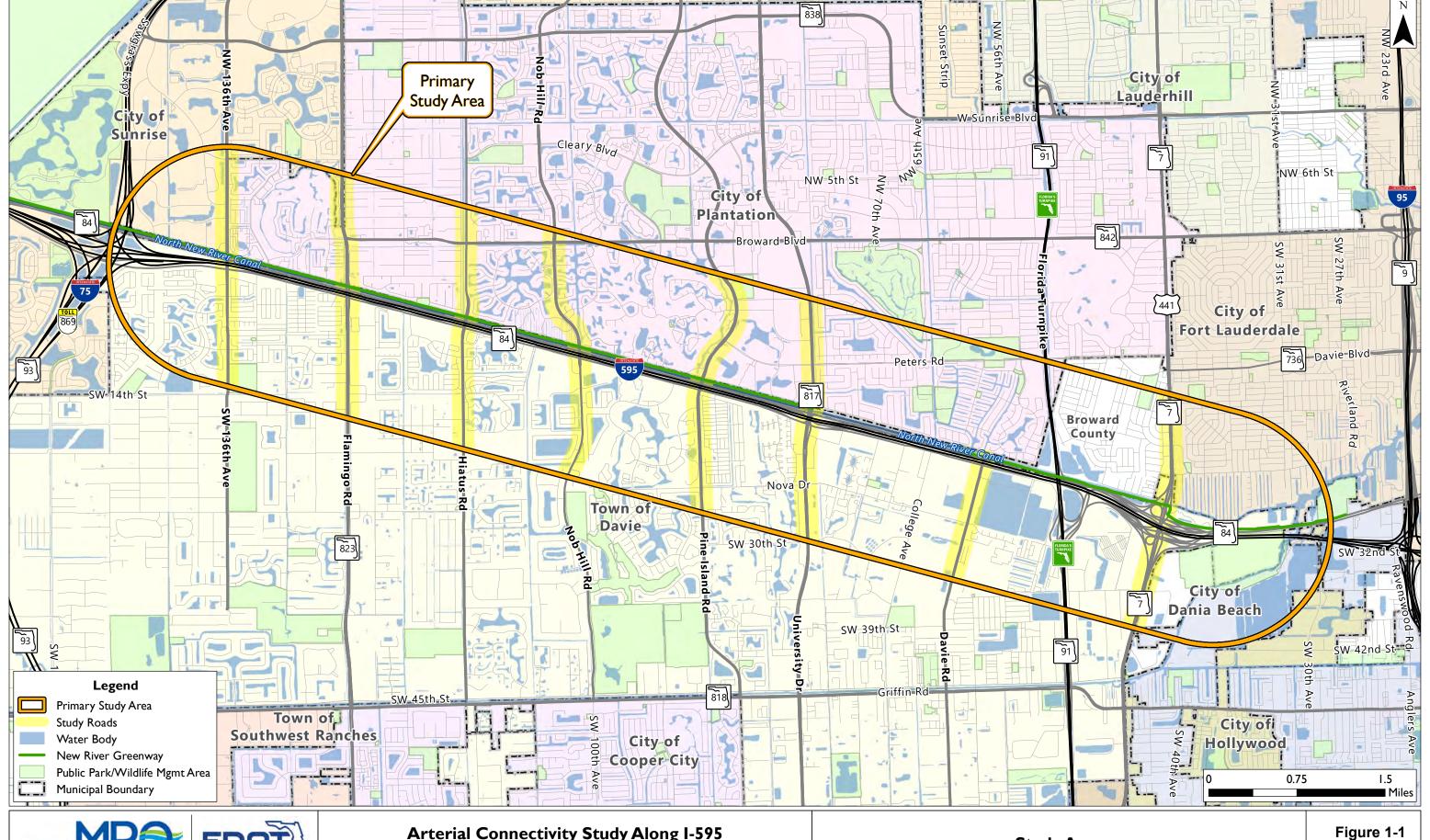
1.1 Introduction

The Arterial Connectivity Study along I-595 Corridor is being conducted to identify and define transportation problems and develop effective solutions to fulfill the goal of providing better connectivity for all modes and to provide congestion relief for travel along the north-south study roadways and their access points with I-595 and SR 84. All types of improvement strategies are being considered including land use and policy strategies; geometric modifications to roadways; pedestrian, bicycle, greenway, and transit infrastructure improvements; and technology and traffic signal improvements.

The Arterial Connectivity Study along I-595 Corridor is being conducted in four main tasks as follows:

- Task One Data Collection, Compilation, Development, and Analysis
- > Task Two Develop Deficiency Mitigation Concepts (MCs) and Mitigation Measures (MMs)
- > Task Three Develop a Master Improvement List and Implementation Packages for Mitigation Measures
- > Task Four Outreach and Meetings

As part of Task One, Technical Memorandum 2 is the second of seven deliverables to be completed for the Arterial Connectivity Study along I-595 Corridor. Technical Memorandum 2 documents the analysis of existing conditions throughout the study area. An assessment of the existing transportation system is provided, and deficiencies related to safety, traffic operations, bicycle, pedestrian, and transit facilities are identified. This includes the New River Greenway as one of the key pedestrian and bicycle facilities within the study area, and it's interaction with the surrounding transportation network. Existing conditions analyses presented herein indicate where deficiencies


are located within the study area and quantify the severity of the deficiencies. This base existing condition information informs where improvements are needed in the immediate future.

1.2 Study Area

The study area is in central Broward County, Florida along the I-595 and SR 84 corridor, between SW 136th Avenue and SR 7/US-441. The study limits extend approximately one mile north and one mile south of I-595 and include the eight north-south arterials that cross I-595 and SR 84. The primary study area and study roadways are shown in Figure 1-1. Below is a list of the primary study roadways along with the approximate limits on each road.

- 1. SW 136th Avenue from north of NW 8th Street to north of SW 14th Street
- 2. Flamingo Road / SR 823 from south of NW 8th Street to south of SW 15th Place
- 3. Hiatus Road from north of Broward Boulevard to south of SW 16th Street / S Harmony Lake Circle
- 4. Nob Hill Road from Broward Boulevard to SW 22nd Court
- 5. Pine Island Road from SW 3rd Street to south of Nova Drive
- 6. University Drive / SR 817 from Federated Road to SW 30th Street
- 7. Davie Road from I-595 / SR 84 to Broward College entrance / SW 35th Street
- 8. US-441 / SR 7 from SW 16th Street to Powells Road
- 9. SR 84 eastbound and westbound from I-75 to I-95

Forty-three intersections have been preliminarily identified for study, within the project limits.

2. EXISTING TRAFFIC VOLUMES

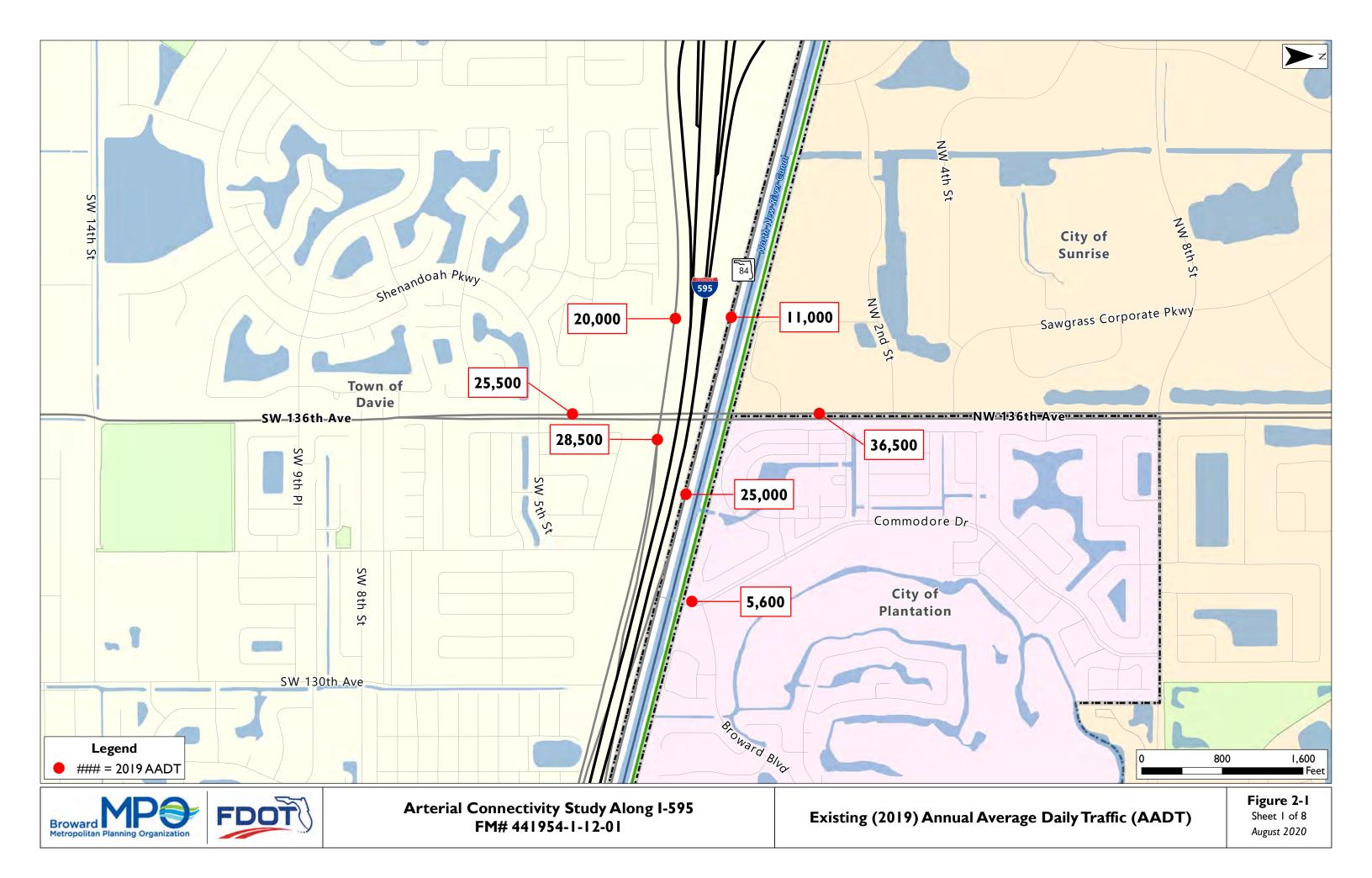
2.1 Development of Existing (2019) Traffic Volumes

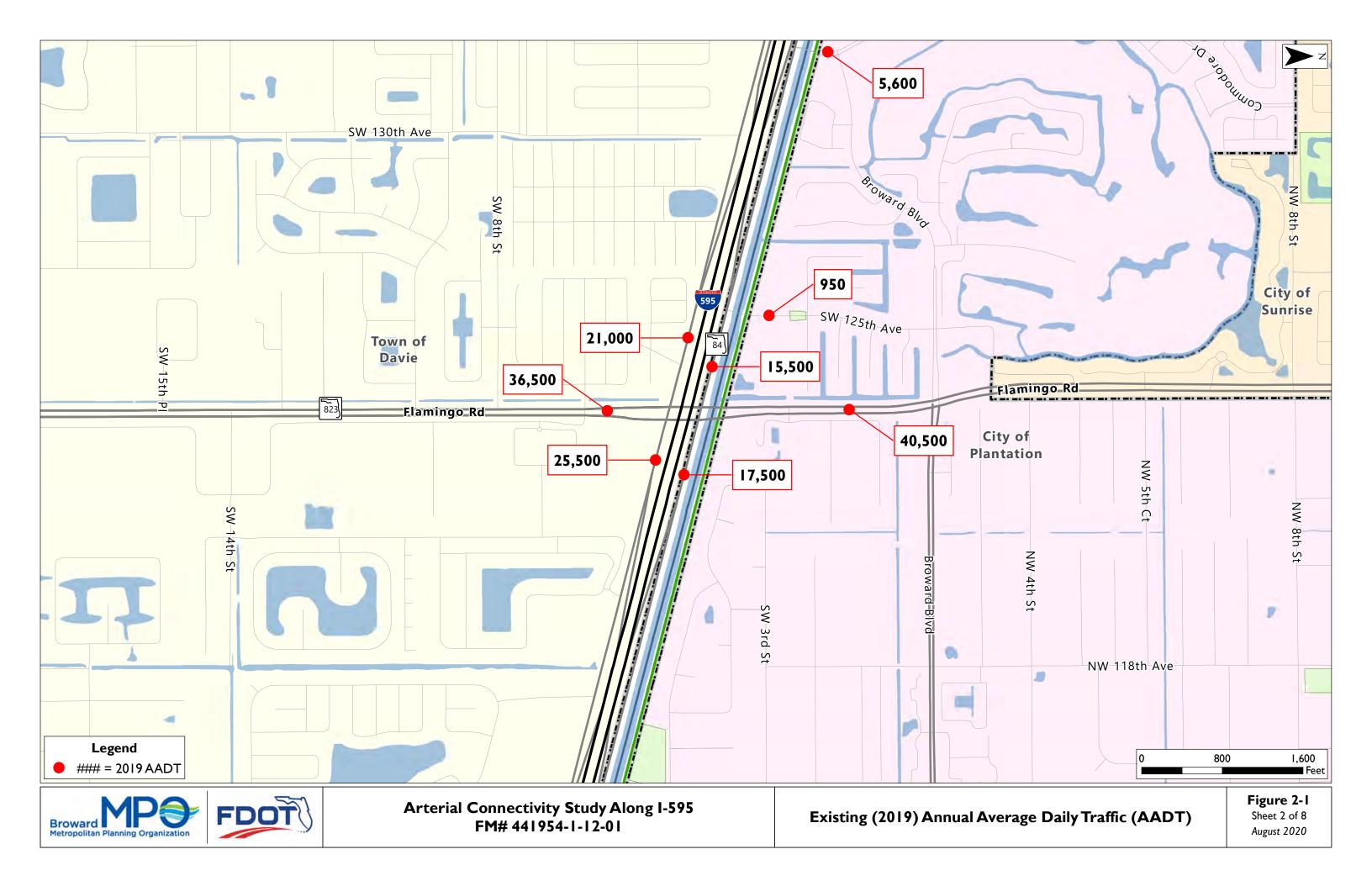
Traffic counts along the study corridor within the area of influence were collected and obtained from the following sources:

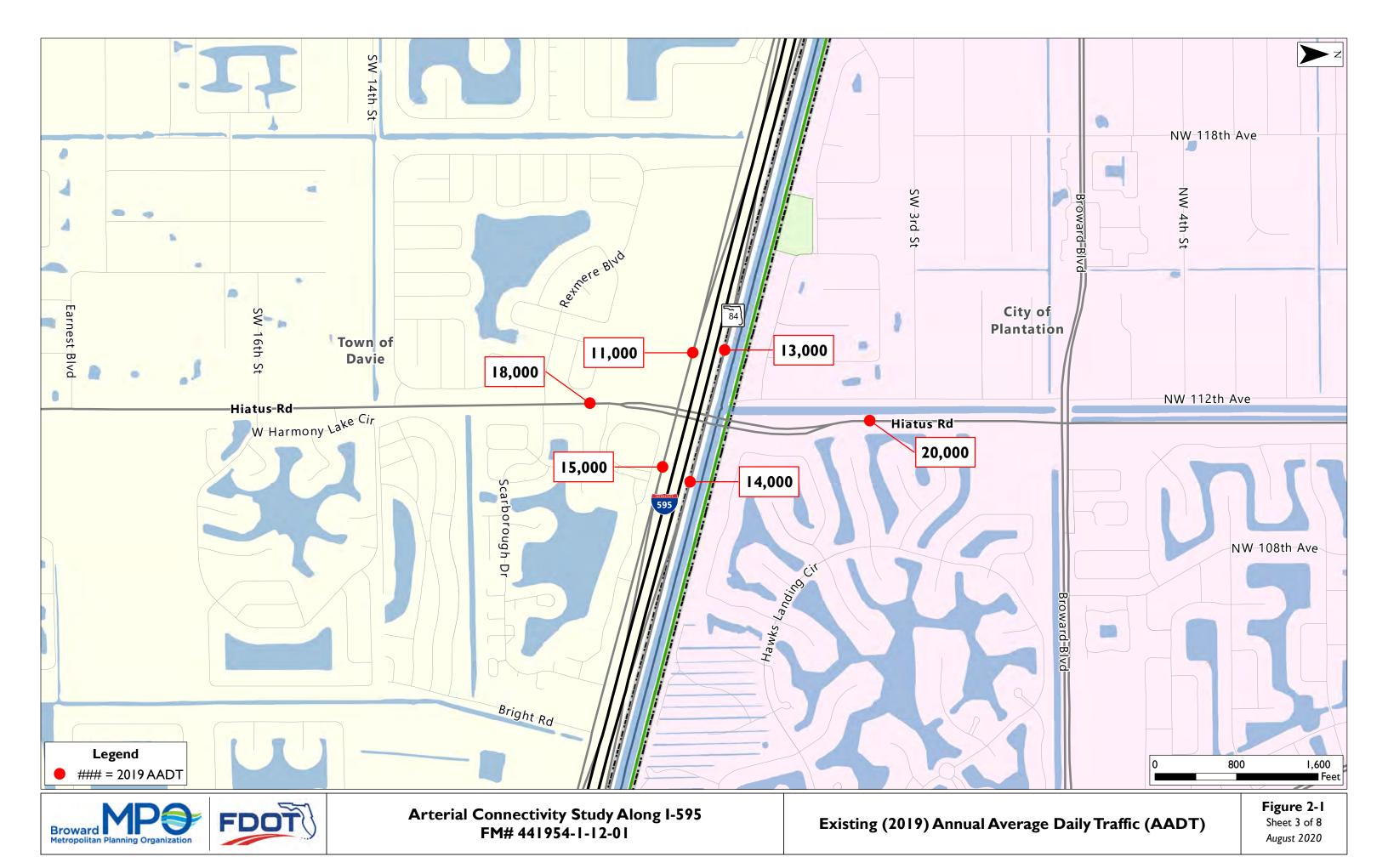
- Florida Traffic Online database (including existing and historical counts and design factors)
- FDOT District Four Concept Development Study Eastbound I-595 Off-Ramp to SR 7 North (SR 7 Study)
- SR 817/University Drive traffic data collected under FM No. 431513-2-12-01 (University Drive Data)

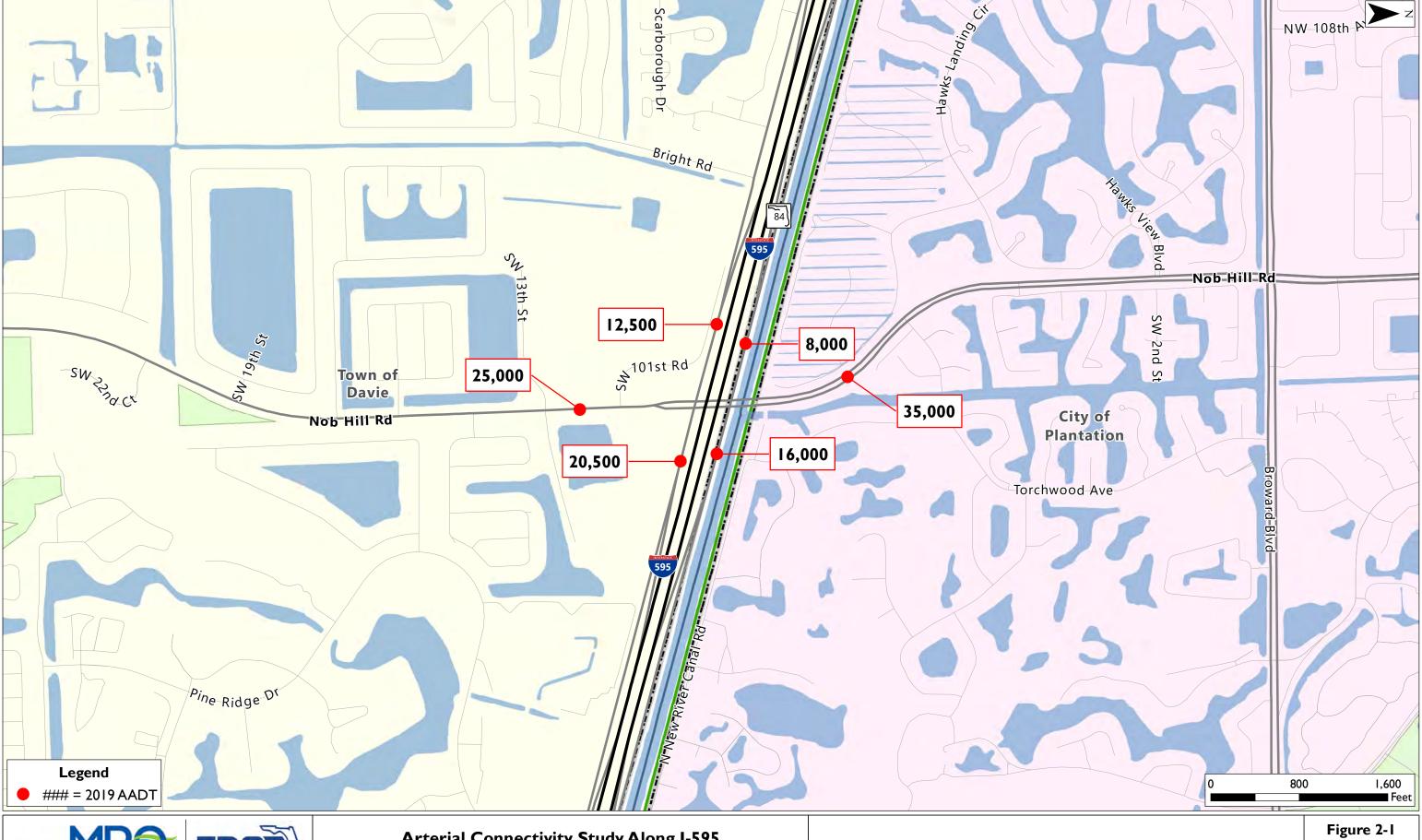
Additional traffic count data was collected as part of the Arterial Connectivity Study along I-595 Corridor, including 24-hour bi-directional volume counts at selected locations and 4-hour (2-hour AM peak hour and 2-hour PM peak hour) turning movement counts at selected signalized intersections. The data collected for this study is documented in Technical Memorandum 1.

The traffic data gathered for the Arterial Connectivity Study along I-595 Corridor was assembled from various sources. Data from these various sources was collected using different methodologies and during different years, months and peak periods. A review of all collected data was completed to identify any gaps, inconsistencies, or errors, and adjustments were made to ensure that the data reflects typical traffic conditions for year 2019. The traffic volumes for base year (2019) were developed as described below.

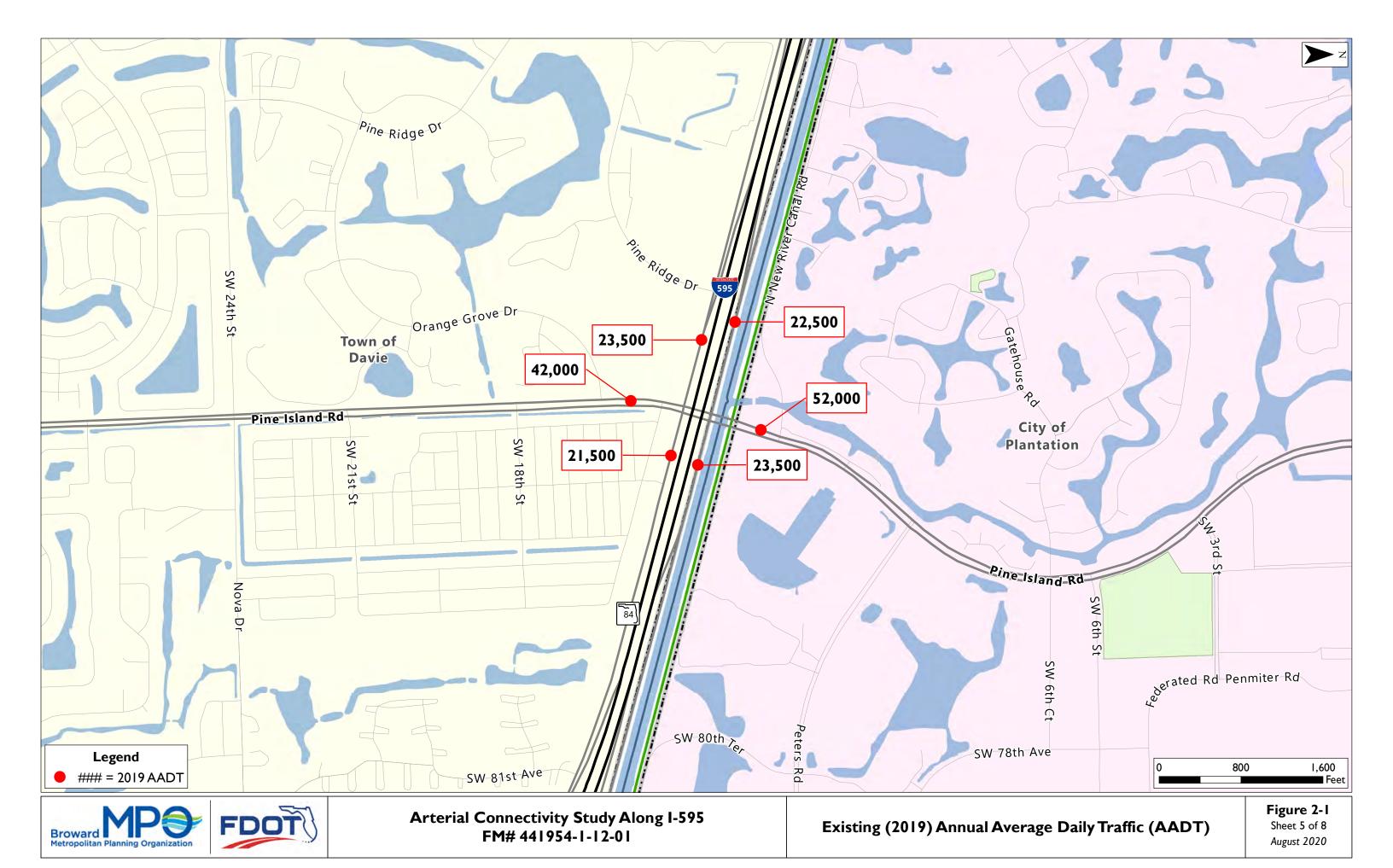

2.2 Existing (2019) Annual Average Daily Traffic

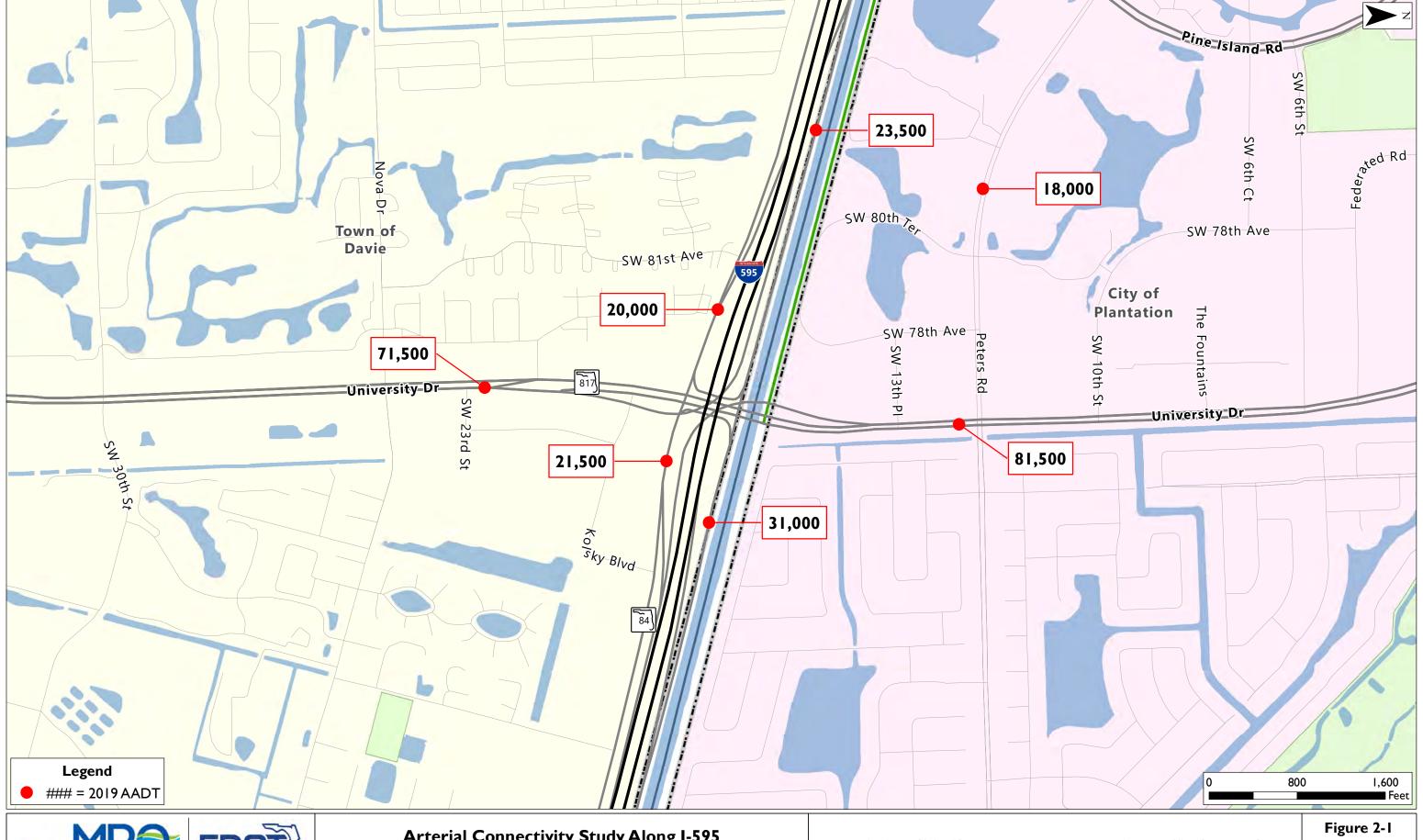

Existing year (2019) Annual Average Daily Traffic (AADT) reported for count stations included in the Florida Traffic Online database were utilized. Where 2019 AADTs were not available from the Florida Traffic Online database, other traffic data sources were used as the starting point to estimate the 2019 AADTs. These other traffic data sources include: the 24-hour bi-directional traffic counts

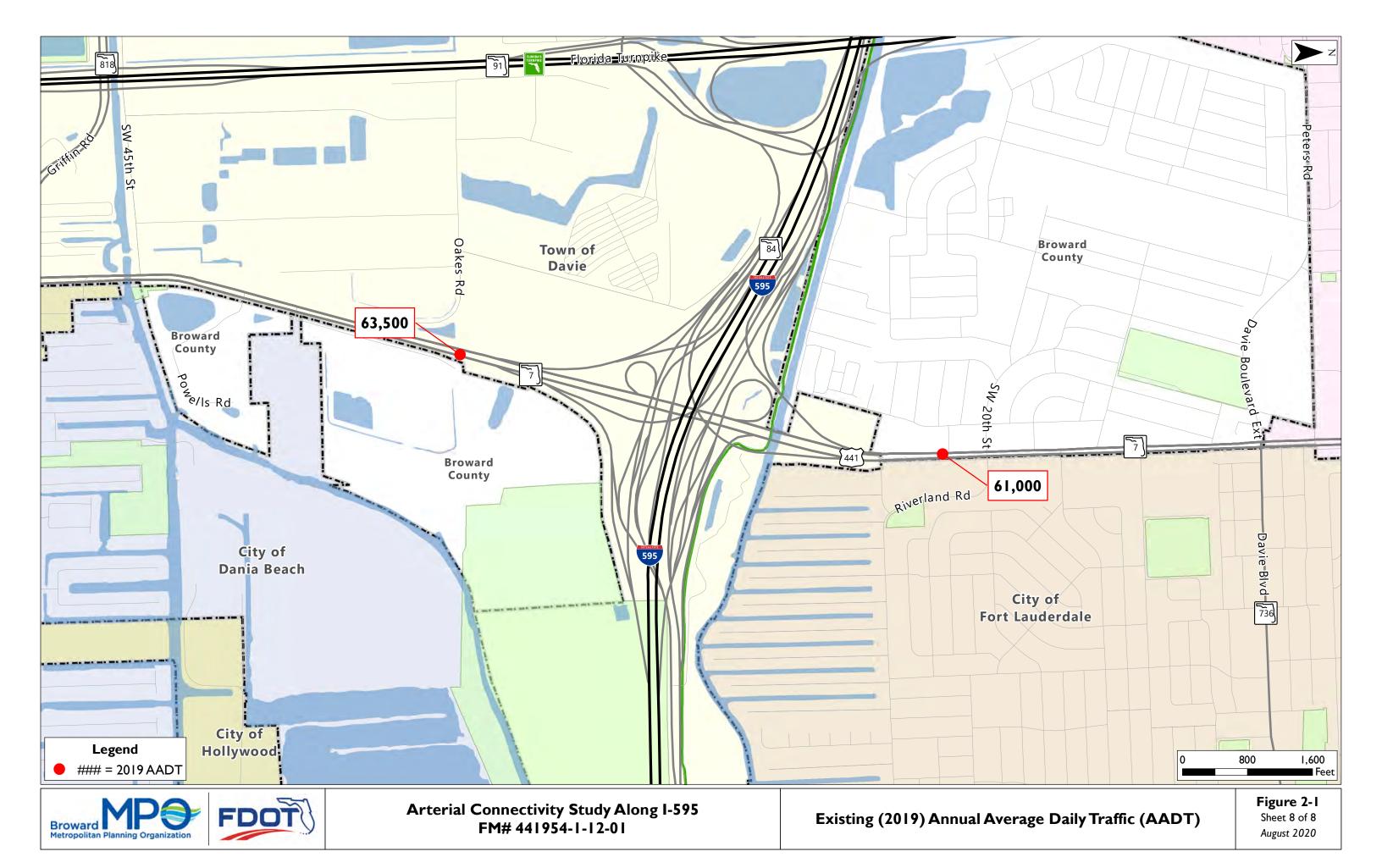

collected for the Arterial Connectivity Study along I-595 Corridor, and the 24-hour directional counts from the SR 817/University Drive traffic data. The following adjustments were made to estimate 2019 AADTs.


- Appropriate seasonal and axle correction factors were applied to the raw 24-hour bidirectional traffic volumes collected for the Arterial Connectivity Study along I-595 Corridor, to estimate 2019 AADT volumes.
- The directional 24-hour traffic volumes collected as part of the SR 817/University Drive traffic data on each intersection approach were added together or doubled, to estimate a bidirectional 24-hour traffic count. Then appropriate seasonal and axle correction factors were applied to the raw counts to estimate 2019 AADT volumes.

The existing condition (2019) AADTs are shown in Figure 2-1.

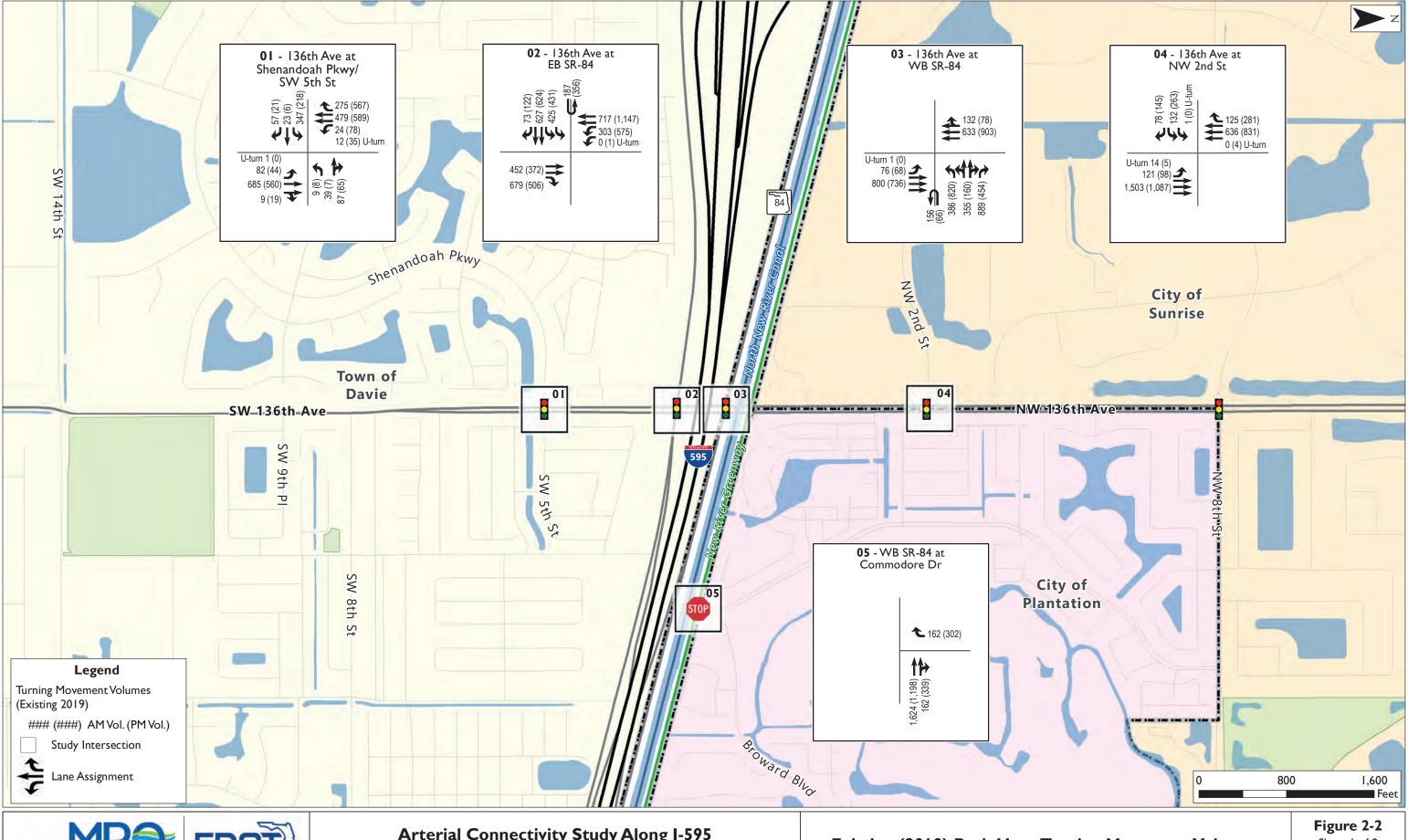






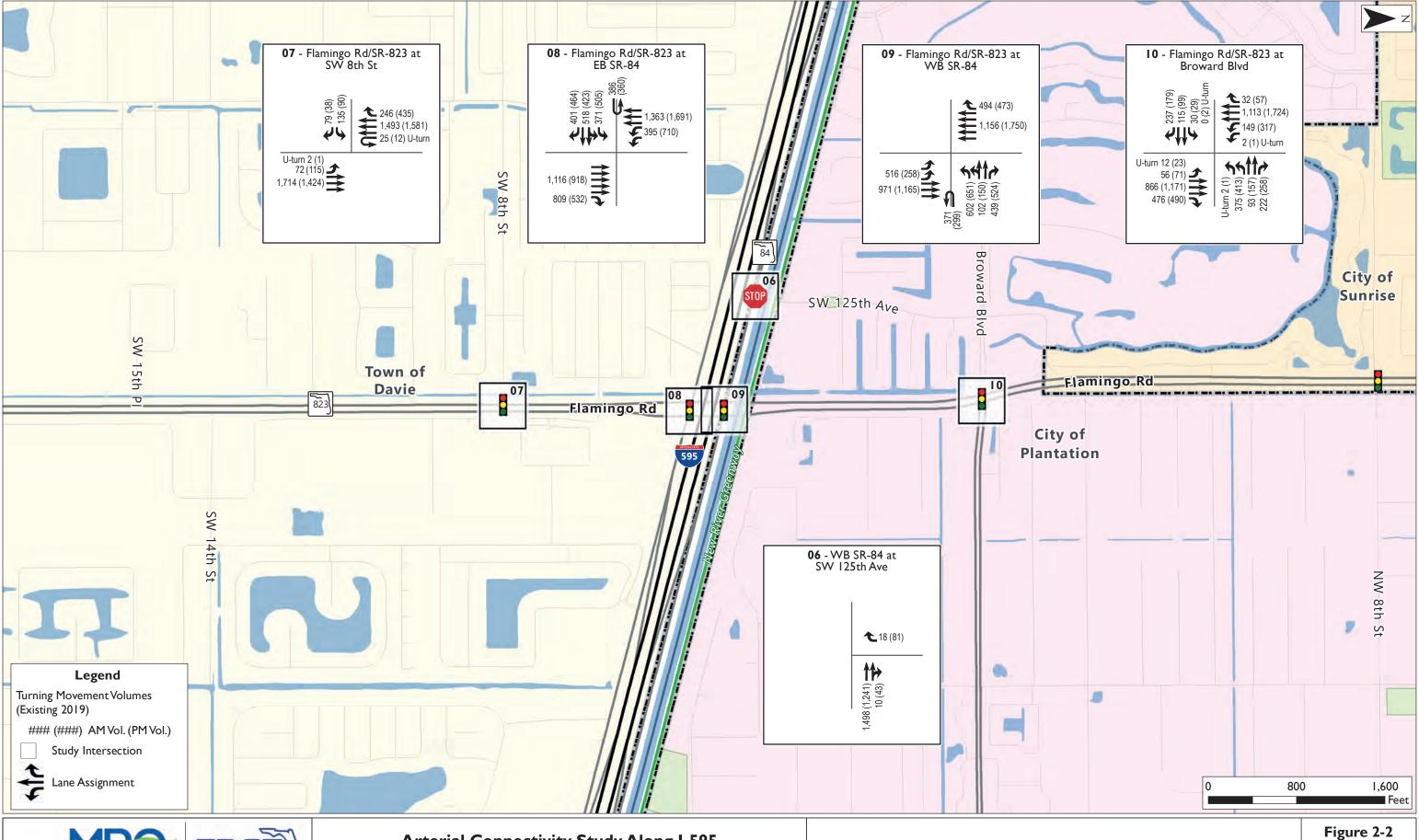
2.3 Existing (2019) Turning Movement Volumes

The AM and PM peak hour turning movement volumes are determined based on the peak period turning movement counts collected for the Arterial Connectivity Study along I-595 Corridor, and University Drive and SR 7 / US-441 traffic count data as documented in Technical Memorandum 1. A systemwide AM peak hour and a systemwide PM peak hour was determined for the study area based on the count data. The systemwide peak hours determined for the entire study area are:

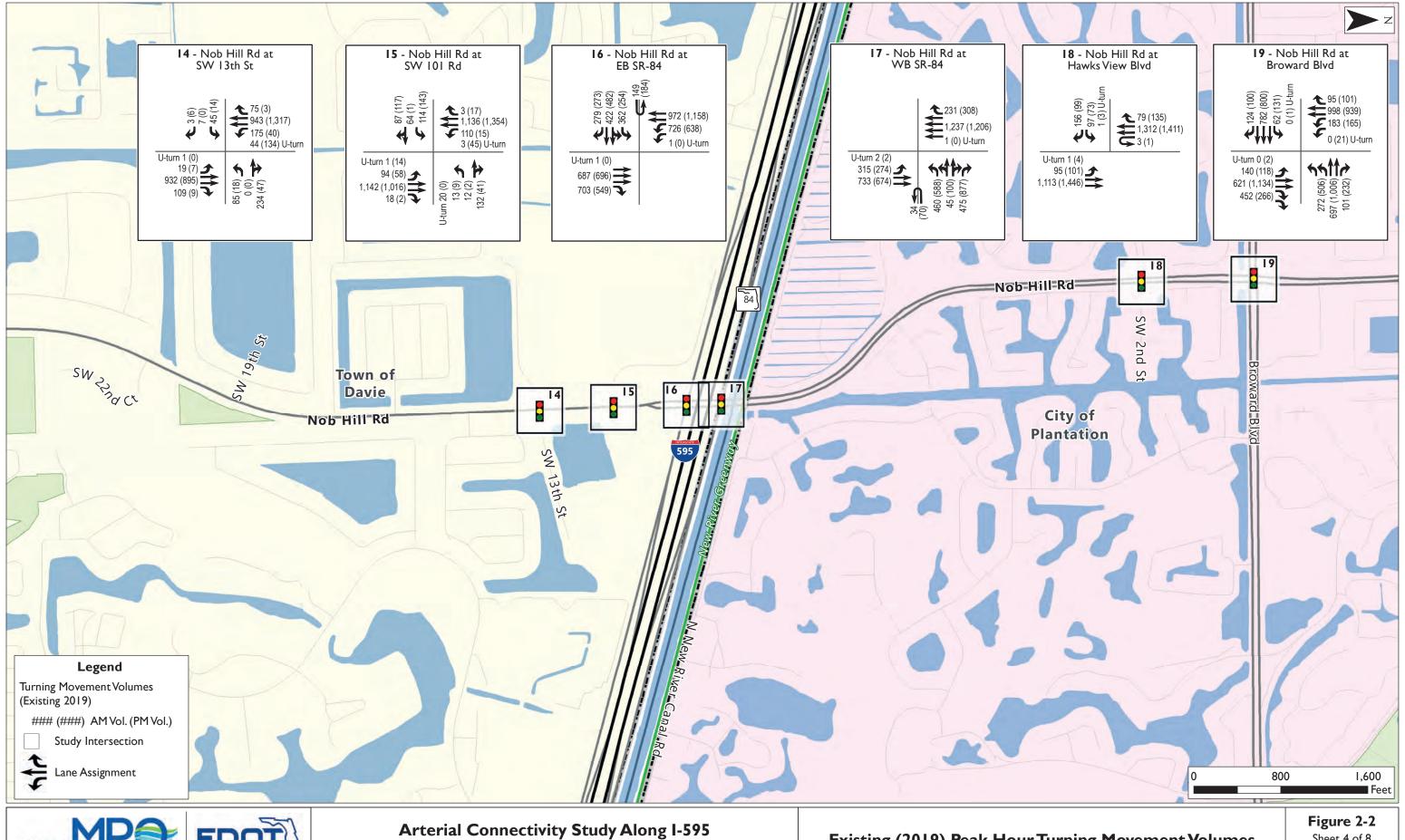

- o 7:30 AM to 8:30 AM
- o 5:00 PM to 6:00 PM

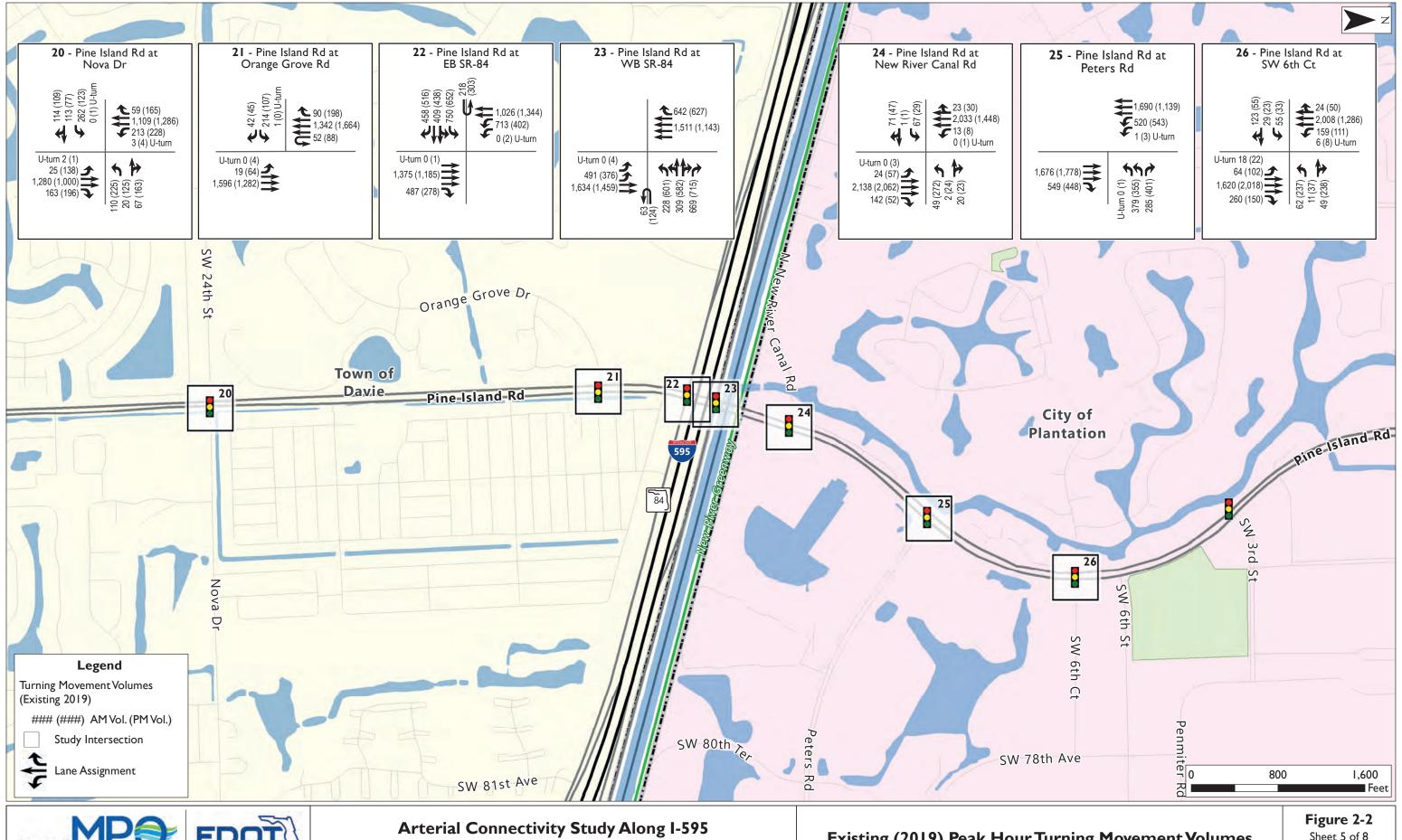
Existing (2019) peak hour turning movement counts as reported in the SR 817/University Drive Data Collection Report Technical Memorandum 1 were used for all intersections along University Drive and adjacent cross street intersections. For the two study intersections along SR 7, the 3-day peak hour turning movement counts collected in 2017 and 2018 were used to approximate 2019 turning movement counts. Minor adjustments were then applied, where necessary, to achieve balanced flow between intersections. Traffic flows between intersections were balanced to within +/- 7% where driveways or side streets were present and balanced to 0% where no driveways or cross streets were present.

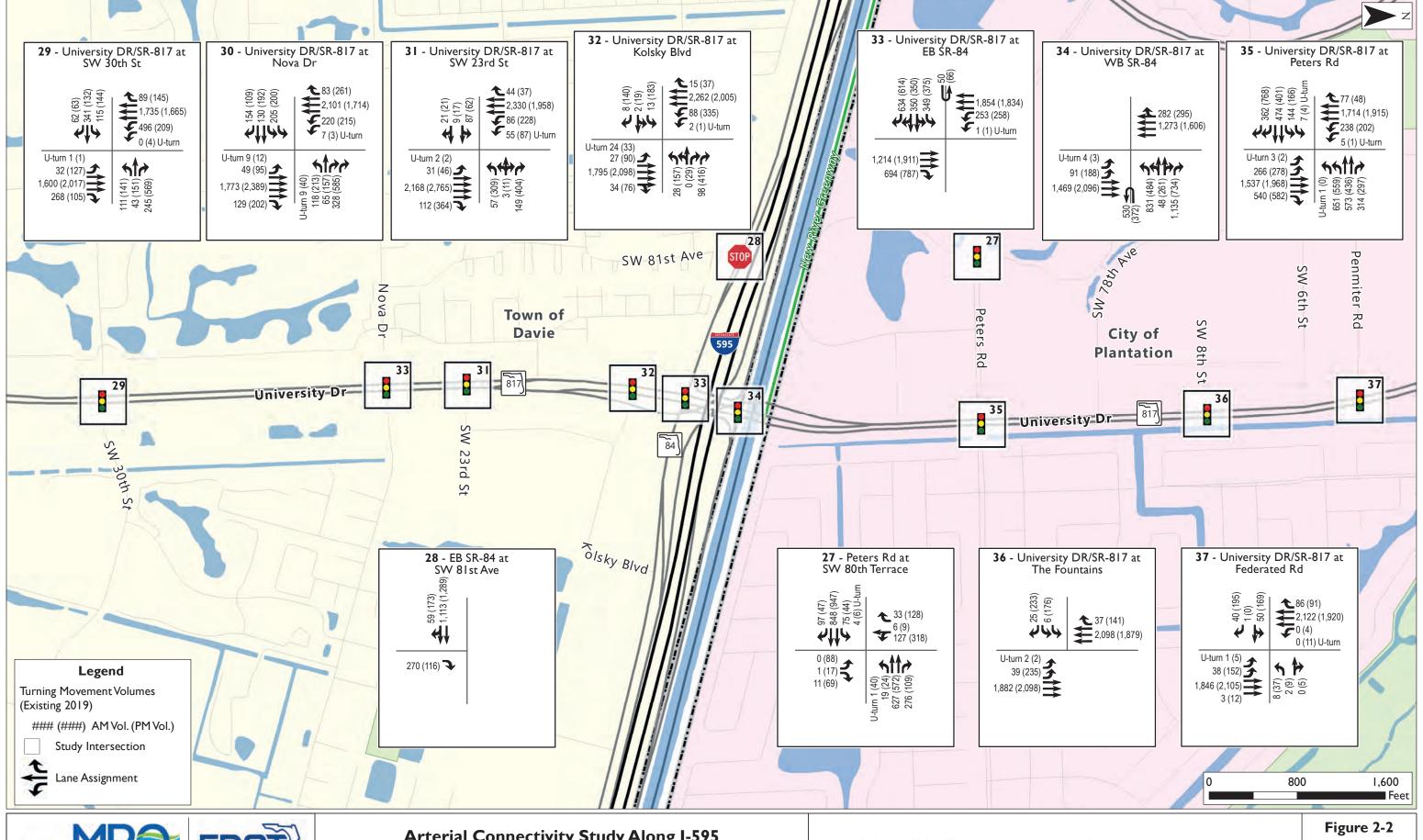
The balanced existing condition (2019) peak hour turning movement volumes are shown in Figure 2-2. The balanced existing turning movement volumes were used for existing conditions operational analysis and will be the basis for developing future year turning movements. Notable observations from the volumes are described below.

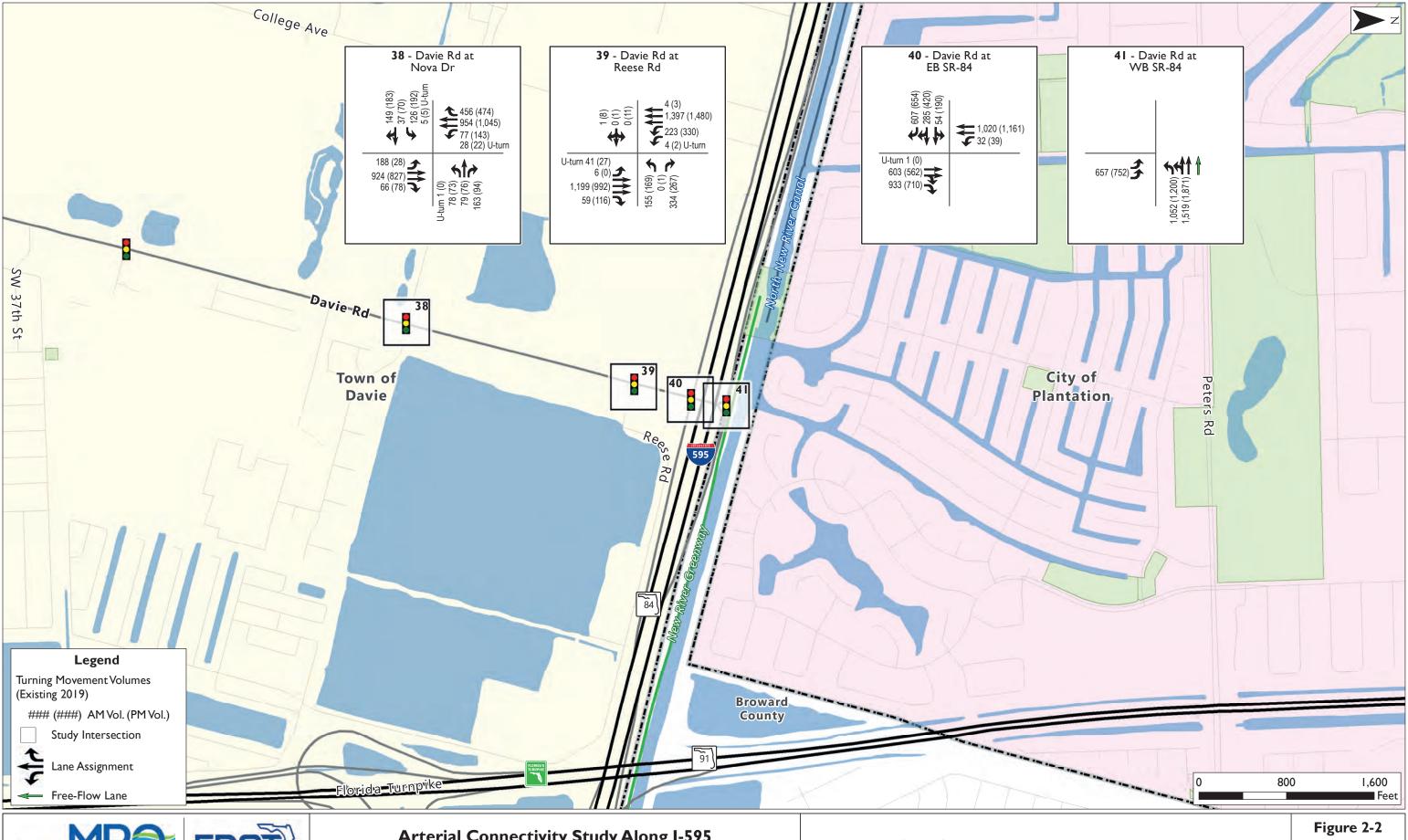

• Significant U-turn volumes were counted at eastbound SR 84 and westbound SR 84 intersections with the north-south study arterials. For example, during the PM peak hour, over 300 U-turns were counted on eastbound SR 84 at NW/SW 136th Avenue (356), Flamingo Road (360), and Pine Island Road (303). The large U-turn volumes indicate the importance of U-turn movements for traffic circulation within the study area.

- Several u-turning vehicles were also recorded at study intersections where U-turns are prohibited from the approach or can create conflicts. Example locations are northbound Hiatus Road at westbound SR 84 during the AM peak hour, northbound University Drive at westbound SR 84 during the AM and PM peak hours, and southbound University Drive at eastbound SR 84 during the AM and PM peak hours. Where U-turns are prohibited, the U-turn volumes were not included in the analysis.
- The north-south study arterials typically have very heavy left and right-turning movements to and from SR 84. For example, during the AM peak hour, the westbound SR 84 right-turn movement at University Drive/SR 817 is 1,135 and westbound left-tum volume is 831, while the through movement is only 48 vehicles.
- Typically, the north-south study arterials have higher volumes north of I-595 when compared to south of I-595 (SR 7/US-441 is the exception).
- Study segments south of I-595 typically have higher traffic flows northbound toward I-595/SR 84 during the AM peak hour and higher traffic flows southbound during the PM peak hour, with University Drive/SR 817 and SR 7/US-441 as the exceptions.
- North of I-595, the peak flow directionality and peak time period of traffic on the study segments varies. NW/SW 136th Avenue and Flamingo Road traffic is heaviest in the northbound direction during the AM peak hour, and southbound during the PM peak hour. Hiatus Road traffic is heaviest in the southbound direction during the AM peak hour, and northbound during the PM peak hour. Nob Hill Road traffic volumes are similar in both northbound and southbound directions during the AM and PM peak volumes. Pine Island Road peak hour volumes do not show a clear pattern. University Drive/SR 817 volumes in both directions are highest during the PM peak hour. Northbound SR 7/US-441 volumes are higher than southbound volumes during both AM and PM peak hours.









3. EXISTING CONDITIONS TRAFFIC ANALYSIS

3.1 Traffic Analysis Methodology

The Highway Capacity Manual (HCM) 2000 methodology within the Synchro software (version 10) was used to calculate delay and Level of Service (LOS) for the signalized and unsignalized study intersections. The methodology was discussed with FDOT and it was decided that the HCM2000 version would be utilized for this project. The HCM2000 methodology was recommended, because Synchro 10 is unable to provide HCM 6th Edition results or HCM 2010 results for signalized intersections that operate with non-standard NEMA signal phasing, and many of the signalized study intersections either operate dual signals (clusters) on one controller or have other unique phasing. Therefore, to utilize a consistent methodology for reporting all delays and LOS for existing and future conditions at all study intersections, it was decided to report the HCM2000 delays and LOS for all study intersections.

The existing (2019) Peak Hour Factors (PHFs) for the AM peak hour (7:30 am to 8:30 am) and PM peak hour (5:00 pm to 6:00 pm), for each approach at each study intersection, were calculated from the existing turning movement count data collected at each of the signalized study intersections. Movements along many of the study roadways are highly directional, and side streets have unique peak volume time periods. To capture that detail, the PHF was calculated for each intersection approach, for each peak hour, from the existing AM and PM peak hour turning movement counts. For a detailed assessment of the existing intersection operations the PHF by approach was used in the AM and PM peak hour intersection operational analysis for all study intersections except University Drive intersections where a corridor-wide PHF was developed and used. The field recorded PHF values are summarized in Table A-1 in Appendix A. A default PHF of 0.92 was assumed for the three unsignalized study intersections, since 15-minute peak hour traffic count data was not available.

For University Drive study intersections, per previous coordination with the Department and as documented in the Existing Conditions Report for University Drive/SR 817, dated March 20, 2020, a corridor-wide PHF of 0.98 was identified for the AM peak hour, and 0.99 PHF for the PM peak hour.

Bicycle and pedestrian crossing volumes were counted as part of the peak hour turning movement counts on each approach of the signalized study intersections. The bicycle and pedestrian crossing volumes are summarized in Table A-2 in Appendix A. For intersection approaches with a volume of more than 5 pedestrians and bicyclists in the peak hour, the signal timings for the Walk and Flash Don't Walk times, along with the volume of pedestrian and bicycle traffic, were incorporated into the intersection analysis. This approach recognizes that where pedestrian volumes are very low, pedestrian actuations will be very rare, and hence will not have any significant impacts on traffic operations.

Existing signal timings (e.g. cycle lengths, phasing, and splits) used for the signalized intersection analysis were based on the signal timing sheets obtained from Broward County Traffic Engineering, the signal maintaining agency. A copy of the signal timing sheets are attached in Appendix B.

3.2 Level of Service Targets and Performance Measures

FDOT Policy Topic No. 000-525-006c provides LOS targets for the State Highway System based on the area type. The policy states:

"It is the Department's intent to plan, design and operate the State Highway System at an acceptable level of service for the traveling public. The automobile mode level of service targets for the State Highway System during peak travel hours are "D" in urbanized areas and "C" outside urbanized areas. The Department shall work with local governments to establish appropriate level of service targets for multimodal mobility and system design. The targets shall be responsive to all users, for context, roadway function, network design, and user safety."

A LOS D is the target for the operational analyses of the study roadways since all are located within urbanized areas. For purposes of this study, improvements will be evaluated whenever a roadway segment or overall intersection is determined to operate below the LOS D target.

To assess the performance of the existing conditions, the following performance measures are reported and used to compare traffic operations:

Study Roadway Segments

- LOS
- Volume to Capacity (V/C) ratio

Study Intersections

- LOS
- Control delay

3.3 Study Roadways Level of Service Analysis

A level of service analysis was completed for the eight north-south study roadways and SR 84 eastbound and westbound. The 2019 AADTs were compared to the LOS D daily volume thresholds for state signalized arterials from the 2013 FDOT Quality/Level of Service Handbook, Table 1 for Generalized Annual Average Daily Volumes for Florida's Urbanized Areas. The results are shown in Table 3-1. LOS F conditions are experienced along road segments where the existing AADTs exceed LOS D threshold volumes.

Based on the analysis, the daily volume is shown to exceed the daily capacity on the following roadways:

- 1. The University Drive/SR 817 daily volume north of SR 84/I-595 exceeds the generalized service volume threshold by 36%, and University Drive/SR 817 south of SR 84/I-595 by 19%.
- 2. The SR 7 / US-441 daily volume north of SR 84/I-595 exceeds the generalized service volume threshold by 2%, and SR 7 / US-441 south of SR 84/I-595 by 6%.
- 3. SR 84 westbound east of SW/NW 136th Avenue has a daily volume that is 5% over capacity.
- 4. The SR 84 eastbound daily volume east of SW/NW 136th Avenue is over capacity by 19%, east of Flamingo Road it is over capacity by 7%, and east of Davie Road it is over capacity by 28%.

Where the 2019 AADTs exceed the planning level capacity, it indicates a deficiency and a need for further analysis. Improvements should be considered to address the deficiencies. Where the volumes significantly exceed capacity on University Drive/SR 817, SR 7 / US-441, and SR 84 eastbound and westbound, significant modifications may be needed such as additional travel lanes, and/or demand reducing strategies such as improving or adding alternative routes.

Table 3-1: Study Roadways Level of Service Analysis

				Speed			
Seg.		2019		Limit	Daily	V/C	
No.	Study Roadway	AADT	No. of Lanes	(mph)	Capacity	Ratio	LOS
1	136th Avenue north of SR 84	36,500	6LD	45	59,900	0.61	С
2	136th Avenue south of SR 84	25,500	4LD	40	39,800	0.64	С
3	Flamingo Road north of SR 84	40,500	6LD	45	59,900	0.68	С
4	Flamingo Road south of SR 84	36,500	6LD	50	59,900	0.61	С
5	Hiatus Road north of SR 84	20,000	6LD	45	59,900	0.33	С
6	Hiatus Road south of SR 84	18,000	4LD	45	39,800	0.45	С
7	Nob Hill Road north of SR 84	35,000	4LD	45	39,800	0.88	С
8	Nob Hill Road south of SR 84	25,000	4LD	45	39,800	0.63	С
9	Pine Island Road north of SR 84	52,000	6LD	45	59,900	0.87	С
10	Pine Island Road south of SR 84	42,000	6LD	45	59,900	0.70	С
11	University Drive north of SR 84	81,500	6LD	45	59,900	1.36	F
12	University Drive south of SR 84	71,500	6LD	45	59,900	1.19	F
13	Davie Road south of SR 84	46,500	6LD	35	50,000	0.93	D
14	SR 7 / US 441 north of SR 84	61,000	6LD	45	59,900	1.02	F
15	SR 7 / US 441 south of SR 84	63,500	6LD	45	59,900	1.06	F
16	SR 84 WB west of 136th Ave	11,000	2-lane 1-way	45	23,880	0.46	С
17	SR 84 EB west of 136th Ave	20,000	2-lane 1-way	45	23,880	0.84	С
18	SR 84 WB east of 136th Ave	25,000	2-lane 1-way	45	23,880	1.05	F
19	SR 84 EB east of 136th Ave	28,500	2-lane 1-way	45	23,880	1.19	F
20	SR 84 WB west of Flamingo Rd	15,500	2-lane 1-way	45	23,880	0.65	С
21	SR 84 EB west of Flamingo Rd	21,000	3-lane 1-way	45	35,940	0.58	С
22	SR 84 WB east of Flamingo Rd	17,500	3-lane 1-way	45	35,940	0.49	С
23	SR 84 EB east of Flamingo Rd	25,500	2-lane 1-way	45	23,880	1.07	F
24	SR 84 WB west of Hiatus Rd	13,000	2-lane 1-way	45	23,880	0.54	С
25	SR 84 EB west of Hiatus Rd	11,000	2-lane 1-way	45	23,880	0.46	С
26	SR 84 WB east of Hiatus Rd	14,000	2-lane 1-way	45	23,880	0.59	С
27	SR 84 EB east of Hiatus Rd	15,000	2-lane 1-way	45	23,880	0.63	С
28	SR 84 WB west of Nob Hill Rd	8,000	2-lane 1-way	45	23,880	0.34	С
29	SR 84 EB west of Nob Hill Rd	12,500	3-lane 1-way	45	35,940	0.35	С
30	SR 84 WB east of Nob Hill Rd	16,000	3-lane 1-way	45	35,940	0.45	С
31	SR 84 EB east of Nob Hill Rd	20,500	2-lane 1-way	45	23,880	0.86	С
32	SR 84 WB west of Pine Island Rd	22,500	2-lane 1-way	45	23,880	0.94	D

Seg.	Study Roadway	2019 AADT	No. of Lanes	Speed Limit (mph)	Daily Capacity	V/C Ratio	LOS
33	SR 84 EB west of Pine Island Rd	23,500	2-lane 1-way	45	23,880	0.98	D
34	SR 84 WB east of Pine Island Rd	23,500	3-lane 1-way	45	35,940	0.65	С
35	SR 84 EB east of Pine Island Rd	21,500	2-lane 1-way	45	23,880	0.90	С
36	SR 84 WB west of University Dr	23,500	2-lane 1-way	45	23,880	0.98	D
37	SR 84 EB west of University Dr	20,000	2-lane 1-way	45	23,880	0.84	С
38	SR 84 WB east of University Dr	31,000	3-lane 1-way	45	35,940	0.86	С
39	SR 84 EB east of University Dr	21,500	2-lane 1-way	45	23,880	0.90	С
40	SR 84 WB west of Davie Rd	29,000	4-lane 1-way	45	48,060	0.60	С
41	SR 84 EB west of Davie Rd	17,500	2-lane 1-way	45	23,880	0.73	С
42	SR 84 WB east of Davie Rd	21,500	4-lane 1-way	45	48,060	0.45	С
43	SR 84 EB east of Davie Rd	19,500	2-lane 1-way uninterrupted	45	15,246	1.28	F

3.4 Existing (2019) Condition Intersection Operational Analysis

An analysis of the traffic operational performance of the study intersections was performed. Existing conditions were analyzed to identify any current operational deficiencies. The conditions recorded in December 2019 represent the existing conditions that were analyzed, including the lane geometry and peak hour traffic volumes as shown on Figure 2-2, as well as the existing signal timings and posted speed limits. The HCM2000 intersection operational analysis reports for each study intersection during the AM and PM peak hours are provided in Appendix C. In addition, the Level of Service (LOS) and delay for each movement, approach and overall intersection are summarized in Tables C-1 through C-13 in Appendix C.

The overall intersection delay and LOS for each study intersection, is summarized in Table 3-2. In the table, intersections operating below the LOS D target (at LOS E or F) in either the AM or PM peak hour, are highlighted in red. Existing operational analysis results indicate that most SR 84 study intersections do not operate at overall LOS D or better.

As shown in Table 3-2, the following 17 study intersections do not meet the target LOS D in the AM and/or PM peak hour:

- 1. NW/SW 136th Avenue at SR 84 eastbound in the AM peak hour High demand with long delays for the northbound right turn movement (average of 560 seconds per vehicle), causes this intersection to operate at an overall LOS F in the AM peak hour.
- 2. NW/SW 136th Avenue at SR 84 westbound in both AM and PM peak hours The westbound movements (left, through, and right turn) all experience long delays during both peak hours, which causes the intersection to operate at an overall LOS E in the AM and PM peak hours.
- 3. SR 84 westbound at Commodore Drive in both AM and PM peak hours This unsignalized intersection operates at a LOS E in the AM peak hour and LOS F in the PM peak hour. The substandard operating conditions are due to the delay experienced by southbound drivers

- that are turning right onto westbound SR 84. They must wait an average of 47 seconds in the AM and 104 seconds in the PM peak hour to make their turn.
- 4. Flamingo Road / SR 823 at SR 84 eastbound in both AM and PM peak hours This intersection operates at an overall LOS F in the AM and PM peak hours. The substandard operating conditions are due to both the eastbound and northbound movements which experience long delays during both peak hours.
- 5. Flamingo Road / SR 823 at SR 84 westbound in both AM and PM peak hours Both the westbound and southbound movements experience long delays during both peak hours. This causes the intersection to operate at an overall LOS E in the AM peak hour and LOS F in the PM peak hour.
- 6. Hiatus Road at SR 84 eastbound in both AM and PM peak hours During both peak hours, all eastbound movements, the northbound through movement, and southbound left turn movement experience long delays. These long delays cause the intersection to operate at LOS F during the AM peak hour and LOS E during the PM peak hour.
- 7. Hiatus Road at SR 84 westbound in both AM and PM peak hours The intersection operates at a LOS F in both AM and PM peak hours, due to long delays experienced on the westbound and southbound movements.
- 8. Hiatus Road at Broward Boulevard in both AM and PM peak hours During both AM and PM peak hours the intersection operates at a LOS E, due to long delays experienced on the eastbound and westbound movements.
- 9. Nob Hill Road at SR 84 eastbound in both AM and PM peak hours This intersection operates at an overall LOS F during the AM peak hour and LOS E during the PM peak hour. The substandard operating conditions are due to both the eastbound and northbound movements which experience long delays during both peak hours.

August 2020

- 10. Nob Hill Road at SR 84 westbound in both AM and PM peak hours Both the westbound and southbound movements experience long delays during both peak hours. These long delays cause the intersection to operate at an overall LOS E in the AM peak hour and LOS F in the PM peak hour.
- 11. Nob Hill Road at Broward Boulevard in the PM peak hour The westbound movements, northbound movements, and southbound movements all experience long delays during the PM peak. These long delays cause the intersection to operate at an overall LOS E in the PM peak hour.
- 12. Pine Island Road at SR 84 eastbound in both AM and PM peak hours The intersection operates at an overall LOS F during the AM peak hour, and LOS E during the PM peak hour. The substandard operating conditions are due to the long delay experienced for all eastbound movements and northbound movements.
- 13. Pine Island Road at SR 84 westbound in both AM and PM peak hours Long delay experienced for all westbound and southbound movements, causes the intersection to operate at an overall LOS F during both the AM peak hour and PM peak hour.
- 14. University Drive / SR 817 at SR 84 westbound in AM peak hour The westbound movements, all experience long delays, which causes the intersection to operate at an overall LOS E in the AM peak hour.
- 15. University Drive / SR 817 at Peters Road in the AM peak hour The intersection operates at an overall LOS E during the AM peak hour. This is due to long delays experienced on all four approaches.
- 16. Davie Road at SR 84 eastbound in both AM and PM peak hours The intersection operates at an overall LOS F during the AM and PM peak hours, due to the long delay experienced by the eastbound movements and the northbound through movement.

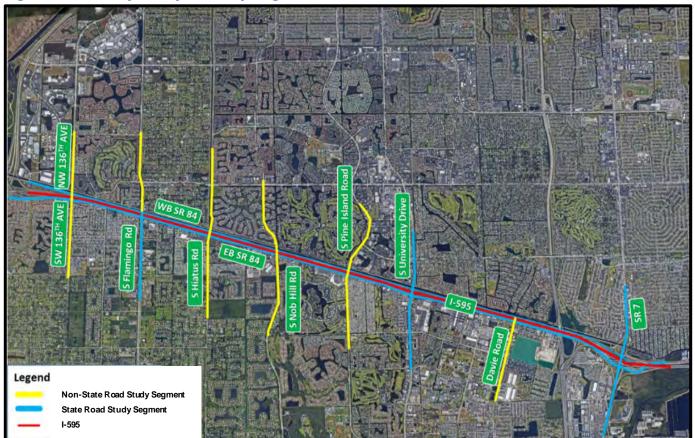
17. SR 7/US-441 at SW 20th Street / Riverland Road in both AM and PM peak hours – This intersection operates currently with split phasing for the eastbound and westbound approaches. The intersection operates at an overall LOS F during the AM peak hour and LOS E during the PM peak hour. These substandard operating conditions are due to long delays experienced by vehicles on the eastbound, westbound, and southbound approaches during both peak hours.

The existing peak hour operating conditions at the above noted intersections indicate a need for improvements.

Table 3-2: Existing (2019) Conditions Study Intersection LOS

Cross Road	Intersection Ref. No.	Intersection With:	Control	2019 Existing LOS	
	Ket. No.		Туре	AM	PM
	Shenandoah Parkway / SV 5 th Street		Signal	С	В
1. NW/SW 136 th	2	SR 84 Eastbound	Signal	F	D
Avenue	3	SR 84 Westbound	Signal	E	E
	4	NW 2 nd Street	Signal	Α	В
2. SR 84 Westbound	5	Commodore Drive	Stop Control	E	F
2. SK 64 Westbound	6	SW 125 th Avenue	Stop Control	С	С
	7	SW 8 th Street	Signal	В	В
3. Flamingo Road / SR	8	SR 84 Eastbound	Signal	F	F
823	9	SR 84 Westbound	Signal	Е	F
	10	Broward Boulevard	Signal	D	D
	11	SR 84 Eastbound	Signal	F	E
4. Hiatus Road	12	SR 84 Westbound	Signal	F	F
	13	Broward Boulevard	Signal	E	E
	14	SW 13 th Street	Signal	С	А
	15	SW 101 Road	Signal	В	В
5 N. J. 1311 5	16	SR 84 Eastbound	Signal	F	E
5. Nob Hill Road	17	SR 84 Westbound	Signal	E	F
	18	Hawks View Boulevard	Signal	В	В
	19	Broward Boulevard	Signal	D	E

Cross Road	Intersection	Intersection With:	Control	2019 Existing LOS		
	Ref. No.		Туре	AM	PM	
	20	SW 24 th Street / Nova Drive	Signal	D	D	
	21	Orange Grove Road	Signal	В	В	
	22	SR 84 Eastbound	Signal	F	E	
6. Pine Island Road	23	SR 84 Westbound	Signal	F	F	
	24	New River Canal Road	Signal	Α	В	
	25	Peters Road	Signal	D	D	
	26	SW 6 th Court	Signal	В	D	
7. Peters Road	27	SW 80th Terrace	Signal	В	D	
8. SR 84 Eastbound	28	SW 81 st Avenue	Stop Control	D	С	
	29	SW 30 th Street	Signal	D	D	
	30	Nova Drive	Signal	С	D	
	31	SW 23 rd Street	Signal	В	D	
	32	Kolsky Boulevard	Signal	В	D	
9. University Drive / SR 817	33	SR 84 Eastbound	Signal	C	D	
31.017	34	SR 84 Westbound	Signal	E	С	
	35	Peters Road	Signal	E	D	
	36	The Fountains	Signal	Α	В	
	37	Federated Road	Signal	В	С	
	38	Nova Drive	Signal	С	D	
10 Davis Bood	39	Reese Road	Signal	С	С	
10. Davie Road	40	SR 84 Eastbound	Signal	F	F	
	41	SR 84 Westbound	Signal	D	D	
11 CD 7 / LIC 441	42	Oakes Road	Signal	D	D	
11. SR 7 / US 441	43	SW 20 th Street / Riverland Road	Signal	F	E	



4. CRASH DATA AND SAFETY ANALYSIS

4.1 Safety Analysis Methodology

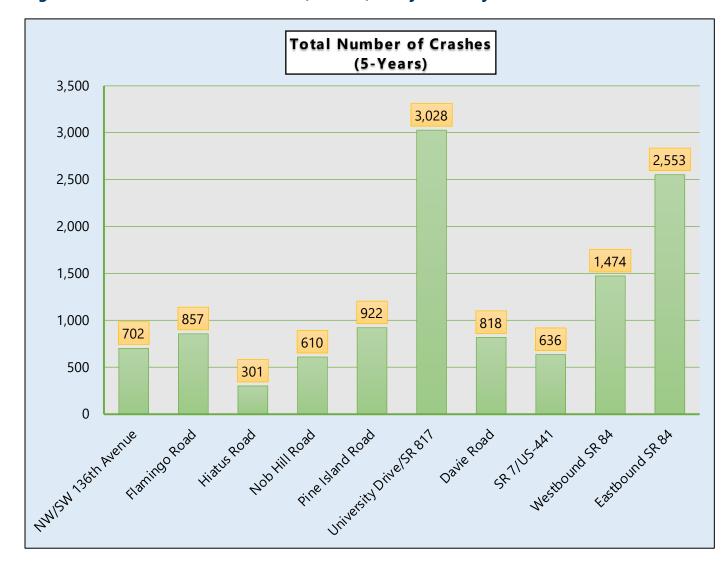
The safety analysis methodology defines the procedures and assumptions that were used to identify safety related deficiencies. As part of the safety analysis, crash data for ten corridors, listed in Table 4-1, was reviewed and analyzed. The limits and roadway jurisdiction for each of the study segments are described in Table 4-1 and the locations and limits are shown in Figure 4-1. The limits of each corridor are approximately one mile north and one mile south of I-595. The roadway jurisdiction influenced the source for gathering crash data.

Figure 4-1: Safety Analysis Study Segments

Table 4-1: Safety Analysis Study Segments

Segment Number	Roadway Segment	Beginning Limit	Ending Limit	Road Jurisdiction
1	SW 136th Avenue	SW 14th Street	NW 8th Street	City - South of I-595 County - North of I-595
2	Flamingo Road	SW 17th Street	NW 8th Street	State- South of I-595 City - North of I-595
3	South Hiatus Road	Earnest Boulevard	2200 ft N of W Broward Boulevard	City - South of I-595 County - North of I-595
4	South Nob Hill Road	SW 22nd Court	W Broward Boulevard	County
5	South Pine Island Road	Nova Drive	SW 3rd Street	County
6	South University Drive	SW 30th Street	Federated Road	State
7	Davie Road	SW 36th Street	Westbound SR 84	County
8	State Road 7	Powell's Road	SW 18 th Street	State
9	Eastbound State Road 84	SW 138 th Avenue	Canal Drive	State
10	Westbound State Road 84	Canal Drive	International Parkway	State

FDOT's Crash Analysis Reporting System (CARS) was used to gather historical crash records for the study area. CARS is a database maintained annually by FDOT for crashes reported along state highway facilities. Crash data was also obtained from the Signal Four Analytics database. For non-state roads, crash data was collected exclusively from Signal Four Analytics. Data was collected for the five most recent years of available data from 2014-2018. However, since CARS only includes data through 2017, data was augmented with 2018 data from Signal Four Analytics. The crash data for each study roadway segment is documented in Existing Data Technical Memorandum #1.


Field reviews were performed at notable hotspots and high crash locations during the weekday AM and PM peak hours. During the field review, existing safety conditions were observed and recorded. Operational factors that could potentially contribute to crashes, such as queue lengths, delays, vehicular conflicts, signal phasing, or other characteristics, were noted. Physical features that may contribute to crashes, such as geometry, traffic control devices, driver expectancy problems, or other characteristics, were also noted. Evidence of crashes in the field were noted, and any high-risk traffic maneuvers that were observed. During the field reviews safety related obstructions, unusual geometries, deficient pavement conditions or markings, etc. were photographed and/or noted.

A summary of the safety field review notes is provided in Appendix D.

4.2 Total Crashes Study Roadways

The total number of crashes that occurred on each of the study roadway segments within the last five years of available data is summarized in Figure 4-2. The study roadway with the highest number of crashes over five years is University Drive with a total of 3,028 crashes. Eastbound SR 84 had the second highest number of crashes within the last five years, with a total of 2,553.

Figure 4-2: Total Number of Crashes (5-Years) Study Roadways

4.3 Fatal Crashes Study Roadways

The number of fatal crashes recorded within the last five years on each study roadway segment is summarized in Table 4-2. As shown, SR 7/US-441 has the highest number of fatal crashes (10) of any of the eight north-south study roadways. University Drive / SR 817 has the second highest number of fatal crashes (7).

Table 4-2: Number of Fatal Crashes (5-Years)

Study Roadway	No. of Fatal Crashes (5- Years)			
NW/SW 136 th Avenue	0			
Flamingo Road	1			
Hiatus Road	0			
Nob Hill Road	1			
Pine Island Road	3			
University Drive/SR 817	7			
Davie Road	1			
SR 7/US-441	10			

More detailed information regarding the fatal crashes that occurred at identified hotspots and high crash locations is provided in Appendix D.

4.4 Pedestrian and Bicycle Crashes Study Roadways

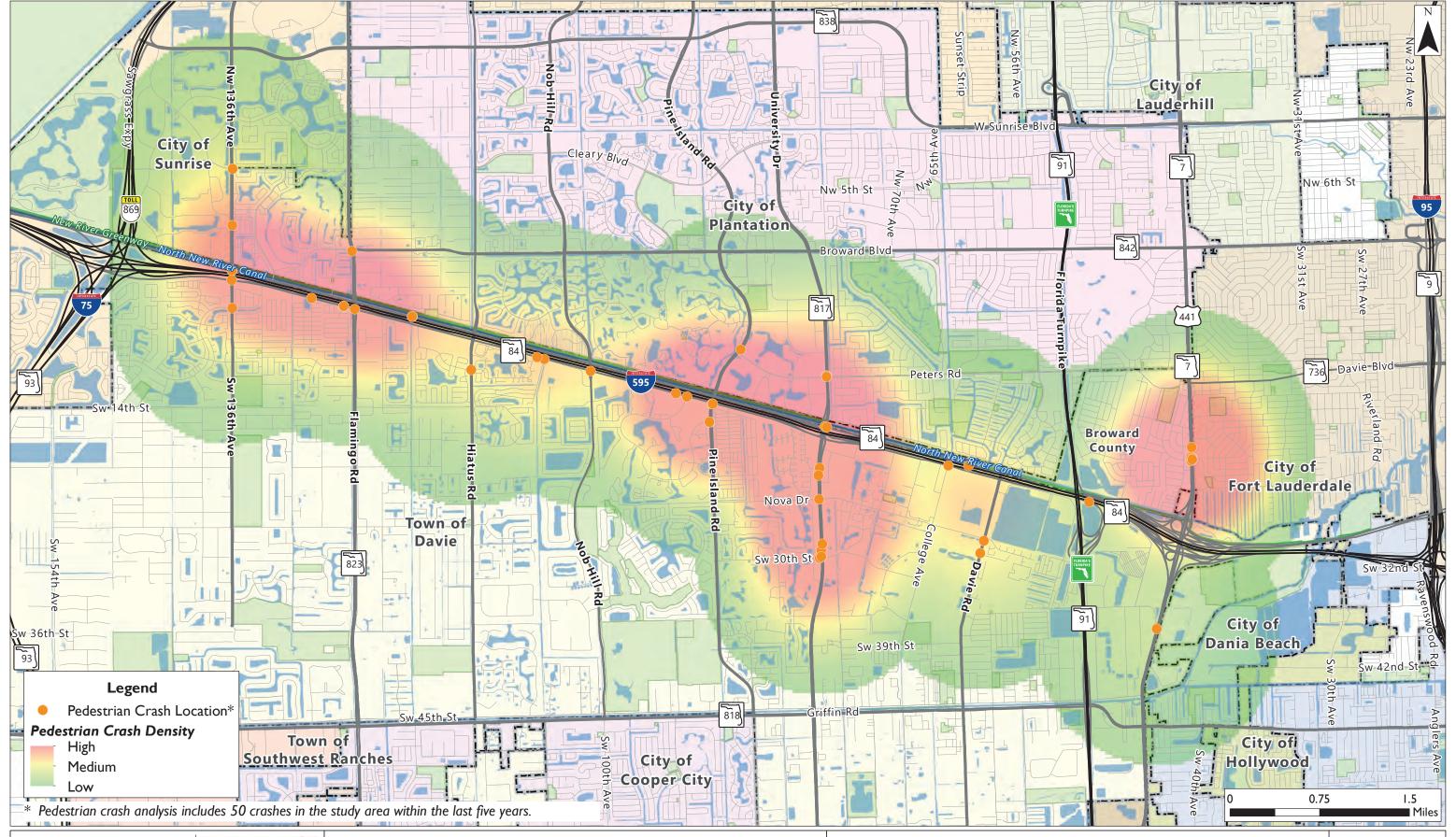

The number of pedestrian and bicycle related crashes that have occurred within the last five years on each study roadway segment is summarized in Table 4-3.

Table 4-3: Number of Pedestrian and Bicycle Crashes (5-Years)

Study Roadway	No. of Pedestrian Crashes	No. of Bicycle Crashes
NW/SW 136 th Avenue	4	2
Flamingo Road	2	9
Hiatus Road	2	0
Nob Hill Road	1	4
Pine Island Road	3	3
University Drive/SR 817	13	8
Davie Road	3	1
SR 7/US-441	10	8

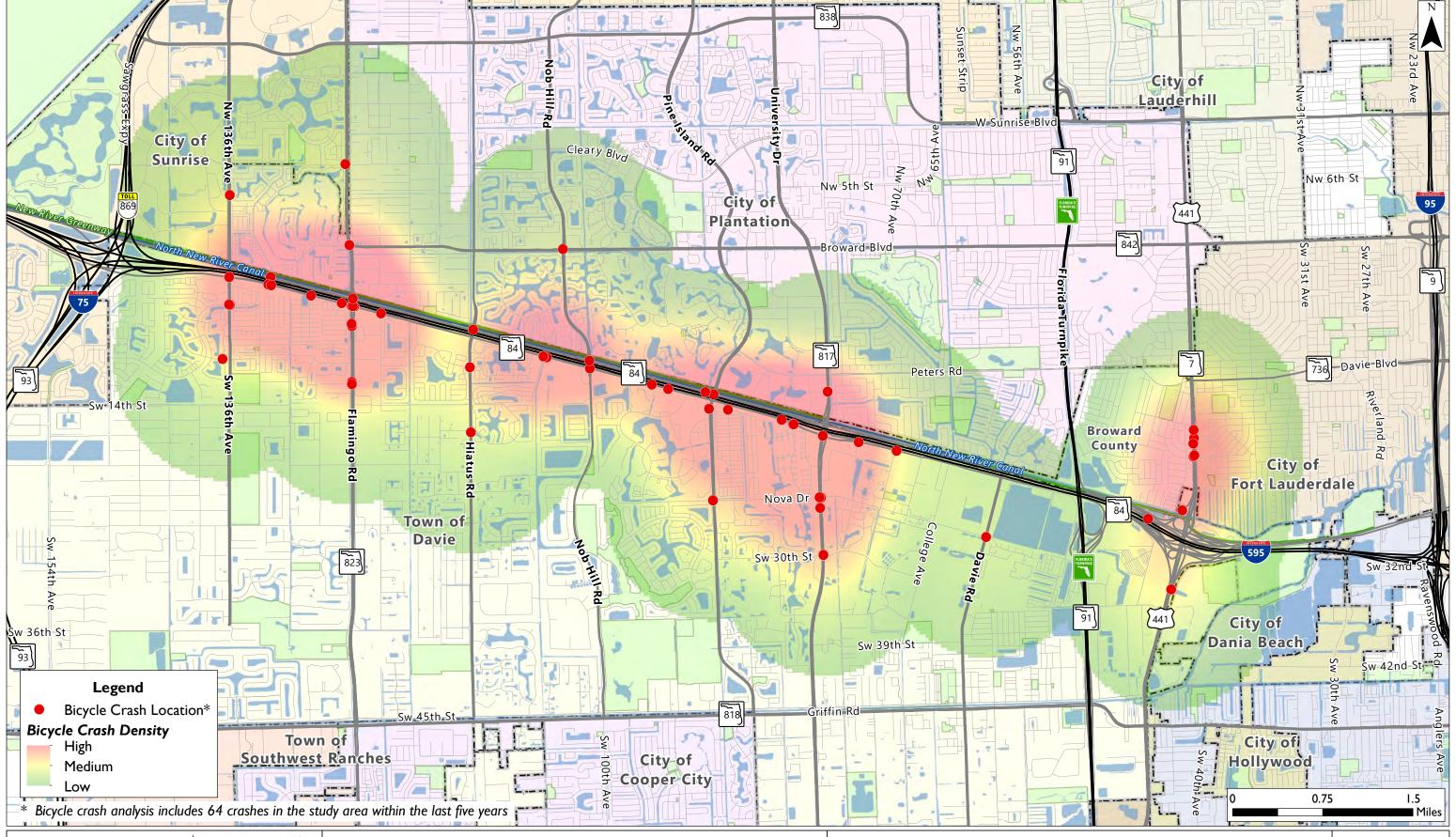
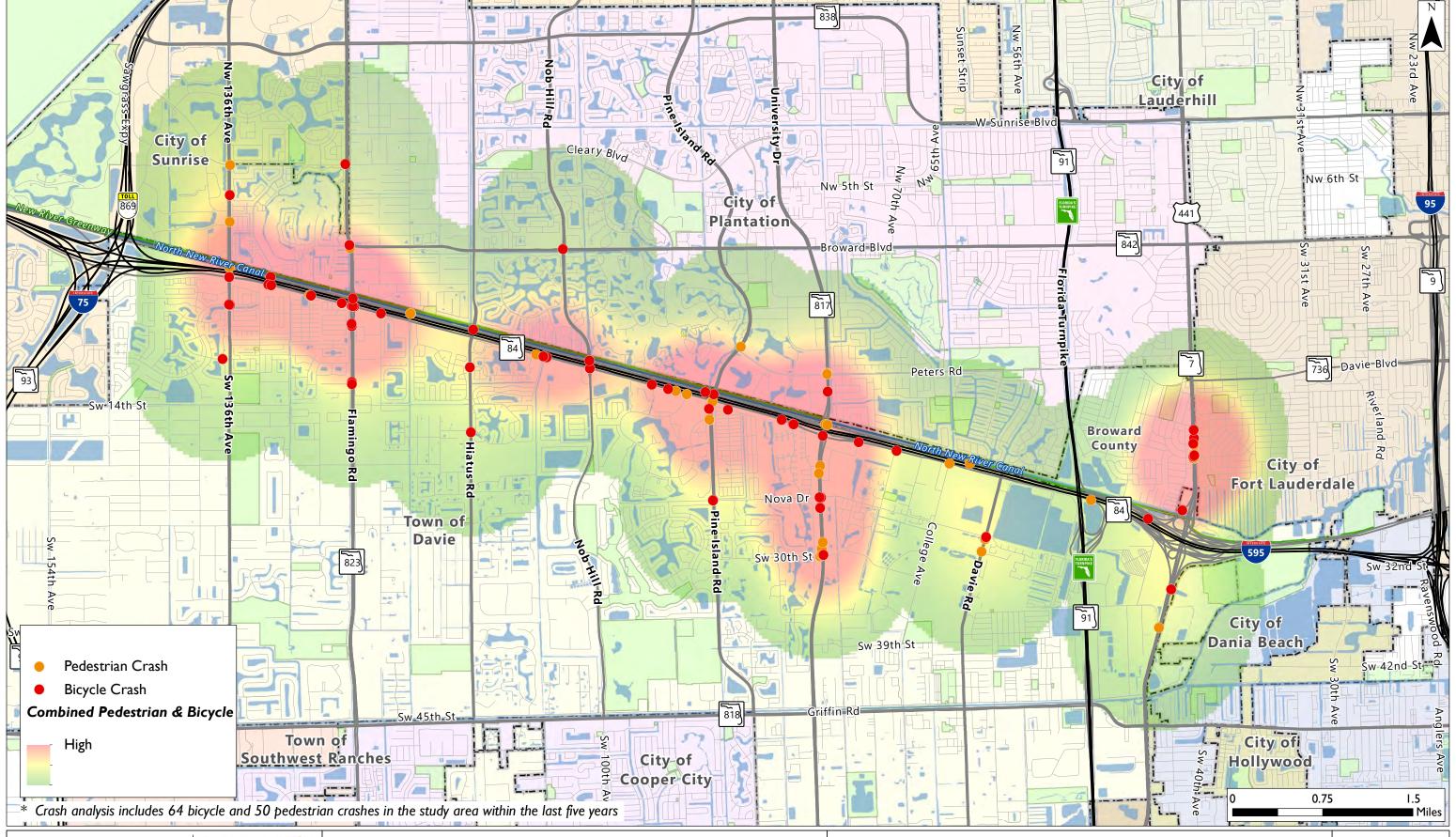

University Drive / SR 817 had the highest number of pedestrian related crashes (13) over the last five years, followed by SR 7/US-441 with ten (10) crashes. Over the last five years, the highest number of bicycle related crashes occurred on Flamingo Road, with nine (9) bicycle related crashes. Eight (8) bicycle related crashes occurred within the last five years on both University Drive/SR 817 and SR 7/US-441.

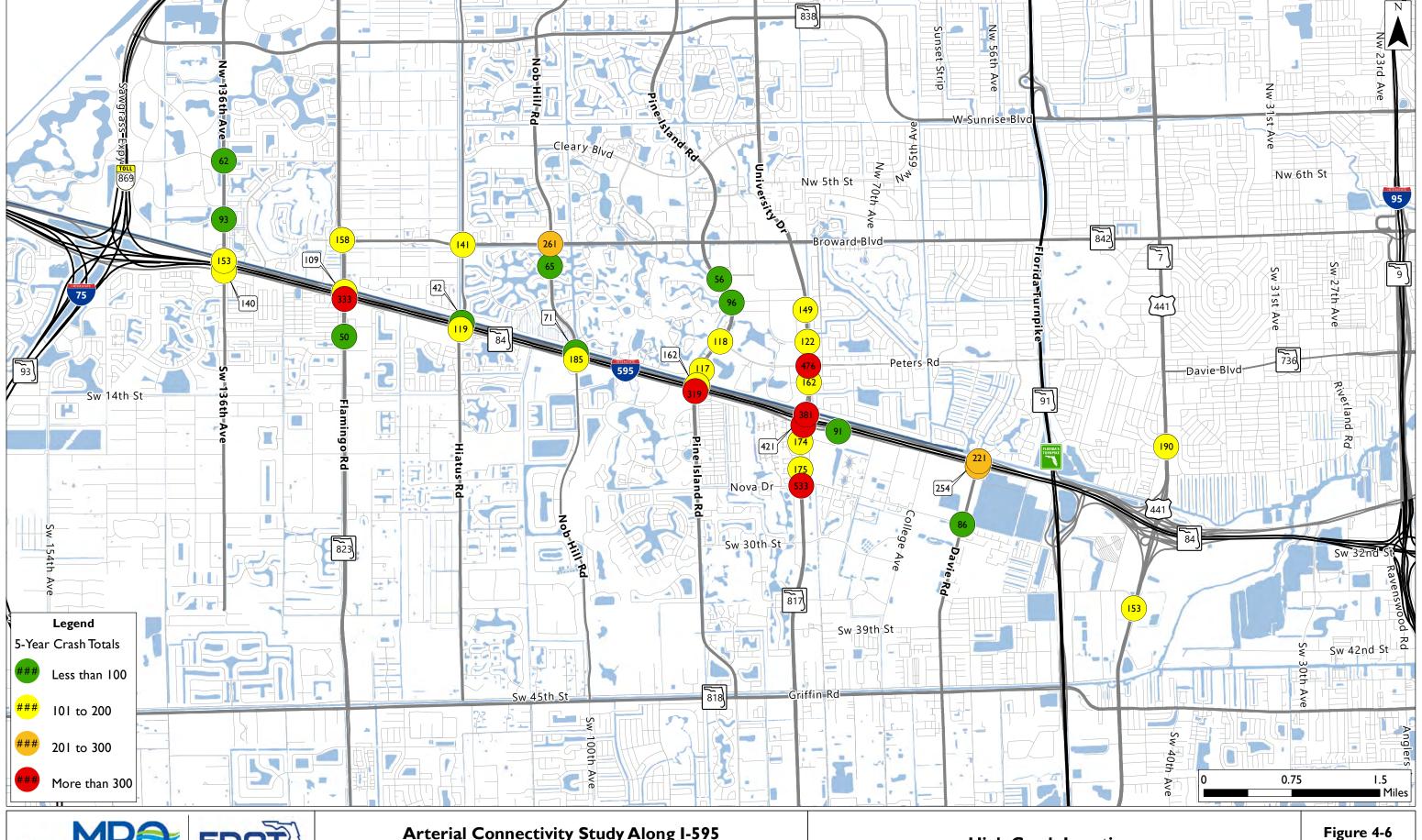
Figure 4-2 shows the locations of the pedestrian related crashes along each of the study roadway segments. Figure 4-3 shows the locations of the bicycle related crashes within the study area along the study roadways. Figure 4-4 shows both the pedestrian and bicycle related crashes within the study area along the study roadways. More detailed information regarding the pedestrian and bicycle related crashes that occurred at identified hotspots and high crash locations is provided in Appendix D.



4.5 Crash Hotspots and High Crash Locations

The last five years of crash data was analyzed, and abnormal crash characteristics and high crash locations were identified using a GIS cluster analysis to develop "density" plots for crash concentrations and clusters. In addition, the FDOT District Four High Crash Lists (2013 through 2017) were reviewed, and any locations within the study limits that were not already identified as hot spots through the GIS Kernel Density analysis documented in Technical Memorandum #1, were identified. Locations that appeared on the District's annual High Crash Location List for at least three of the last five years were selected for further study along with the locations identified as GIS Kernel Density hotspots.

Thirty-six (36) locations were identified as crash hotspots and high crash locations for further study. The 36 locations identified within the study area are summarized in Table 4-4 and shown on Figure 4-6. The crash data for these 36 locations was summarized in Technical Memorandum #1, and crash patterns were analyzed as part of the overall crash data summaries.


Each of the 36 hotspots and high crash locations were evaluated looking at the total 5-year crashes, the 5-year fatal crashes, 5-year bicycle and pedestrian crashes, intersection-wide abnormal/leading crash patterns, 5-year crashes by pattern type, and average crashes per year by pattern type. The intersection-wide abnormal/leading crash patterns and the number of crashes for each are shown in Table 4-5 for all 36 study locations.

An assessment of the fatal crashes, bicycle and pedestrian crashes, and abnormal/leading crash patterns is provided for each of the 36 hotspot and high crash locations.

Table 4-4: Crash Hotspots and High Crash Locations

			High Crash List Occurrences					
Legation		State						GIS Kernel Density
Location Number	Location Description	Road Location	2013	2014	2015	2016	2017	Hotspot
1	NW/SW 136th Avenue	Location	2013	2014	2013	2010	2017	√
•	at NW 8th Street							·
2	NW/SW 136th Avenue							✓
	at NW 2nd Street							
3	Flamingo Road at							✓
	Broward Boulevard							
4	Flamingo Road at SW	✓			✓			✓
5	8th Street Hiatus Road at Broward							√
J	Boulevard							~
6	Nob Hill Road at							√
	Broward Boulevard							·
7	Nob Hill Road at Hawks							✓
	View Boulevard							
8	Pine Island Road at New							✓
0	River Canal Road							,
9	Pine Island Road at Peters Road							✓
10	Pine Island Road at SW							√
	6th Court							·
11	Pine Island Road at SW							√
	3rd Street							
12	University Drive/SR 817	✓	✓	✓	✓	✓	✓	✓
	at Peters Road							
13	University Drive/SR 817	✓	✓	√	√	√	✓	✓
14	at Nova Drive University Drive/SR 817	√	√	√	√	√	√	
14	at S 1900 Block	V	'	'	'	'	'	
15	University Drive/SR 817	√	√	√	√	√	√	
	at S 2300 Block							
16	University Drive/SR 817	√	✓	✓		√	✓	
	at SW 10th Street							
17	University Drive/SR 817	✓	✓	✓		✓	✓	
10	at SW 13th Place	,	,			,		
18	University Drive/SR 817 at the Fountains	√	✓	✓	✓	✓	✓	
	at the rountalits							

			Hi	gh Cras	h List O	currenc	ces	GIS Kernel
Location		State Road						Density
Number	Location Description	Location	2013	2014	2015	2016	2017	Hotspot
19	Davie Road at Nova							√
	Drive							
20	SR 7/US-441 at SW 20th Street	✓	✓	✓	✓	✓	✓	✓
21	SR 7/US-441 at Oakes Road	✓		✓	✓	√	✓	✓
22	Westbound SR 84 at NW/SW 136th Avenue	√	√	✓	√	✓	√	✓
23	Westbound SR 84 at Flamingo Road	✓	√	√	√	✓	√	✓
24	Westbound SR 84 at Hiatus Road	✓	√			✓	✓	✓
25	Westbound SR 84 at Nob Hill Road	✓	√		√	√	√	✓
26	Westbound SR 84 at Pine Island Road	✓	√	√	√	√	√	√
27	Westbound SR 84 at University Drive/SR 817	√	✓	✓	√	✓	✓	√
28	Westbound SR 84 at Davie Road	✓	√	√	√	✓	√	✓
29	Eastbound SR 84 at NW/SW 136th Avenue	✓	✓	√	✓	✓	√	√
30	Eastbound SR 84 at Flamingo Road	✓	✓	✓	✓	√	✓	✓
31	Eastbound SR 84 at Hiatus Road	√	✓	✓	√	√	✓	✓
32	Eastbound SR 84 at Nob Hill Road	✓	✓	✓	✓	√	✓	✓
33	Eastbound SR 84 at Pine Island Road	✓	√	✓	√	√	✓	✓
34	Eastbound SR 84 at University Drive/SR 817	✓	✓	✓	✓	✓	✓	✓
35	Eastbound SR 84 at Davie Road	√	✓	✓	✓	√	✓	✓
36	Eastbound SR 84 at SW 75th Avenue	√			✓	√	✓	

Table 4-5: Crash Hotspots and High Crash Locations – Crash Patterns

Location No.	Study Roadway	Intersection	Total 5-year Crashes	5-year Fatal Crashes	5-year Bike/ Ped Crashes	Intersection-wide Abnormal/Leading Crash Patterns	5-year Crashes by Pattern	Avg Crashes / Year by Pattern	
					1	Left-turn	17	3.4	
1	NW 136th Avenue	NW 8th Street	62	0		Wet	10	2	
						Rear-end	30	6	
2	NW 136th Avenue	NW 2nd Street	93	0	0	Left-turn	32	6.4	
۷	NW 130th Avenue	IN W ZIIG Street	93	U	U	Rear-end	28	5.6	
						Wet	28	5.6	
3	Flamingo Road	Broward Boulevard	158	0	2	Dark	49	9.8	
						Rear-end	97	19.4	
						Wet	10	2	
4	Elamingo Poad	SW 8th Street	50	0	0	Fixed-Object	10	2	
4	Flamingo Road	SW offi Street	30	U	U	Angle	11	2.2	
						Rear-end	22	4.4	
		Broward Boulevard			1	Wet	23	4.6	
F	I liatus Dand		141	0		Dark	44	8.8	
5	5 Hiatus Road					Left-Turn	36	7.2	
						Rear-end	62	12.4	
					0	Wet	43	8.6	
6	Nob Hill Road	Broward Boulevard	261	0		Dark	69	13.8	
						Rear-end	143	28.6	
					0	Wet	43	8.6	
7	Nob Hill Road	Hawks View Boulevard	65	0		Dark	69	13.8	
						Rear-end	49	9.8	
0	D' I-l d D d	N. Di Caral	117	0	0	Rear-end	53	10.6	
8	Pine Island Road	New River Canal	117	0	0	Sideswipe	27	5.4	
9	Pine Island Road	Peters Road	118	1	0	Rear-End	66	13.2	
1.0						Rear-End	66	13.2	
10	Pine Island Road	SW 6th Court	96	0	1	Wet	21	4.2	
11	Pine Island Road	SW 3rd Street	56	0	0	Rear-End	29	5.8	
4.0		<u> </u>		476 2	_	Rear-End	330	66	
12	University Drive	Peters Road	476		2	2	4	Wet	84
12	11 1 2 5 5 1	N 5 .	F22		2	Rear-End	322	64.4	
13	University Drive	Nova Drive	533	1	3	Wet	91	18.2	

Location No.	Study Roadway	Intersection	Total 5-year Crashes	5-year Fatal Crashes	5-year Bike/ Ped Crashes	Intersection-wide Abnormal/Leading Crash Patterns	5-year Crashes by Pattern	Avg Crashes / Year by Pattern
14	University Drive	S 1900 Block	174	0	0	Wet	27	5.4
14	Offiversity Drive	3 1900 Block	174	U	U	Rear-end	98	19.6
15	University Drive	S 2300 Block	175	0	0	Wet	29	5.8
15	Offiversity Drive	3 2300 Block	173	Ü	U	Rear-end	120	24
16	University Drive	SW 10th Street	122	0	0	Wet	25	5
		5.1.15.0.50		-	C C	Rear-end	80	16
17	University Drive	SW 13th Place	162	0	1	Rear-End	95	19
18	University Drive	The Fountains	149	0	0	Wet	32	6.4
10	Offiversity Drive	THE FOURTAINS	143	U	U	Rear-end	109	21.8
						Wet	15	3
19	Davie Road	Nova Drive	86	0	1	Left-Turn	14	2.8
						Rear-end	36	7.2
20	SR 7	SW 20th Street	190	1	9	Rear-End	97	19.4
21	CD 7	Onlyna Dand	150	2	1	Rear-End	71	14.2
21	SR 7	Oakes Road	153	3	1	Wet	25	5
22	WB SR 84	NW 136th Avenue	153	1	2	Rear-End	71	14.2
22	VVD 3K 04	NW 136th Avenue	155	I	2	Wet	25	5
				0	1	Rear-End	50	10
23	WB SR 84	Flamingo Road	109			Dark	34	6.8
						Wet	25	5
24	WB SR 84	Hiatus Road	42	0	1	Rear-End	24	4.8
					1	Rear-End	43	8.6
25	WB SR 84	Nob Hill Road	71	0		Dark	27	5.4
						Wet	13	2.6
26	WB SR 84	Pine Island Road	162	0	1	Rear-End	90	18
20	VVD 3I\ 04	Fille Island Noad	102	U	1	Dark	61	12.2
27	WB SR 84	S University Drive	381	1	1	Rear-End	272	54.4
						Rear-End	76	15.2
28	WB SR 84	Davie Road	221	2	0	Fixed-Object	31	6.2
20	WD SIV 04	Davie Road	221		U	Wet	60	12
						Sideswipe	48	9.6
29	EB SR 84	W 136th Avenue	140	0	2	Rear-End	92	18.4
						Rear-End	215	43
30	EB SR 84	Flamingo Road	333	0	4	Wet	75	15
						Dark	108	21.6

Location No.	Study Roadway	Intersection	Total 5-year Crashes	5-year Fatal Crashes	5-year Bike/ Ped Crashes	Intersection-wide Abnormal/Leading Crash Patterns	5-year Crashes by Pattern	Avg Crashes / Year by Pattern	
					Rear-End	66	13.2		
31	EB SR 84	Hiatus Road	119	0	0	Dark	43	8.6	
						Wet	20	4	
22	32 EB SR 84 Nob Hill Ro	EB SR 84 Nob Hill Road	185	0	2	Rear-End	132	26.4	
32			100	U		Wet	32	6.4	
22	ED CD 0.4		0	2	Rear-End	194	38.8		
33	EB SR 84	Pine Island Road	319	0	3	Wet	49	9.8	
34	FD CD 0.4	Heistoreits Drive	421	0	0	2	Rear-End	231	46.2
54	EB SR 84	University Drive	421	U	2	Wet	79	15.8	
35	EB SR 84	Davie Road	254	0	0	Rear-End	115	23	
36	EB SR 84	SW 75th Ave	91	0	0	Rear-End	63	12.6	

4.6 Safety Assessment for Hotspots and High Crash Locations

4.6.1 NW/SW 136th Avenue at NW 8th Street

4.6.1.1 Crash History

A total of 62 crashes occurred at the intersection of NW/SW 136th Street and NW 8th Street during the five-year period between 2014 and 2018. Left-turn (27.4%) and rear-end (48.4%) crashes were identified as the leading abnormal crash patterns.

i. Fatal Crashes

There were no fatal crashes within the study period at this intersection.

ii. Bicycle/Pedestrian Crashes

One pedestrian related crash occurred in 2016 which involved a southbound pedestrian on the east leg of the intersection who failed to yield to an eastbound vehicle.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection are left-turn and rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Left-turn Crashes</u> –. Left-turn phases are currently provided in the northbound and southbound directions, but not for the eastbound and westbound approaches. The northbound and southbound approaches could potentially benefit from protected-only left-turn phasing, at the cost of vehicular delays. Similarly, the eastbound and westbound approaches could benefit from left-turn phases or split phasing. Signal timing yellow and all-red phases should be examined as well.

Sight distances for the northbound and southbound approaches at this intersection were suitable but given the width of the intersection there is the potential for drivers to misjudge the time available when making left-turns across oncoming traffic.

Signal visibility could also help to reduce left-turn crashes by improving driver awareness.

<u>Rear-end Crashes</u> – Rear-end crashes are typical when congestion reaches high levels, particularly when signal density is high. At this intersection, field reviews did not show extreme congestion, nor high signal density. The most likely causes at this intersection are degraded pavement conditions, signal visibility and signal timing.

4.6.1.2 Safety Deficiencies

The field reviews performed at this intersection identified a number of deficiencies, some of which are related to the identified crash types. Appendix E provides a full description of these identified deficiencies and listed below are some of the more relevant issues.

<u>Pavement Conditions</u> – At this intersection both the pavement and pavement markings showed considerable wear.

<u>Signal Visibility</u> – Of the eight signal heads present at this intersection, only four included backing plates.

4.6.1.3 Summary and Recommendations

The most significant crash types at this intersection were shown to be left-turn and rear-end crashes. From the crash data, causes/countermeasures and field reviews, the applicable potential improvements for this intersection include restoration of pavement and pavement markings to address deficiencies, signal visibility improvements and a review of the existing signal timing.

4.6.2 NW/SW 136th Avenue at NW 2nd Street

4.6.2.1 Crash History

A total of 93 crashes occurred at the intersection of NW/SW 136th Street and NW 2nd Street during the five-year study period between 2014 and 2018. Left-turn (34.4%) and rear-end (30.1%) crashes were the leading crash types identified.

i. Fatal Crashes

There were no fatal crashes within the study period at this intersection.

ii. Bicycle/Pedestrian Crashes

There was one pedestrian crash in 2015 which involved a pedestrian who stepped in front of a northbound vehicle just north of the intersection.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were left-turn and rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Left-turn Crashes</u> – Left tuns are moderately high at this intersection. Left-turn phases are currently provided in the northbound direction. The northbound approach could potentially benefit from protected-only left-turn phasing, at the cost of vehicular delays. Being a T-intersection, the eastbound approach has its own phase and does not conflict with opposing traffic flows. Signal timing yellow and all-red phases should be examined as well.

Sight distances for the northbound and southbound approaches at this intersection were suitable, but given the width of the intersection there is the potential for drivers to misjudge the time available when making left-turns across oncoming traffic.

Signal visibility improvements in the northbound direction could also help to reduce left-turn crashes by improving driver awareness.

<u>Rear-end Crashes</u> – The field reviews did not show heavy traffic congestion, nor high signal density. The most likely causes at this intersection are signal visibility and signal timing.

4.6.2.2 Safety Deficiencies

The only potential safety deficiency noted during the field reviews was that the northbound traffic signal placed on the side of the road was blocked by overgrown vegetation.

4.6.2.3 Recommendations

The most significant crash types at this intersection were shown to be left-turn and rear-end crashes. From the crash data, causes/countermeasures and field reviews, the applicable potential improvements for this intersection include signal visibility improvements and a review of the existing signal timing.

4.6.3 Flamingo Road at Broward Boulevard

4.6.3.1 Crash History

A total of 158 crashes occurred at the intersection of Flamingo Road and Broward Boulevard during the five-year study period between 2013 and 2017. For this intersection Wet (17.7%), Dark (30.9%) and Rear-end crashes (61.4%) were the leading crash types identified.

i. Fatal Crashes

There were no fatal crashes at this intersection during the study period

ii. Bicycle/Pedestrian Crashes

There was one pedestrian crash in 2017 and one bicycle crash in 2013.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were identified as wet, dark and rearend crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage. Given that the markings and pavement were relatively new at the time of the field review and that there appears to be adequate drainage, these causes do not appear to apply to this intersection's wet crash pattern.

<u>Dark Crashes</u> – Dark crashes are typically caused by poor visibility, lack of photo-reflective signage or markings. While the signage and markings appeared to be acceptable, there is a lack of overhead lighting along each approach to the intersection. Installation of overhead lighting would help to eliminate these types of crashes.

Rear-end Crashes – Rear-end crashes are typical in areas of heavy traffic congestion. The southeast quadrant of the intersection includes the American Heritage School which dramatically increases congestion during the AM peak hour and during the pre-PM peak period for drop-off and pick-up activities. Since the signal visibility and pavement each appeared to be acceptable, the only other potential cause for these crash types would be the signal timing and phasing.

4.6.3.2 Safety Deficiencies

The only potential physical deficiency noted during the field reviews was the lack of overhead lighting along each approach to the intersection. Operationally, there were numerous instances when drivers would cut into traffic queues, which has the potential to cause both rear-end and sideswipe crashes.

4.6.3.3 Recommendations

While there were no identifiable causes for the wet crash pattern, it is likely that since there is a lack of overhead street lighting, these may be a combination of wet and dark crashes. Wet driving conditions are typically made riskier when there is a lack of ambient light. For this intersection, it is suggested that overhead lighting be considered, the signal timing be reviewed, and that traffic enforcement is used to prevent drivers from cutting into traffic queues.

4.6.4 Flamingo Road at SW 8th Street

4.6.4.1 Crash History

A total of 50 crashes occurred at the intersection of Flamingo Road and SW 8th Street during the five-year study period between 2013 and 2017. Fixed-object (20%), wet (20%), angle (22%) and rear-end (44%) crashes were the leading crash types identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were fixed-object, wet, angle, and rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Fixed-object Crashes</u> – These crashes are most typically caused by obstructions being placed too close to the roadway, or inadequate lighting, pavement markings or signage. Slippery pavement can be another probable cause.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage. Given that the markings and pavement were relatively new at the time of the field review and that there appears to be adequate drainage, these causes do not appear to apply to this intersection's wet crash pattern.

<u>Angle Crashes</u> – Angle crashes are typically caused by restricted sight distances, excessive speeds, poor signal visibility or inadequate signal timing.

<u>Rear-end Crashes</u> – The field reviews did not show heavy traffic congestion, nor high signal density. The most likely causes at this intersection are signal visibility, signal timing and excessive speed.

4.6.4.2 Safety Deficiencies

The field reviews performed at this intersection identified deficiencies which are related to the identified crash types. Appendix D provides a full description of these identified deficiencies but listed below are some of the more relevant issues.

The field reviews revealed physical impacts to roadway delineators, guardrail, and curbs on the northeast corner of the intersection that relate to the abnormal fixed-object crash pattern.

4.6.4.3 Recommendations

The fixed-object crashes at this intersection occurred most frequently with vehicles making northbound left-turns. The use of delineators to help prevent these types of crashes has proven unsuccessful given the damage that they have sustained. One possible cause for this pattern is that drivers making northbound left-turns are misjudging the time necessary to complete their movement, potentially due to excessive southbound vehicle speeds, which ultimately leads to reckless driving. Potential countermeasures would be to review existing signal timing and the implementation of a northbound protected-only left-turn phase. Also, increasing speed enforcement along Flamingo Road could be considered. These countermeasures would also potentially help reduce rear-end crashes.

4.6.5 Hiatus Road at Broward Boulevard

4.6.5.1 Crash History

A total of 141 crashes occurred at the intersection of Hiatus Road and Broward Boulevard during the five-year study period between 2014 and 2018. Left-turn (25.5%), rear-end (44%), wet (16.3%), and dark (26.2%) crashes were the leading crash types identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There was one pedestrian crash in 2018 which involved a right-turning vehicle not yielding to a crossing pedestrian.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were left-turn rear-end, wet and dark crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Left-turn Crashes</u> – At this intersection it is likely that there are high left-turn volumes in the peak periods. Left-turn phases are currently provided in all directions. Given the width of this intersection (nine lanes wide on Broward Boulevard and 10 lanes wide on Hiatus Road) the most probable cause for these crashes is left-turning drivers misjudging the gaps in oncoming traffic and the time required to complete their movement. This can also be complicated further by excessive vehicular speeds along the corridor.

Sight distances for all approaches at this intersection were suitable but given the width of the intersection there is the potential for drivers to misjudge the time available when making left-turns across oncoming traffic.

Signal visibility was acceptable at this intersection.

<u>Rear-end Crashes</u> – The field reviews did not show heavy traffic congestion, nor high signal density. The most likely causes at this intersection are signal timing and excessive speed.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage. Given that the markings and pavement were relatively new at the time of the field review and that there appears to be adequate drainage, these causes do not appear to apply to this intersection's wet crash pattern.

<u>Dark Crashes</u> – Dark crashes are typically caused by poor visibility, lack of photo-reflective signage or markings. While the signage and markings appeared to be acceptable, there is limited overhead lighting except for the westbound approach to the intersection.

4.6.5.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.5.3 Recommendations

It is suggested that the signal timing at this intersection be reviewed for sufficient pedestrian crossing time, and yellow and all-red phases, given the size of the intersection. "Yield to Pedestrian in Crosswalk" signs should also be considered. Installation of overhead lighting would help to improve the safety of the intersection and decrease crashes under dark conditions. Finally, increased traffic enforcement could be considered along both roadways.

4.6.6 Nob Hill Road at Broward Boulevard

4.6.6.1 Crash History

A total of 261 crashes occurred at the intersection of Nob Hill Road and Broward Boulevard during the five-year study period between 2014 and 2018. Rear-end (54.8%) and wet (16.5%) crashes were the leading crash types identified.

i. Fatal Crashes

There were no fatal crashes during the study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the five-year study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Rear-end Crashes</u> – The field reviews did not show heavy traffic congestion, nor high signal density. The most likely causes at this intersection are signal timing and excessive speed.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

1.1.1.1. Safety Deficiencies

During the field review, it appeared that the intersection had been repaved in the recent past, but the approaches to the intersection were not. The markings and pavement outside of the intersection showed moderate wear at the time of the field review. There appeared to be adequate drainage at the intersection.

4.6.6.2 Recommendations

It is suggested that the intersection approaches be repaved to aid in reducing both the rearend and wet crashes. Additionally, the signal timing should be reviewed to ensure there is sufficient yellow and all-red time.

4.6.7 Nob Hill Road at Hawks View Boulevard

4.6.7.1 Crash History

The intersection of Nob Hill Road and Hawks View Boulevard experienced a total of 65 crashes during the five-year study period between 2014 and 2018. Rear-end (75.4%), crashes were the leading crash type identified.

i. Fatal Crashes

There were no fatal crashes during the study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the five-year study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Rear-end Crashes</u> – The field reviews did not show heavy traffic congestion, nor high signal density. The probable causes at this intersection are signal timing and excessive speed.

4.6.7.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.7.3 Recommendations

The signal timing should be reviewed to ensure there is sufficient yellow and all-red time to prevent rear-end crashes. Also, increased traffic enforcement could be employed to encourage driver adherence to the posted speed limit.

4.6.8 Pine Island Road at New River Canal Road

4.6.8.1 Crash History

A total of 119 crashes occurred at the intersection of Pine Island Road and New River Canal Road during the five-year study period between 2014 and 2018. Rear-end (44.5%) and sideswipe (22.7%) crashes were the leading crash types identified.

i. Fatal Crashes

There were no fatal crashes during the study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the five-year study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and sideswipe crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Rear-end Crashes</u> – The probable causes for rear-end crashes at this location could be related to signal timing and poor downstream signal progression.

<u>Sideswipe Crashes</u> – Operational issues related to queuing and excessive congestion are probable contributing factors for sideswipe crashes at this intersection

4.6.8.2 Safety Deficiencies

Traffic congestion and queueing at this location were considerable, mainly in the southbound direction. Queues from the intersection of Pine Island Road and SR 84 to the south, would

routinely extend north through this intersection to the point of restricting side street movements onto Pine Island Road.

4.6.8.3 Recommendations

At this location, both abnormal crash patterns are probably the result of congestion and driver error. Signal timing at this intersection and the intersection to the south at SR 84 should be reviewed to improve southbound signal progression through the area.

4.6.9 Pine Island Road at Peters Road

4.6.9.1 Crash History

A total of 118 crashes occurred at the intersection of Pine Island Road and Peters Road during the five-year study period between 2014 and 2018. Rear-end (55.9%) crashes were the only abnormally high crash type identified.

i. Fatal Crashes

There was one fatal crash at this intersection during the five-year study period. This crash, which occurred in 2015, was a fixed object crash.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the five-year study period at this intersection.

iii. Causes and Countermeasures

The abnormal crash pattern at this intersection was rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most likely contributing cause for rear-end crashes at this location could be related to signal timing and poor downstream signal progression.

4.6.9.2 Safety Deficiencies

Traffic congestion and queueing at this location were considerable, mainly in the southbound direction. Queues from the intersection of Pine Island Road and SR 84 to the south, would routinely extend north to this intersection, adding to southbound queues and congestion.

4.6.9.3 Recommendations

The rear-end crash pattern is probably the result of congestion and driver error. Signal timing at this intersection and the intersection to the south at New River Canal Road and SR 84 should be reviewed to improve southbound signal progression through the area.

4.6.10 Pine Island Road at SW 6th Court Crash History

4.6.10.1 Crash History

A total of 96 crashes occurred at the intersection of Pine Island Road and SW 6th Court during the five-year study period between 2014 and 2018. Rear-end (46.9%) and wet (21.9%) crashes were the only abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes for this location during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There were no pedestrian crashes, but one bicycle related crash occurred in 2015 which involved a cyclist who failed to yield the right-of-way to traffic.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

Rear-end Crashes – The probable contributing causes for rear-end crashes at this location could be related to signal timing, poor downstream signal progression and general congestion.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.10.2 Safety Deficiencies

During the field reviews it was noted that while there were no noted physical safety deficiencies, congestion was present along Pine Island Road although not as high as the intersections to the south.

4.6.10.3 Recommendations

The rear-end crash pattern is probably the result of congestion, excessive speed and driver error. Signal timing at this intersection and the intersections to the south at New River Canal Road and SR 84 should be reviewed to improve southbound signal progression through the area. Since the pavement, markings and drainage appeared to be adequate, wet crashes are probably the result of excessive speed combined with congestion, similar to the rear-end crashes.

4.6.11 Pine Island Road at SW 3rd Street

4.6.11.1 Crash History

A total of 56 crashes occurred at the intersection of Pine Island Road and Peters Road during the five-year study period between 2014 and 2018. Rear-end (51.8%) crashes were the only abnormally high crash type identified.

i. Fatal Crashes

There were no fatal crashes for this location during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There were no pedestrian or bicycle crashes during the five-year analysis period.

iii. Causes and Countermeasures

The abnormal crash pattern at this intersection is rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these

crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most likely contributing causes for rear-end crashes at this location could be related to signal timing, poor downstream signal progression and general congestion.

4.6.11.2 Safety Deficiencies

During the field reviews no physical safety deficiencies were noted, however, congestion was present along Pine Island Road although not as much as near the intersection to the south.

4.6.11.3 Recommendations

The rear-end crash pattern is probably the result of congestion, excessive speed and driver error. Signal timing at this intersection and the intersections to the south at New River Canal Road and SR 84 should be reviewed to improve southbound signal progression through the area.

4.6.12 University Drive/SR 817 at Peters Road

4.6.12.1 Crash History

A total of 476 crashes occurred at the intersection of University Drive/SR 817 and Peters Road during the five-year study period between 2013 and 2017. Rear-end (51.8%), pedestrian (0.8%) and wet (17.6%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were two fatal crashes between 2013 and 2017. The 2013 crash involved a pedestrian being struck by a vehicle. The 2017 fatal crash occurred at the driveway to 1333 University Drive.

ii. Bicycle/Pedestrian Crashes

There were four pedestrian crashes at this intersection: three occurred in 2013 and one in 2017. Three of the four involved pedestrians attempting to cross away from the

intersection being struck by a vehicle that had the right-of-way. The fourth involved a pedestrian walking too close to traffic and being struck by a vehicle.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end, bike/pedestrian and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most likely of these causes and countermeasures for this intersection.

<u>Rear-end Crashes</u> – The probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and driver error.

<u>Pedestrian Crashes</u> – Each of the pedestrian crashes involved a pedestrian entering the right-of-way of the vehicle that they were struck by. In these cases, the crashes predominantly result from pedestrian error, however, other factors such as inadequate gaps in traffic and pedestrian facilities could be contributing causes.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.12.2 Safety Deficiencies

The only deficiency noted during the field review was the poor condition of the roadway pavement, with numerous utility patches present. The traffic operations along both arterials showed considerable congestion, with queues that did not clear within each signal cycle, even during off-peak periods.

4.6.12.3 Recommendations

At this intersection, the vast majority of the rear-end crashes are probably due to heavy congestion. Signal timing should be checked for yellow and all-red timings and the pavement should be considered for resurfacing.

4.6.13 University Drive/SR 817 at Nova Drive

4.6.13.1 Crash History

A total of 533 crashes occurred at the intersection of University Drive/SR 817 and Nova Drive during the five-year study period between 2013 and 2017. Rear-end (60.4%) and wet (17.1%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There was one fatal crash, which occurred in 2017.

ii. Bicycle/Pedestrian Crashes

There was one pedestrian crash, which occurred in 2016. It involved a pedestrian entering a vehicle's right-of-way. There were also two bicycle crashes, one in 2015 and one in 2017.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and driver error.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.13.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.13.3 Recommendations

This intersection experiences considerable levels of congestion and delays which contribute to the abnormally high numbers of rear-end crashes. Given that both arterials experience high traffic volumes, it is unlikely that additional signal timing enhancements will help to alleviate the high congestion. Additionally, the wet crash pattern is probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.14 University Drive/SR 817 at S 1900 Block

4.6.14.1 Crash History

A total of 174 crashes occurred at the intersection of University Drive/SR 817 and the S 1900 Block during the five-year study period between 2013 and 2017. Rear-end (56.3%) and wet (15.5%) crashes were the only abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and driver error.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.14.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.14.3 Recommendations

This intersection experiences considerable levels of congestion and delays which contribute to the abnormally high numbers of rear-end crashes. Given that both arterials experience high traffic volumes, it is unlikely that additional signal timing enhancements will help to alleviate the high congestion. Additionally, the wet crash pattern is probable exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.15 University Drive/SR 817 at S 2300 Block

4.6.15.1 Crash History

A total of 175 crashes occurred at the intersection of University Drive/SR 817 and S 2300 Block during the five-year study period between 2013 and 2017. Rear-end (68.6%) and wet (16.6%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probably contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and driver error.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.15.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.15.3 Recommendations

Like the previous location, this intersection experiences considerable levels of congestion and delays which contribute to the abnormally high numbers of rear-end crashes. Given that both arterials experience high traffic volumes, it is unlikely that additional signal timing enhancements will help to alleviate the high congestion. Additionally, the wet crash pattern is probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.16 University Drive/SR 817 at SW 10th Street

4.6.16.1 Crash History

A total of 122 crashes occurred at the intersection of University Drive/SR 817 and SW 10th Street during the five-year study period between 2013 and 2017. Rear-end (65.6%) and wet (20.5%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to general congestion and driver error.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.16.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.16.3 Recommendations

This intersection experiences considerable levels of congestion and delays, including queues from the Peter's Road intersection to the south, which contribute to the abnormally high numbers of rear-end crashes. Additionally, the wet crash pattern is probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.17 University Drive/SR 817 at SW 13th Place

4.6.17.1 Crash History

A total of 162 crashes occurred at the intersection of University Drive/SR 817 and SW 13th Place during the five-year study period between 2013 and 2017. Rear-end (65.6%) crashes were the only abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the study period.

ii. Bicycle/Pedestrian Crashes

There were no pedestrian crashes during the study period, however there was one bicycle crash.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to general congestion and driver error.

4.6.17.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.17.3 Recommendations

Like the previous location, this intersection experiences considerable levels of congestion and delays which contribute to the abnormally high numbers of rear-end crashes. Additionally, the wet crash pattern is probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.18 University Drive/SR 817 at the Fountains

4.6.18.1 Crash History

A total of 149 crashes occurred at the intersection of University Drive/SR 817 at the Fountains during the five-year study period between 2013 and 2017. Rear-end (73.2%) and wet (21.5%) crashes were the only abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and driver error.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.18.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.18.3 Recommendations

Like the previous location, this intersection experiences considerable levels of congestion and delays which contribute to the abnormally high numbers of rear-end crashes. Additionally, the wet crash pattern is probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.19 Davie Road at Nova Drive

4.6.19.1 Crash History

A total of 86 crashes occurred at the intersection of Davie Road and Nova Drive during the five-year study period between 2014 and 2018. Rear-end (41.9%), Left-turn (16.3%) and wet (17.4%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle crashes during the study period, however there was one pedestrian crash. This crash involved a pedestrian attempting to cross away from the intersection and failing to yield the right-of-way.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and driver error.

<u>Left-turn Crashes</u> – At this intersection there are high left-turn volumes in the peak periods. Left-turn phases are currently provided in all directions. Sight distances for all approaches at this intersection were acceptable. Signal visibility was adequate at this intersection.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.19.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.19.3 Recommendations

This intersection experiences considerable levels of congestion and delays which contribute to the abnormally high numbers of rear-end crashes. The left-turn crashes could be impacted by either signal timing, or excessive speeds along Davie Road, or a combination of thereof. Additionally, the wet crash pattern is probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.20 SR 7/US-441 at SW 20th Street

4.6.20.1 Crash History

A total of 190 crashes occurred at the intersection of SR 7/US-441 and SW 20th Street during the five-year study period between 2013 and 2017. Rear-end (51.1%) and bike/pedestrian (4.8%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There was one fatal crash in 2013 which involved a left-turning vehicle colliding with an oncoming vehicle.

ii. Bicycle/Pedestrian Crashes

There were seven pedestrian crashes and two bicycle crashes. Of the seven pedestrian crashes, five were due to the pedestrian failing to yield the right-of-way, one for the pedestrian failing to cross at the crosswalk, and another was unknown due to the driver leaving the scene. In both bicycle crashes, the cyclist failed to yield the right-of-way.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and bike/pedestrian crash types. Appendix E provides a full table of probable causes and potential countermeasures

for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, congestion, and bicycle/pedestrian right-of-way violations.

<u>Pedestrian Crashes</u> – As stated previously, almost all the bicycle and pedestrian crashes involved a pedestrian or cyclist entering the right-of-way of the vehicle that they were struck by. In these cases, cyclists/pedestrian error is the predominant cause, however other factors, such as, inadequate gaps in traffic and inadequate pedestrian/bicycle facilities could be contributing factors.

4.6.20.2 Safety Deficiencies

During the field review, no physical deficiencies were identified. However, several pedestrians and cyclists were witnessed crossing SR 7 against the signal, further demonstrating this intersection's issues with these crash types.

4.6.20.3 Recommendations

For this intersection, it is suggested that an education/enforcement campaign be implemented to help prevent the relatively high numbers of bicycle and pedestrian crashes. The pedestrian/cyclist behavior could potentially contribute to the high numbers of rear-end crashes as well.

4.6.21 SR 7/US-441 at Oakes Road

4.6.21.1 Crash History

A total of 153 crashes occurred at the intersection of SR 7/US-441 and Oakes Road during the five-year study period between 2013 and 2017. Rear-end (46.4%) and wet (16.3%) crashes were the only abnormally high crash types identified.

i. Fatal Crashes

There were two fatal crashes in 2016 and one in 2017.

ii. Bicycle/Pedestrian Crashes

There was one pedestrian related crash in 2016.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – This intersection is relatively isolated, and while there are advanced intersection notification signs, this may be a case to employ flashing signals to better inform drivers. Additionally, due to the isolated location and the freeway like conditions, excessive speeds is a probable contributing factor along this corridor. Northbound left-turn phasing should also be reviewed to see if protected-only phasing is warranted.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.21.2 Safety Deficiencies

The only potential safety deficiency noted at this intersection is the lack of signal backplates for the eastbound approach.

4.6.21.3 Recommendations

For this intersection, it is suggested that the existing signal timing and phasing be reviewed to verify if the yellow and all-red timings are appropriate and if the northbound left-turn phase should be protected only. Also, ensure there is sufficient green time for the eastbound approach, which experiences high truck volumes.

4.6.22 Westbound SR 84 at NW/SW 136th Avenue

4.6.22.1 Crash History

A total of 133 crashes occurred at the intersection of westbound SR 84 and NW/SW 136th Avenue during the five-year study period between 2013 and 2017. Rear-end (58.6%) and bike/pedestrian (1.5%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There was one fatal crash in 2015 which involved a pedestrian.

ii. Bicycle/Pedestrian Crashes

There was a pedestrian crash in 2014, where the pedestrian was intoxicated and another in 2015 where the pedestrian violated the right-of-way.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and bike/pedestrian crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, congestion, and excessive speeds.

<u>Pedestrian Crashes</u> – The pedestrian crashes involved a pedestrian being intoxicated and/or entering the right-of-way of the vehicle that they were struck by. In these cases, pedestrian error is the predominant cause of crashes and roadway elements and driver behavior is typically not a contributing factor.

4.6.22.2 Safety Deficiencies

A field review could not be completed for this location due to an on-going construction project.

4.6.22.3 Recommendations

The rear-end crashes at this location are most probably the result of congestion, excessive speeds, and driver error. Signal timings should be checked to ensure that the yellow time for westbound traffic is sufficient for the excessive speeds that are likely on this segment.

4.6.23 Westbound SR 84 at Flamingo Road

4.6.23.1 Crash History

A total of 109 crashes occurred at the intersection of westbound SR 84 and Flamingo Road during the five-year study period between 2013 and 2017. Rear-end (45.9%) and wet (20.2%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There was one bicycle crash in 2016.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and excessive speeds.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.23.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.23.3 Recommendations

Like the previous location, the rear-end crashes at this location are probably the result of congestion, excessive speeds and driver error. Signal timings should be checked to ensure that the yellow time for westbound traffic is sufficient for the excessive speeds that are likely to occur on this segment. Additionally, the wet crash pattern is probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.24 Westbound SR 84 at Hiatus Road

4.6.24.1 Crash History

A total of 42 crashes occurred at the intersection of westbound SR 84 and Hiatus Road during the five-year study period between 2013 and 2017. Rear-end (57.1%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There was one bicycle crash in 2017.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most likely contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and excessive speeds.

4.6.24.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.24.3 Recommendations

Similar to the previous location, the rear-end crashes at this location are most probably the result of congestion, excessive speeds and driver error. Signal timings should be checked to ensure that the yellow time for westbound traffic is sufficient for the excessive speeds that are likely to occur on this segment.

4.6.25 Westbound SR 84 at Nob Hill Road

4.6.25.1 Crash History

A total of 71 crashes occurred at the intersection of westbound SR 84 and Nob Hill Road during the five-year study period between 2013 and 2017. Rear-end (60.6%), wet (18.3%), and dark (36.6%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There was one bicycle crash in 2016.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end, wet, and dark crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and excessive speeds.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

<u>Dark Crashes</u> – While this intersection does have a higher than average percentage of dark crashes, the intersection is well lit, with adequate signage.

4.6.25.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.25.3 Recommendations

Similar to the previous location, the rear-end crashes at this location are most probably the result of congestion, excessive speeds and driver error. Signal timings should be checked to ensure that the yellow time for westbound traffic is sufficient for the excessive speeds that are likely to occur on this segment. Additionally, the wet and dark crash patterns are probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.26 Westbound SR 84 at Pine Island Road

4.6.26.1 Crash History

A total of 162 crashes occurred at the intersection of westbound SR 84 and Pine Island Road during the five-year study period between 2013 and 2017. Rear-end (55.6%) and dark (30.9%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There was one bicycle crash in 2017.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and dark crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and excessive speeds.

<u>Dark Crashes</u> – While this intersection does have a higher than average percentage of dark crashes, the intersection is well lit, with adequate signage.

4.6.26.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.26.3 Recommendations

Similar to the previous location, the rear-end crashes at this location are most probably the result of congestion, excessive speeds and driver error. Signal timings should be checked to ensure that the yellow time for westbound traffic is sufficient for the excessive speeds that are likely to occur on this segment. Additionally, the dark crash patterns are probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.27 Westbound SR 84 at University Drive/SR 817

4.6.27.1 Crash History

A total of 381 crashes occurred at the intersection of westbound SR 84 and University Drive/SR 817 during the five-year study period between 2013 and 2017. Rear-end (71.4%) crashes were the only abnormally high crash type identified.

i. Fatal Crashes

There was one fatal crash in 2016.

ii. Bicycle/Pedestrian Crashes

There was one pedestrian crash in 2013.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and excessive speeds.

4.6.27.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.27.3 Recommendations

Similar to the previous location, the rear-end crashes at this location are most probably the result of congestion, excessive speeds and driver error. Signal timings should be checked to ensure that the yellow time for westbound traffic is sufficient for the excessive speeds that are likely to occur on this segment.

4.6.28 Westbound SR 84 at Davie Road

4.6.28.1 Crash History

A total of 221 crashes occurred at the intersection of westbound SR 84 and Davie Road during the five-year study period between 2013 and 2017. Rear-end (71.4%), sideswipe (21.7%), fixed object (14%), and wet (27.1%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There was one fatal crash in 2013 and one in 2016.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes within the study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end, sideswipe, fixed-object, and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and excessive speeds.

<u>Sideswipe Crashes</u> – Due to the turbo-lane configuration for westbound traffic, it is probable that there is some driver confusion or indecision which leads to drivers abruptly making swerving maneuvers with little or no warning, thus impacting other westbound vehicles.

<u>Fixed Object Crashes</u> – Similar to the sideswipe crashes, the westbound turbo-lane employs raised lane dividers, which drivers tend to hit when making abrupt swerving maneuvers.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.28.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.28.3 Recommendations

Similar to the previous location, the rear-end crashes at this location are most probably the result of congestion, excessive speeds and driver error. Signal timings should be checked to

ensure that the yellow time for westbound traffic is sufficient for the excessive speeds that are likely to occur on this segment. For the sideswipe and fixed-object crashes, improved signage advising drivers of the upcoming turbo-lane may help to reduce these crash types. Additionally, the wet crash pattern is likely exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.29 Eastbound SR 84 at NW/SW 136th Avenue

4.6.29.1 Crash History

A total of 140 crashes occurred at the intersection of eastbound SR 84 and NW/SW 136th Avenue during the five-year study period between 2013 and 2017. Rear-end (65.7%) crashes were the only abnormally high crash type identified.

i. Fatal Crashes

There were no fatal crashes within the five-year study period.

ii. Bicycle/Pedestrian Crashes

There was one pedestrian crash in 2017, and one bicycle crash in 2013.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end crash types. **Appendix E** provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, congestion, and excessive speeds.

4.6.29.2 Safety Deficiencies

Due to an on-going construction project, no field reviews were conducted at this location and no deficiencies were identified.

4.6.29.3 Recommendations

The rear-end crashes at this location are most probably the result of congestion, excessive speeds, and driver error. Signal timings should be checked to ensure that the yellow time for eastbound traffic is sufficient for the excessive speeds that are likely on this segment.

4.6.30 Eastbound SR 84 at Flamingo Road

4.6.30.1 Crash History

A total of 133 crashes occurred at the intersection of eastbound SR 84 and Flamingo Road during the five-year study period between 2013 and 2017. Rear-end (64.6%), bicycle (1.2%), and wet (22.5%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes within the five-year study period.

ii. Bicycle/Pedestrian Crashes

There were three bicycle crashes in 2014, and one in 2015. In three of the crashes the cyclist was found to be at fault for failing to yield the right-of-way, while in the fourth crash the cyclist fled the scene of the accident.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end, bike/pedestrian, and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, congestion, and excessive speeds.

<u>Bicycle Crashes</u> – The bicycle crashes involved cyclists who entered the right-of-way of the vehicle that they were struck by, or they fled the scene, probably due to being at fault. In these cases, the cyclists error is the predominant cause crashes, however, other factors such as inadequate bicycle facilities could be contributing causes.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.30.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.30.3 Recommendations

The rear-end crashes at this location are most probably the result of congestion, excessive speeds, and driver error. Signal timings should be checked to ensure that the yellow time for eastbound traffic is sufficient for the excessive speeds that are likely on this segment. The bicycle crashes were caused by the cyclists violating the right-of-way, however, this may indicate a more adequate facility for bicyclists is needed. Additionally, the wet crash pattern is likely exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.31 Eastbound SR 84 at Hiatus Road

4.6.31.1 Crash History

A total of 119 crashes occurred at the intersection of eastbound SR 84 and Hiatus Road during the five-year study period between 2013 and 2017. Rear-end (55.5%), dark (31.1%), and wet (16.8%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle or pedestrian crashes during the five-year study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end, dark and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable of these causes and countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most likely contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and excessive speeds.

<u>Dark Crashes</u> – While this intersection does have a higher than average percentage of dark crashes, the intersection is well lit, with adequate signage.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.31.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.31.3 Recommendations

The rear-end crashes at this location are most probably the result of congestion, excessive speeds, and driver error. Signal timings should be checked to ensure that the yellow time for eastbound traffic is sufficient for the excessive speeds that are likely to occur on this segment. Additionally, the dark and wet crash patterns are likely exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.32 Eastbound SR 84 at Nob Hill Road

4.6.32.1 Crash History

A total of 185 crashes occurred at the intersection of eastbound SR 84 and Nob Hill Road during the five-year study period between 2013 and 2017. Rear-end (71.4%) and wet (17.3%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There was one bicycle crash in 2015 and one pedestrian crash during the five-year study period.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and excessive speeds.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.32.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.32.3 Recommendations

The rear-end crashes at this location are most probably the result of congestion, excessive speeds, and driver error. Signal timings should be checked to ensure that the yellow time for eastbound traffic is sufficient for the excessive speeds that are likely to occur on this segment. Additionally, the wet crash patterns are probably exacerbated by the high levels of congestion rather than any physical deficiencies.

4.6.33 Eastbound SR 84 at Pine Island Road

4.6.33.1 Crash History

A total of 319 crashes occurred at the intersection of eastbound SR 84 and Pine Island Road during the five-year study period between 2013 and 2017. Rear-end (64.6%) and pedestrian (0.9%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes within the five-year study period.

ii. Bicycle/Pedestrian Crashes

There were two pedestrian crashes in 2013, and one in 2014. In each of the crashes the pedestrian was found to be at fault for failing to yield the right-of-way.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end and pedestrian crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, congestion, and excessive speeds.

<u>Pedestrian Crashes</u> – The pedestrian crashes involved pedestrians who entered the right-of-way of the vehicle that they were struck by. In these cases, pedestrian error is the predominant cause, however other factors, such as, inadequate gaps in traffic and pedestrian facilities could be contributing causes.

4.6.33.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.33.3 Recommendations

The rear-end crashes at this location are probably likely the result of congestion, excessive speeds, and driver error. Signal timings should be checked to ensure that the yellow time for eastbound traffic is sufficient for the excessive speeds that are probably on this segment. The pedestrian crashes were caused by the pedestrians violating the right-of-way.

4.6.34 Eastbound SR 84 at University Drive/SR 817

4.6.34.1 Crash History

A total of 421 crashes occurred at the intersection of eastbound SR 84 and University Drive/SR 817 during the five-year study period between 2013 and 2017. Rear-end (54.9%), wet (18.8%), and bicycle (0.5%) crashes were the abnormally high crash types identified.

i. Fatal Crashes

There were no fatal crashes within the five-year study period.

ii. Bicycle/Pedestrian Crashes

There was one bicycle crash in 2013, and one in 2014. In the 2013 crash the cyclist was found to be at fault for failing to yield the right-of-way, while in the 2014 crash the driver of the vehicle fled the scene.

iii. Causes and Countermeasures

The abnormal crash patterns at this intersection were rear-end, bicycle, and wet crash types. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the most probable causes and countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, congestion, and excessive speeds.

<u>Bicycle Crashes</u> – One of the bicycle crashes involved a cyclist who entered the right-ofway of the vehicle that struck them. In this case, the cyclist's error may have been the predominant cause for the crash. However, there may be a need for an adequate bicycle facility in this area to better accommodate eastbound bicyclists.

<u>Wet Crashes</u> – Typically high percentages of wet crashes are caused by inadequate pavement markings, slippery pavement, or inadequate drainage.

4.6.34.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.34.3 Recommendations

The rear-end crashes at this location are probably likely the result of congestion, excessive speeds, and driver error. Signal timings should be checked to ensure that the yellow time for eastbound traffic is sufficient for the excessive speeds that are probably on this segment. There may be a need for an improved bicycle facility in this area to better accommodate eastbound bicyclists.

4.6.35 Eastbound SR 84 at Davie Road

4.6.35.1 Crash History

A total of 254 crashes occurred at the intersection of eastbound SR 84 and Davie Road during the five-year study period between 2013 and 2017. Rear-end (45.3%) crashes were the only abnormally high crash type identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There were no bicycle/pedestrian crashes during the five-year study period.

iii. Causes and Countermeasures

The abnormal crash pattern at this intersection was rear-end crash types. Appendix E provides a full table of probable causes and potential countermeasures for each crash type. Listed below is a summary of the most probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The most probable contributing causes for rear-end crashes at this location could be related to signal timing, general congestion, and excessive speeds.

4.6.35.2 Safety Deficiencies

The field reviews performed at this intersection did not identify any deficiencies which are related to the identified crash types. Appendix D provides a full description of the field review notes for this intersection.

4.6.35.3 Recommendations

The rear-end crashes at this location are most probably the result of congestion, excessive speeds, and driver error. Signal timings should be checked to ensure that the yellow time for eastbound traffic is sufficient for the excessive speeds that are likely to occur on this segment.

4.6.36 Eastbound SR 84 at SW 75th Avenue

4.6.36.1 Crash History

A total of 91 crashes occurred at the intersection of eastbound SR 84 and SW 75th Avenue during the five-year study period between 2013 and 2017. Rear-end (69.2%) crashes were the only abnormally high crash type identified.

i. Fatal Crashes

There were no fatal crashes during the five-year study period.

ii. Bicycle/Pedestrian Crashes

There were two bicycle crashes in 2015.

iii. Causes and Countermeasures

The abnormal crash pattern at this intersection is the rear-end crash type. Appendix E provides a full table of probable causes and potential countermeasures for each of these crash types. Listed below is a summary of the probable causes and crash countermeasures for this intersection.

<u>Rear-end Crashes</u> – The probable causes for rear-end crashes at this location could be related to general congestion and excessive speeds.

4.6.36.2 Safety Deficiencies

No safety deficiencies were identified at this location.

4.6.36.3 Recommendations

The rear-end crashes at this location are most probably the result of congestion, excessive speeds, and driver error. Since this is a T-intersection, it is likely that the majority of rear-end crashes are occurring when vehicles slow down to make a right-turn at SW 75th Avenue. Advanced intersection warning signs could potentially decrease these crash types at this location.

5. INTELLIGENT TRANSPORTATION SYSTEMS (ITS) AND TRANSPORTATION SYSTEMS MANAGEMENT & OPERATIONS (TSM&O) EXISTING CONDITIONS ANALYSIS

5.1 Analysis Methodology

Available data from the FDOT District Four Transportation Systems Management and Operations (TSM&O) Program was retrieved to determine the Intelligent Transportation Systems (ITS) facilities within the study area. The ITS devices within the study area were reviewed to document existing conditions that support the FDOT District Four TSM&O Network. Field reviews were conducted to verify ITS device types, quantities, and locations. The field review limits included the eight north-south arterials that cross I-595 and SR 84, for a distance of up to three miles north and south of I-595.

FDOT deployed the ITS devices within the study area through various projects since 2004. All interstate, expressway, and limited access roadway facilities managed and operated by FDOT District Four are equipped with communication systems and ITS devices. The Arterial Management Program (AMP) began deploying communication systems and ITS devices on major arterial roadways owned by FDOT starting in 2012. The criteria established to prioritize ITS deployments in the arterial environment was originally based on three factors:

- Safety Number of crashes along corridor segments
- Congestion Traffic signal density along corridor segments
- Transit Ridership and frequency of service

The communication systems and ITS devices that have been deployed by FDOT are installed within FDOT right-of-way and require regular maintenance. Maintenance activities include troubleshooting specific device failures and performing regularly scheduled preventative maintenance procedures. FDOT utilizes consultants and contractors to assess and perform operations and maintenance associated with the communications system and ITS devices.

The data related to existing ITS devices were obtained from FDOT District Four TSM&O staff and the I-595 concessionaire, I-595 Express, LLC. Other data related to the TSM&O Strategic Network were extracted from the FDOT District Four TSM&O Master Plan.

5.2 Analysis Results

The ITS devices within the study area are managed and operated from the Broward SMART SunGuide® Regional Transportation Management Center (RTMC), located at 2300 West Commercial Boulevard Fort Lauderdale, Florida 33309. This facility is collocated with the Broward County Traffic Engineering Division (BCTED) and I-595 Express, LLC. The RTMC is staffed 24-hours a day, 365-days a year with operations staff who monitor and manage ITS devices for all of FDOT District Four. Signal timing engineers are staffed at the RTMC and support active arterial management by working with operators and BCTED in real time when responding to planned and unplanned events.

5.2.1 Closed-Circuit Television (CCTV) Cameras

CCTV cameras are used to monitor the transportation network in real-time. This device provides operators with situational awareness when monitoring and managing events like incidents, congestion, and evacuations.

FDOT deploys CCTV cameras with technical requirements that must be fulfilled pertaining to the coverage they provide. ITS deployment projects generally require 100% coverage of the project's corridors, including up to a half-mile of coverage in each direction of major cross streets and roadways within the State Highway System (SHS).

CCTV cameras found within the study area have Pan-Tilt-Zoom (PTZ) functionality, with more recent deployments utilizing high-definition image quality. CCTV camera video is not recorded and is only intended to be used for real-time monitoring and verification. The average cost of this device (Pay Item: 682-1133), per the 2019 FDOT 12-Month moving average for Broward County, is \$6,419.06.

5.2.2 Microwave Vehicle Detection System (MVDS)

MVDS devices are used to detect vehicle presence and collect traffic data on the roadway. This is accomplished by using a low-power microwave radar beam to detect vehicle presence and compile volume, occupancy, and speed data.

FDOT deploys MVDS with technical requirements that must be fulfilled pertaining to the coverage they provide and accuracy of the data. ITS deployment projects generally require this device to be placed every half-mile for freeway deployments. MVDS is also commonly used on interstate ramps or on sections of roadway where free flow speed provides operational insight within the arterial environment. This device is capable of meeting the minimum total roadway segment accuracy levels of 95% for volume, 90% for occupancy, and 90% for speed for all lanes.

Typical detection range is 250 feet with the ability to simultaneously detect up to 11 lanes per direction of traffic. The average cost of this device (Pay Item: 660-3-12), per the 2019 FDOT 12-Month moving average for Broward County, is \$8,658.99.

5.2.3 Dynamic Message Signs (DMS)

DMS are overhead electronic signs that post traffic alerts to inform drivers of numerous roadway traffic conditions and widely used to provide specific safety messages. DMS are classified by the type of sign display, access to the display, and size. The displays are available in monochrome, tricolor, or full-color. DMS signs that were found within the study area utilize monochrome display, provide front access, and use various sizes being supported on a cantilever structure. DMS are used to disseminate information regarding congestion, incidents, lane closures, travel time, or Public Service Announcements (PSA).

FDOT deploys DMS with technical requirements that must be fulfilled pertaining to the ability of operations staff to confirm the devices functionality and message being displayed. This is achieved by using nearby CCTV cameras or by including a dedicated camera that provides a real-time image of the message being displayed. ITS deployment projects place DMS at locations based on specific

project needs. Freeway DMS have a goal of every five miles, while arterial DMS are typically placed with ¼ mile of the freeway entrance. This distance allows motorists to make informed decisions about their travel routes before committing to freeway travel.

The average cost varies for this device due to display types and sizes available (Pay Item: 700-8134, 700-8135, 700-8136), per the 2019 FDOT Statewide average the cost can range from \$40,980.00 to \$93, 632.44. This cost does not include the cost of the cantilever support structure which ranges from \$55,103.64 to \$109,083.00 based on DMS size.

5.2.4 Bluetooth Reader

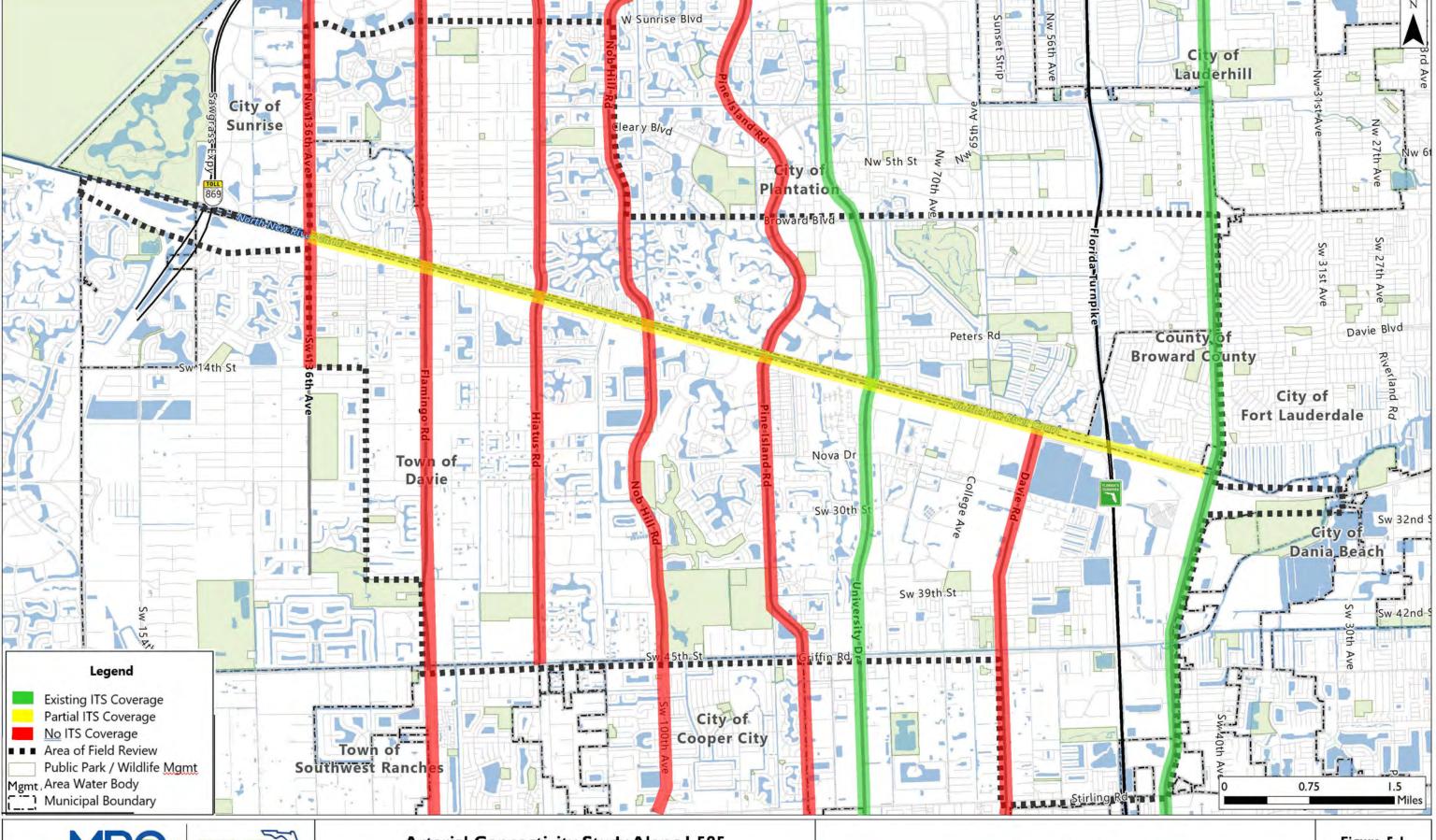
Bluetooth readers utilize probe data collected from wireless communications devices by capturing the Media Access Control (MAC) address. Bluetooth reader detection systems provide average speed and travel time data for a road segment. Probe data detectors use Automatic Vehicle Identification (AVI) technologies to establish a unique identifier using the MAC address for each vehicle or device they detect. This identifier is then transmitted to a central data collection and processing site where it can be matched to past or future detections of the same vehicle or device at different detector locations.

FDOT deploys Bluetooth readers with technical requirements that must be fulfilled pertaining to the coverage they provide and accuracy of the data. ITS deployment projects generally require this device to be placed at large intersections, near major activity centers, or at DMS locations to establish a travel time origin.

Bluetooth readers are required to provide a minimum detection rate of 75% while providing match rate upstream and downstream of the same vehicle at a minimum rate of 5%. Bluetooth reader systems must also meet a minimum total roadway segment speed and travel time accuracy level of 90%. The average cost of this device (Pay Item: 660-6122), per the 2019 FDOT 12-Month moving average for Broward County, is \$6,295.00.

5.3 Deficiencies

Existing deployments of ITS devices provide coverage of I-595, US 441/SR 7, and University Drive/SR 817. The deployment of ITS devices along I-595 are being used directly for operations and management of the interstate facility. However, due to the proximity of I-595 to SR 84, a number of I-595 devices (mostly CCTV cameras and some DMS along SR 84 upstream of on-ramps) have been included during the documentation of existing conditions that have the ability to provide operational support to manage SR 84. Figure 5-1 shows the existing ITS coverage within the study area. This figure provides information related to the roadways with existing, partial, or no ITS coverage.


Moving forward, a full-scale effort to update the entire SR 84 corridor should be implemented to furnish ITS devices that allow, at a minimum, proven TSM&O strategies to be used for regular operations (i.e., roadway monitoring, traffic data collection, and traveler information dissemination). Throughout this study, additional TSM&O strategies will be identified that will benefit the project as a whole in coordination with roadway design, existing infrastructure, and stakeholder input.

Of the eight corridors that intersect with SR 84 within the project study area, only three are a part of the SHS within FDOT right-of-way. No ITS devices were found outside of FDOT right-of-way. The following corridors within the project study area were identified as part of the TSM&O Strategic Network did not have ITS devices currently deployed:

- SR 84 (Devices at intersections accounted for on cross road)
- Davie Road (County Road)
- Pine Island Road, North of SR 84 (County Road)
- Flamingo Road/ SR 823
- NW 136 Ave (County Road)

Based on the existing communications system and ITS devices that are deployed, the following deficiencies should be addressed to enhance ITS coverage within the study area:

- Install ITS devices and signal system improvements to enhance coverage with ability actively manage SR 84
- Program projects to deploy communications system and ITS devices on arterial roadways and areas of operational interest within the study area:
 - State Roads (Flamingo Road)
 - County Roads (Davie Road, Pine Island Road, Nob Hill Road, Hiatus Road, and NW 136 Ave)
 - Parking Facilities
 - Davie Road Park and Ride
 - Florida 595 Truck Stop
 - Major Activity Centers
 - South Florida Education Center
 - Plantation Midtown
 - Sawgrass International Corporate Park
 - Sawgrass Mills Mall
 - BB&T Center

A new communications system and ITS devices are also recommended to be deployed to support new TSM&O strategies that are not currently being used within the study area. Established TSM&O strategies that are not currently being utilized by the FDOT District Four TSM&O Program along the I-595/SR 84 corridor include (shown alphabetically):

- Advanced Traffic Signal Control (ATSC)
- Connected Vehicle Deployment
- Freight Management
- Improved Bicycle & Pedestrian Management
- Integrated Corridor Management
- Work Zone Management

6. PEDESTRIAN AND GREENWAY FACILITIES EXISTING CONDITIONS ANALYSIS

6.1 Pedestrian Mode Analysis Methodology

The Florida Department of Transportation (FDOT) developed the multimodal Quality/Level of Service (Q/LOS) application named ARTPLAN. The ARTPLAN 2012 software application employs the 2010 Highway Capacity (HCM) methodologies but also incorporate numerous simplifying assumptions and enhancements based on FDOT's research for automobiles and other leading methodologies for the bicycle, pedestrian, and bus modes to compute Q/LOS for all modes for planning and preliminary engineering purposes.. The multimodal level of service (MMLOS) quantifies the perceived quality of service for bicycle riders, pedestrians, and bus passengers along a roadway.

The key variables determining Pedestrian LOS (PLOS) include sidewalk coverage and number of motorized vehicles. Table 6-1 displays the major inputs, service measure, and LOS determinator for the pedestrian mode, which includes the lateral separation of pedestrians from motorized vehicles (e.g. presence of barriers and buffers such as parked cars and trees). The ARTPLAN reports are provided in Appendix F.

Table 6-1: Pedestrian Multimodal LOS Major Inputs, Service Measure, and LOS Determinator

Major Inputs	Service Measure	LOS Determinator
Presence of Sidewalk	Pedestrian	HCM LOS Criteria
 Roadway volume and lanes 	LOS Score	
 Arterial Running Speed 		
Other traffic and roadway characteristics		

The Level of Service (LOS) is measured using the letter grade methodology of A through F, with LOS A representing the best operating conditions, and LOS F the worst. Table 6-2 displays the pedestrian LOS thresholds based on the resulting score from the ARTPLAN analysis.

Table 6-2: Pedestrian LOS Thresholds

LOS	Score	
А	<u><</u> 2.0	
В	<u>< </u> 2.75	
С	<u><</u> 3.5	
D	<u><</u> 4.25	
Е	<u><</u> 5.0	
F	> 5.0	

6.2 Pedestrian Mode LOS Analysis Results

The pedestrian mode score and LOS is shown in Table 6-3 for each of the eight north-south study roadways. Table 6-4 reports the existing pedestrian mode score and LOS for westbound SR 84, and Table 6-5 reports the same information for eastbound SR 84. Figure 6-1 depicts pedestrian LOS on each of the study roadways within the study area.

Table 6-3: Study Roadway Pedestrian Score/LOS

Study Roadway	Pedestrian Score LOS	
	South of I-595	North of I-595
SW/NW 136 th Avenue	3.59 D	3.71 D
Flamingo Road	5.49 F	5.45 F
Hiatus Road	3.35 C	3.04 C
Nob Hill Road	3.74 D	3.89 / 3.86 ⁽¹⁾ D / D ⁽¹⁾
Pine Island Road	3.19 C	3.79 / 3.74 ⁽¹⁾ D / D ⁽¹⁾
University Drive/SR 817	6.15 F	5.21 F
Davie Road	3.67 D	
SR 7 / US 441	4.03 / 5.75 ⁽²⁾ D / F ⁽²⁾	3.96 D

Notes: (1) North of Broward Boulevard

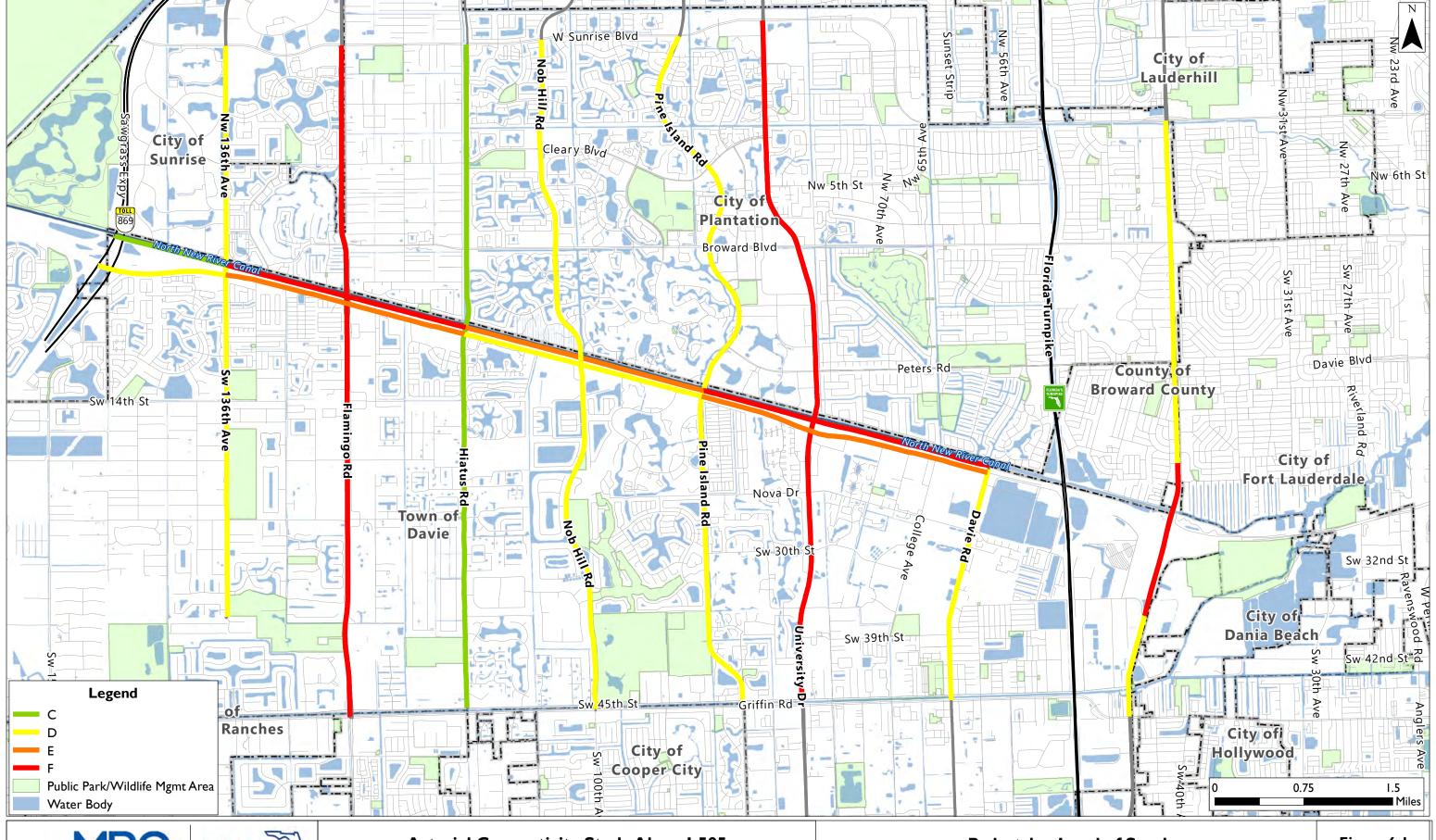

(2) Oakes Road to SW 21st Street

Table 6-4: Westbound SR 84 Pedestrian Score/LOS

Westbound SR 84	Pedestrian Score LOS
East of I-75	3.25 C
East of SW/NW 136 th Avenue	5.68 F
East of Flamingo Road	5.06 F
East of Hiatus Road	4.73 E
East of Nob Hill Road	4.92 E
East of Pine Island Road	5.68 F
East of University Drive/SR 817	6.07 F

Table 6-5: Eastbound SR 84 Pedestrian Score/LOS

Eastbound SR 84	Pedestrian Score LOS	
East of I-75	4.11/ D	
East of SW/NW 136 th Avenue	4.54/ E	
East of Flamingo Road	4.73/ E	
East of Hiatus Road	3.73/ D	
East of Nob Hill Road	4.20/ D	
East of Pine Island Road	4.44/ E	
East of University Drive/SR 817	4.44/ E	

6.3 Pedestrian Mode Deficiencies

The study roadways were reviewed to determine locations where no sidewalk or shared use path is provided. The pedestrian facility "gaps" where no pedestrian facilities are provided, are summarized in Table 6-6. Improvement concepts along these roadways should consider implementing dedicated pedestrian facilities at these locations so that gaps can be closed, and pedestrians can have access to a more connected network of sidewalk and pathway facilities.

Table 6-6: Pedestrian Deficiencies

Street Names	Sidewalk Gaps
SW/NW 136 th Avenue	 SW 36th Court to SW 26th Court (east) SW 26th Street to SW 14th Street (west) SW 5th Street to SR 84 (east)
Flamingo Road	 SW 37th Court to SW 6th Court (east) New River Greenway to Broward Boulevard (west) SW 3rd Court to SW 1st Court (east) Broward Boulevard to Sunrise Boulevard (east)
Hiatus Road	 8. Griffin Road to SW 36th Street (west) 9. SW 36th Street to Pine Lodge Trail (east) 10. SW 31st Street to south of SW 17th Street (east) 11. Broward Boulevard to Sunrise Boulevard (west)
Nob Hill Road	12. North of Key Plum Street to south of Broward Boulevard (east) 13. NW 1 st Court to Central Park Elementary School entrance (west)
Pine Island Road	14. SW 36 th Street to Nova Drive (east) 15. NW 11 th Street to NW 17 th Street (west)
University Drive	 16. SW 12th Street to south of The Fountains (east) 17. North of The Fountains to SW 6th Street (east) 18. NW 3rd Street to south of W Plantation Circle (west) 19. S Marcano Boulevard to N Marcano Boulevard (east) 20. S Marcano Boulevard to NW 17th Court (west)
Davie Road	None
SR 7 / US 441	21. Orange Drive to south of SW 21 st Street (east) 22. Oakes Road to SW 21 st Street (west) 23. SW 12 th Court to SW 8 th Court (east)
SR 84 Westbound	24. NW 136 th Avenue to SR 7
SR 84 Eastbound	25. East of Davie Road to SR 7

The New River Greenway is a 12-foot shared use path. The minimum paved width for a two-directional shared use path is 10 feet but the desirable width is 12 feet.

Most of the New River Greenway crossings with the eight north-south study roadways are deficient/substandard. The crossings require Greenway users to make a series of 90 degree turns onto narrow sidewalks to cross at the signalized crossing at the adjacent SR 84 intersection located just south of the Greenway. The curb ramps at the crossings are substandard design for shared use paths. The sidewalks connecting the New River Greenway to the signalized intersections are of substandard width for a shared use path. Field reviews show heavy conflicting turning vehicle volumes at the SR 84 intersection, when trail users have a WALK signal displayed on the north leg of the SR 84 intersection. Yielding compliance by motorists to people crossing appears to be a significant concern for non-motorized users at these signalized intersection crossings. There is no conflict at SR 7/US-441 since the New River Greenway crossing is an underpass.

A summary of the New River Greenway crossing locations, type of shared use path crossing (signalized or unsignalized or underpass), and notes regarding the sufficiency of each of the study roadway crossings is shown in Table 6-7.

All of the north-south study roadway crossings were identified as substandard, except for the crossing at SR 7/US-441. The New River Greenway crosses underneath SR 7/US-441 so there are no conflicts. However, additional connections may be desirable to provide access to the Greenway for pedestrians on SR 7/US-441.

Table 6-7: New River Greenway Crossing Location, Type and Sufficiency

Study Roadway Crossing Location	Shared Use Path Crossing Type & Sufficiency
SW/NW 136 th Avenue	Signalized, Substandard Crossing
Flamingo Road	Signalized, Substandard Crossing
Hiatus Road	Signalized, Substandard Crossing
Nob Hill Road	Signalized, Substandard Crossing
Pine Island Road	Signalized, Substandard Crossing
University Drive	Signalized, Substandard Crossing
Davie Road	Signalized, Substandard Crossing
SR 7 / US-441	Underpass, Sufficient Crossing, more connections may be possible

6.4 Percent Coverage of Pedestrian Facilities

GIS was used to determine the overall percent coverage of pedestrian facilities along the study roadways. First, the total length of sidewalk needed to extend the length of both sides of the eight north-south study arterials and along SR 84 within the study area was estimated. This length is approximately 97.5 miles and represents 100% sidewalk coverage. Next, the total length of existing sidewalk facilities located along both sides of the north-south arterials and along SR 84 was measured. It was estimated that sidewalk facilities exist along 72.8 miles of the total 97.5 study area roadway miles. Therefore, it was determined that sidewalk facilities currently cover approximately 75% of the study area roadway miles.

7. BICYCLE FACILITIES EXISTING CONDITIONS ANALYSIS

7.1 Bicycle Mode Analysis Methodology

The ARTPLAN QLOS application was utilized to evaluate the existing bicycle facilities along each of the study roadways in a similar fashion as the pedestrian LOS analysis. The ARTPLAN reports are provided in Appendix F.

The key variables determining Bicycle LOS (BLOS) include bicycle lane coverage and number of motorized vehicles. Table 7-1 displays the major inputs, service measure, and LOS determinator for the bicycle mode. Pavement condition of the roadway surface where bicycling usually occurs is one of the other characteristics included in the analysis. The condition can be distinguished as desired (e.g. new or recently resurfaced), typical (e.g. light gray color, the surface appears worn, and may have some cracks), or undesirable (e.g. noticeable cracks, broken pavement, or ruts).

For purposes of this analysis, a bicycle lane is considered a bicycling area separated from the motorized vehicle traffic through lane by a solid pavement marking. The presence of a paved shoulder is considered as a bicycle lane such as along westbound SR 84. Though there is no designated bicycle lane there is the presence of a paved shoulder, which will increase the BLOS.

Table 7-1: Bicycle Multimodal LOS Major Inputs, Service Measure, and LOS Determinator

Major Inputs	Service Measure	LOS Determinator
Paved Shoulders/Bicycle lanesVolume and lanes	Bicycle LOS Score	HCM LOS criteria
Arterial running speedOther traffic and roadways characteristics		

LOS is measured using the letter grade methodology of A through F, with LOS A representing the best operating conditions, and LOS F the worst. Table 7-2 displays the bicycle LOS thresholds based on the resulting score from the ARTPLAN analysis.

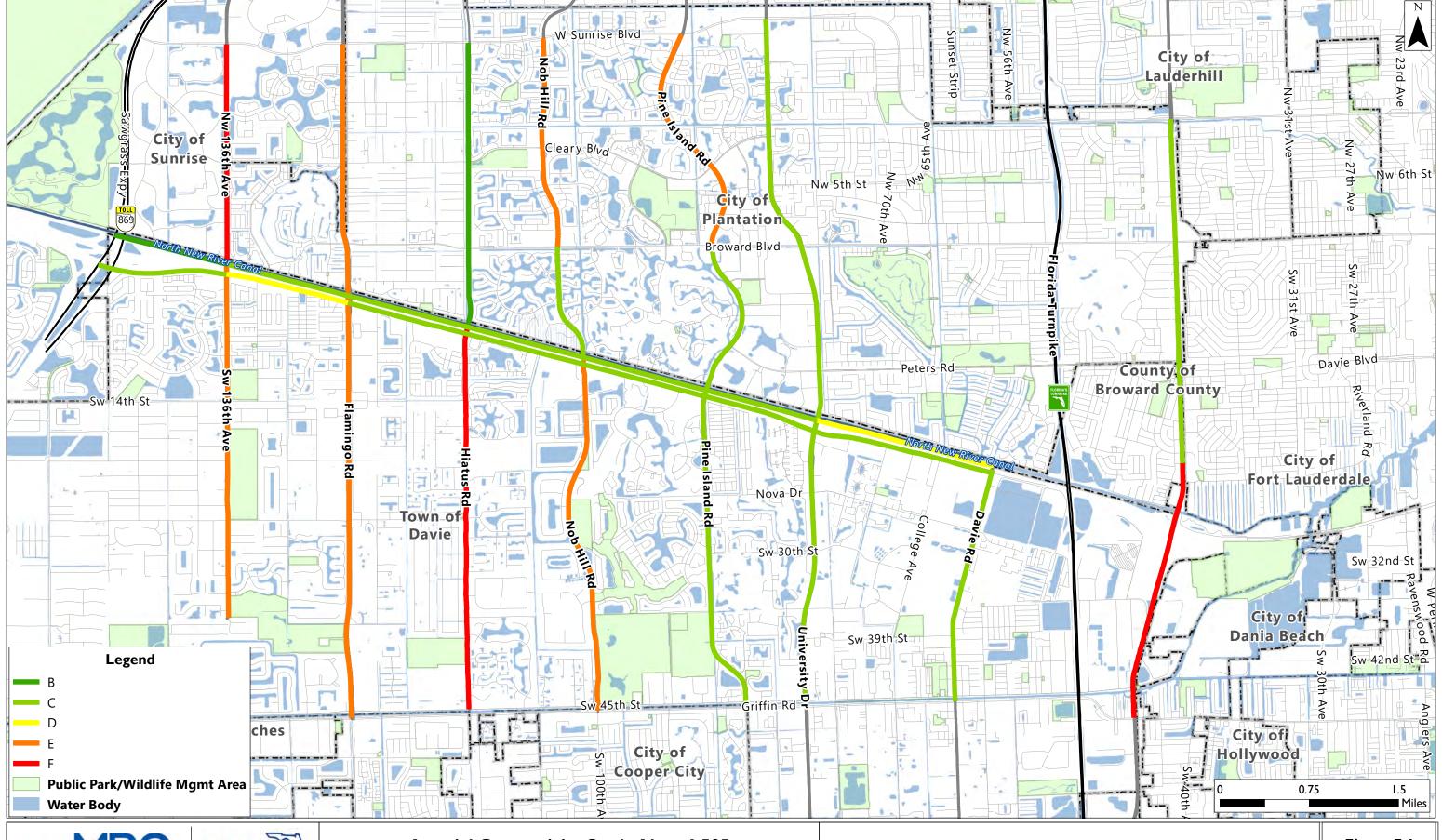
Table 7-2: Bicycle LOS Thresholds

LOS	Score
А	<u><</u> 2.0
В	<u><</u> 2.75
С	<u><</u> 3.5
D	<u><</u> 4.25
Е	<u><</u> 5.0
F	> 5.0

7.2 Bicycle Mode LOS Analysis Results

The bicycle mode score and LOS is shown in Table 7-3 for each of the eight north-south study roadways. Table 7-4 reports the existing bicycle mode score and LOS for westbound SR 84, and Table 7-5 reports the same information for eastbound SR 84. Figure 7-1 depicts bicycle LOS on each of the study roadways within the study area.

Table 7-3: Study Roadway Bicycle Score/LOS


Chudu Dandurau	Bicycle Score LOS	
Study Roadway	South of I-595	North of I-595
SW/NW 136 th Avenue	4.39 E	5.25 F
Flamingo Road	4.99 E	4.84 E
Hiatus Road	5.9 F	2.57 B
Nob Hill Road	4.93 E	2.77 / 4.65 ⁽¹⁾ C / E ⁽¹⁾
Pine Island Road	3.26 C	2.81 / 4.77 ⁽¹⁾ C / E ⁽¹⁾
University Drive/SR 817	3.45 C	3.28 C
Davie Road	2.94 C	
SR 7 / US 441	5.31 / 5.19 ⁽²⁾ F / F ⁽²⁾	3.49 C

Notes: (1) North of Broward Boulevard (2) Oakes Road to SW 21st Street

Table 7-4: Westbound SR 84 Bike Score/LOS		
Westbound SR 84	Bike Score LOS	
East of I-75	2.72 B	
East of SW/NW 136 th Avenue	3.32 C	
East of Flamingo Road	3.46 C	
East of Hiatus Road	2.98 C	
East of Nob Hill Road	3.06 C	
East of Pine Island Road	3.23 C	
East of University Drive/SR 817	4.08 D	

Table 7-5: Eastbound SR 84 Bike Score/LOS

Eastbound SR 84	Bike Score LOS
East of I-75	2.96 C
East of SW/NW 136 th Avenue	3.86 D
East of Flamingo Road	3.41 C
East of Hiatus Road	3.04 C
East of Nob Hill Road	3.21 C
East of Pine Island Road	3.29 C
East of University Drive/SR 817	3.29 C

7.3 Bicycle Mode Deficiencies

The study roadways were reviewed to determine locations where no designated bicycle lanes or adequate shoulders are provided. The bicycle facility "gaps" where no bicycle lane facilities are provided, are summarized in Table 7-6. Improvement concepts along these roadways should consider implementing dedicated bicycle facilities at these locations so that gaps can be closed, and bicyclists can have access to a more connected network of bicycle facilities.

Table 7-6: Bicycle Mode Deficiencies

Study Roadway	Bicycle Facilities Gaps				
SW/NW 136 th Avenue	1. From SW 36 th Court to Sunrise Boulevard				
Flamingo Road	2. From SW 6 th Court to Sunrise Boulevard				
Hiatus Road	3. From Griffin Road to SR 84				
	4. From Griffin Road to SR 84				
Nob Hill Road	5. From Broward Boulevard to Sunrise Boulevard				
	6. From Griffin Road to Nova Drive				
Pine Island Road	7. From Broward Boulevard to Sunrise Boulevard				
University Drive	8. From south of Kolsky Boulevard to SR 84				
	9. From Griffin Road to SW 39 th Street				
Davie Road	10. From SW 39 th Street to north of SW 38 th Court (west)				
SR 7 / US-441	11. From Oakes Road to Riverland Drive				
SR 84 Westbound	12. From SW/NW 136 th Avenue to SR 7 / US-441				
SR 84 Eastbound	13. From Davie Road to SR 7 / US-441				

7.4 **Percent Coverage of Bicycle Facilities**

GIS was used to determine the percent coverage of the various types of bicycle facilities along the study roadways. First, the total length of bicycle facilities needed to extend the length of both sides of the eight north-south study arterials and along SR 84 within the study area was estimated. This length is approximately 56.4 miles and represents 100% bicycle facility coverage. Next, the total length of existing bicycle facilities by type, located along both sides of the north-south arterials and along SR 84, was measured. It was estimated that bicycle facilities exist along 39.9 miles of the total 56.4 study area roadway miles. Therefore, it was determined that bicycle facilities currently cover approximately 70.7% of the study area roadway miles.

Table 7-7 shows the percent coverage of bicycle facilities within the study area by type. The New River Greenway shared-use path is included in the Separated facility category.

Table 7-7: Percent Coverage of Bicycle Facilities

Type of Bicycle Facility	Miles	Percent Coverage
Separated	7.5	13.2%
Buffered	2.6	4.6%
Designated/Conventional (minimum of 4 feet)	22.1	39.2%
Undesignated (less than 4 feet)	7.7	13.6%
No Bicycle Facilities	16.5	29.3%
TOTAL	56.4	100.0%

8. TRANSIT FACILITIES EXISTING CONDITIONS ANALYSIS

8.1 Study Roadway Bus LOS Analysis Methodology

Like the pedestrian and bicycle methodology, the FDOT Quality/Level of Service (Q/LOS) methodology was used to estimate the bus LOS for each of the study roadways based on bus frequency. ARTPLAN software was utilized to estimate the LOS. The ARTPLAN reports are provided in Appendix F.

Bus frequency is the single most important input in determining bus LOS using ARTPLAN. Table 8-1 displays the major inputs, service measure, and LOS determinator for bus LOS. The bus frequency is determined based on the number of scheduled fixed route buses that have the potential to stop on a given roadway segment in one direction of flow in a one-hour period.

Table 8-1: Bus Multimodal LOS Major Inputs, Service Measure, and LOS Determinator

Major Inputs	Service Measure	LOS Determinator
Bus Frequency	Adjusted bus frequency	Transit Capacity and Quality of Service
Presence of		Manual (TCQSM) LOS criteria
Sidewalk		

LOS is measured using the letter grade methodology of A through F, with LOS A representing the best operating conditions, and LOS F the worst. Table 8-2 shows the relationship between bus frequency and each LOS letter grade.

Table 8-2: Bus LOS Thresholds

Level of Service	Adjusted Service Frequency (buses/hour)	Headway (minutes)
А	> 6.0	< 10
В	4.01 – 6.0	10 to 14
С	3.0 – 4.0	15 to 20
D	2.0 – 2.99	21 to 30
Е	1.0 – 1.99	31 to 60
F	< 1.0	> 60

8.2 Study Roadway Bus LOS Analysis Results

The bus mode frequency and LOS is shown in Table 8-3 for each of the eight north-south study roadways. Table 8-4 reports the existing bus frequency and LOS for westbound SR 84, and Table 8-5 reports the same information for eastbound SR 84. Figure 8-1 depicts bus LOS on each of the study roadways within the study area.

Table 8-3: Study Roadway Bus Mode Frequency LOS

Study Roadway	Bus Mode Frequency LOS					
	South of I-595	North of I-595				
SW/NW 136 th Avenue	0 F	4.49 B				
Flamingo Road	0 F	2.37 D				
Hiatus Road	0 F	0 F				
Nob Hill Road	0 F	0 F				
Pine Island Road	0 F	4.79 / 3.99 ⁽¹⁾ B / C ⁽¹⁾				
University Drive	5.43 B	5.43 B				
Davie Road	2.39 D					
SR 7 / US-441	7.54 / 4.15 ⁽²⁾ A / B ⁽²⁾	9.58 A				

Notes: (1) North of Broward Boulevard

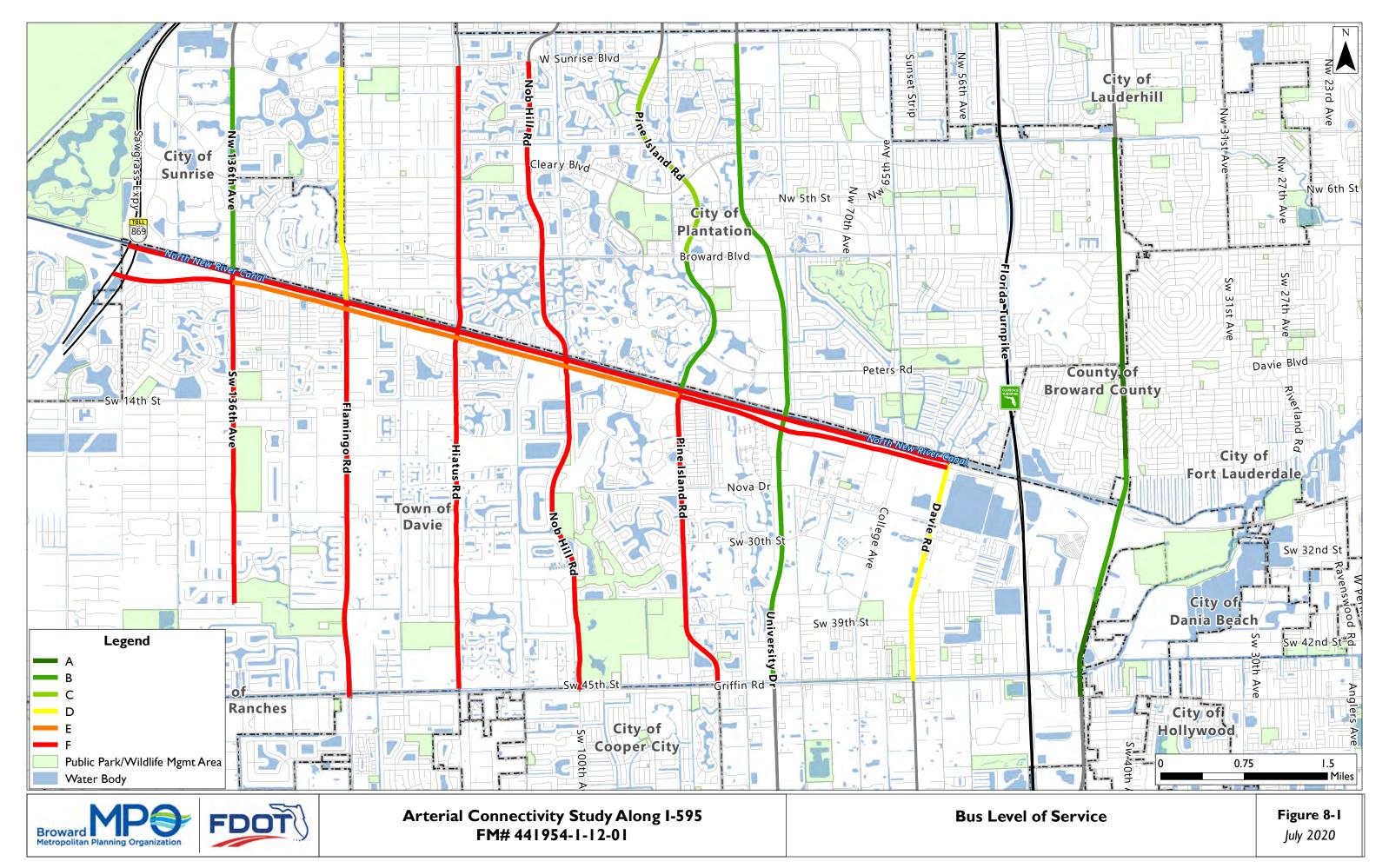

(2) Oakes Road to SW 21st Street

Table 8-4: Westbound SR 84 Bus Mode Frequency LOS

Westbound SR 84	Bus Mode Frequency LOS
East of I-75	0.94 F
East of SW/NW 136 th Avenue	0.59 F
East of Flamingo Road	0.59 F
East of Hiatus Road	0.92 F
East of Nob Hill Road	0.59 F
East of Pine Island Road	0.59 F
East of University Drive/SR 817	0.74 F

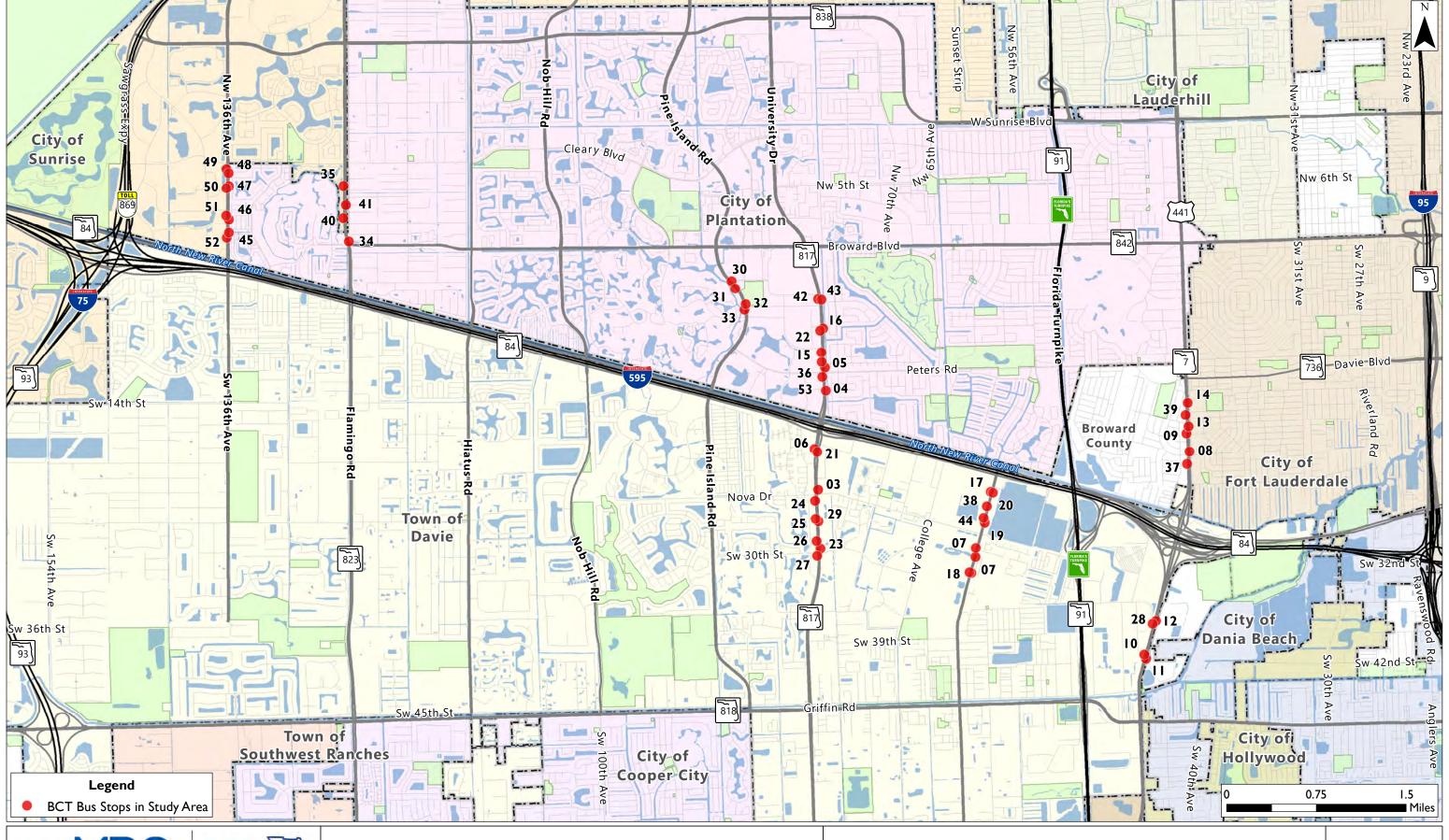
Table 8-5: Eastbound SR 84 Bus Mode Frequency LOS

Eastbound SR 84	Bus Mode Frequency LOS
East of I-75	1 F
East of SW/NW 136 th Avenue	1.14 E
East of Flamingo Road	1.14 E
East of Hiatus Road	1.08 E
East of Nob Hill Road	1.08 E
East of Pine Island Road	0.92 F
East of University Drive/SR 817	0.92 F

8.3 Transit Stop Locations and Existing Amenities Assessment

In addition to estimating the transit Level of Service based on bus frequency along each of the study arterial, bus stops were also reviewed for deficiencies.

The existing conditions bus stop analysis for transit services and facilities, including park-and-ride lots, is based on data collected by and obtained from Broward County Transit (BCT) and FDOT District Four. BCT provided the most recent ridership counts by stop (from 2011 and 2014 depending on the location) and by route (from 2019), as well as on-time performance data for local bus and community shuttle routes within the study area. BCT also provided Geographic Information Systems (GIS) data for the location of each stop and route, including information about the amenities and other characteristics associated with each bus stop based on the most recent field review or completed construction project. FDOT District Four, through its Park-and-Ride Inventory Reports, provided data on the condition and utilization of park-and-ride lots within or near the project study area.


For the purposes of this analysis, the study area was defined as all transit facilities located adjacent to north-south arterials within the primary study area boundary of roughly one mile from the I-595 centerline. Several additional stops and one additional park-and-ride lot, the BB&T Center Park-and-Ride, were included because of proximity to the study area boundary or importance to transit service within the study area. Other stops may be included in the recommendations phase of this study if it is determined that they may be impacted by a proposed mitigation measure.

An additional desktop review was performed in April 2020 to verify the transit stop data. This consisted of using aerial imagery to verify exact bus stop locations and constructed park-and-ride spaces. The desktop review also included the use of Google Streetview to confirm the presence or lack of certain stop amenities and right-of-way conditions as presented in the transit stop GIS data.

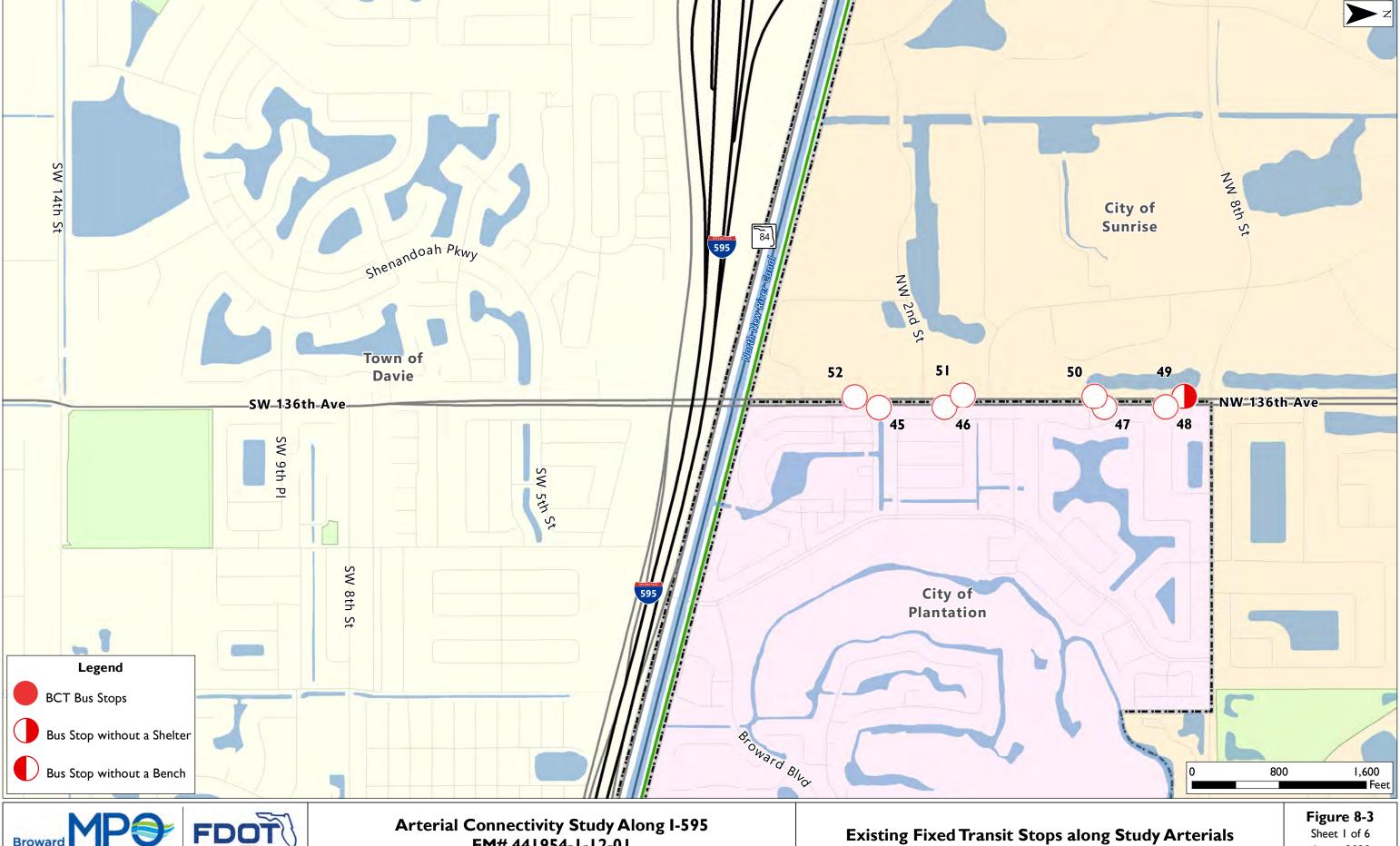
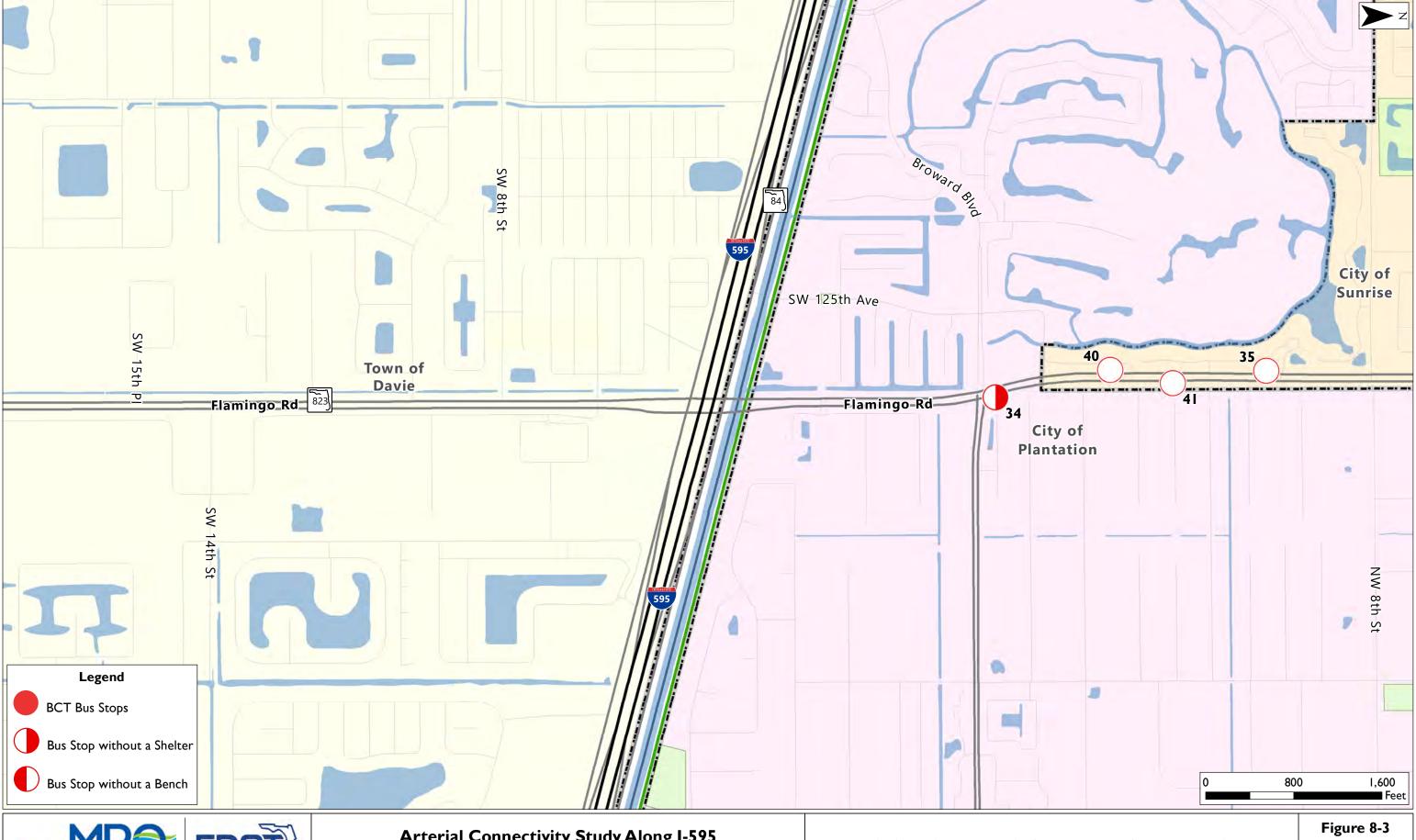
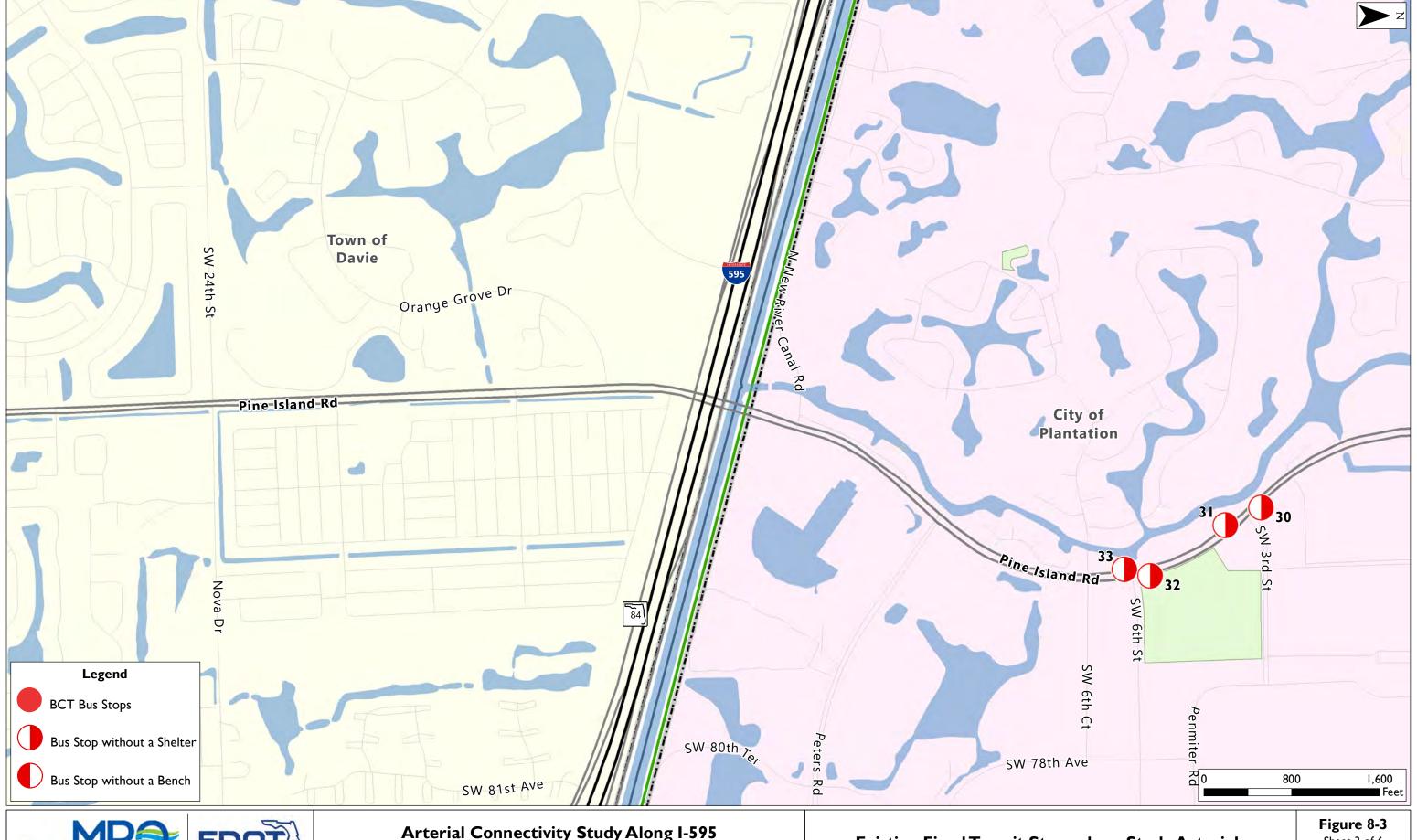
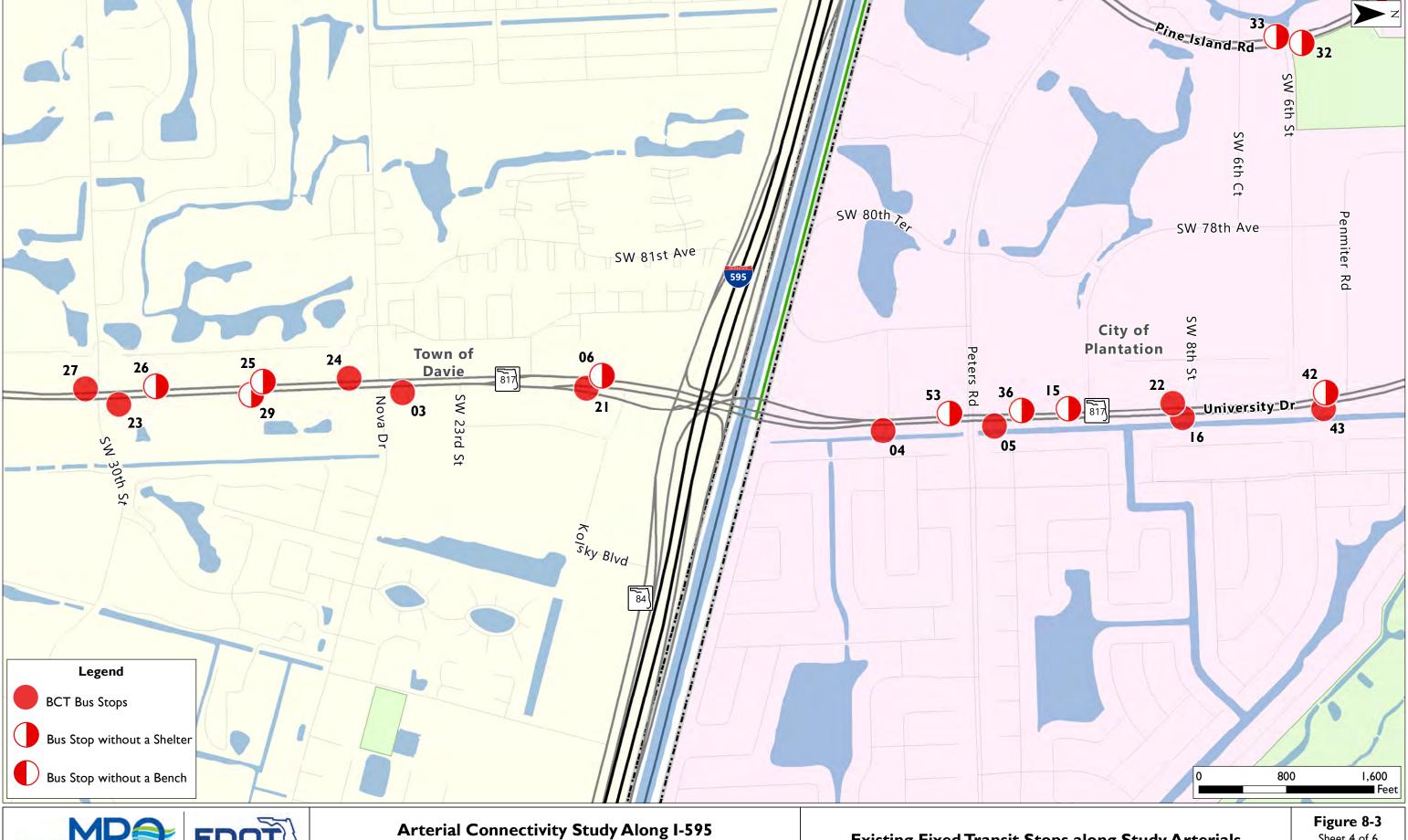

Figures 8-2 and 8-3 on the following pages show the locations of existing fixed transit stops within the study area. Figure 8-2 provides an overview of the complete study area, while Figure 8-3 shows each of the arterials in greater detail. It should be noted that not all study area arterials have transit service with fixed stop locations. Those that do are SW 136th Avenue (north of I-595 only), Flamingo Road (north of I-595 only), Pine Island Road (north of I-595 only), University Drive (both sides of I-595), Davie Road (south of I-595 only), and State Road 7 / US 441 (both sides of I-595). For a map showing where the various transit routes run, please refer to Figure 3-11 Existing Transit Services in Technical Memorandum #1.

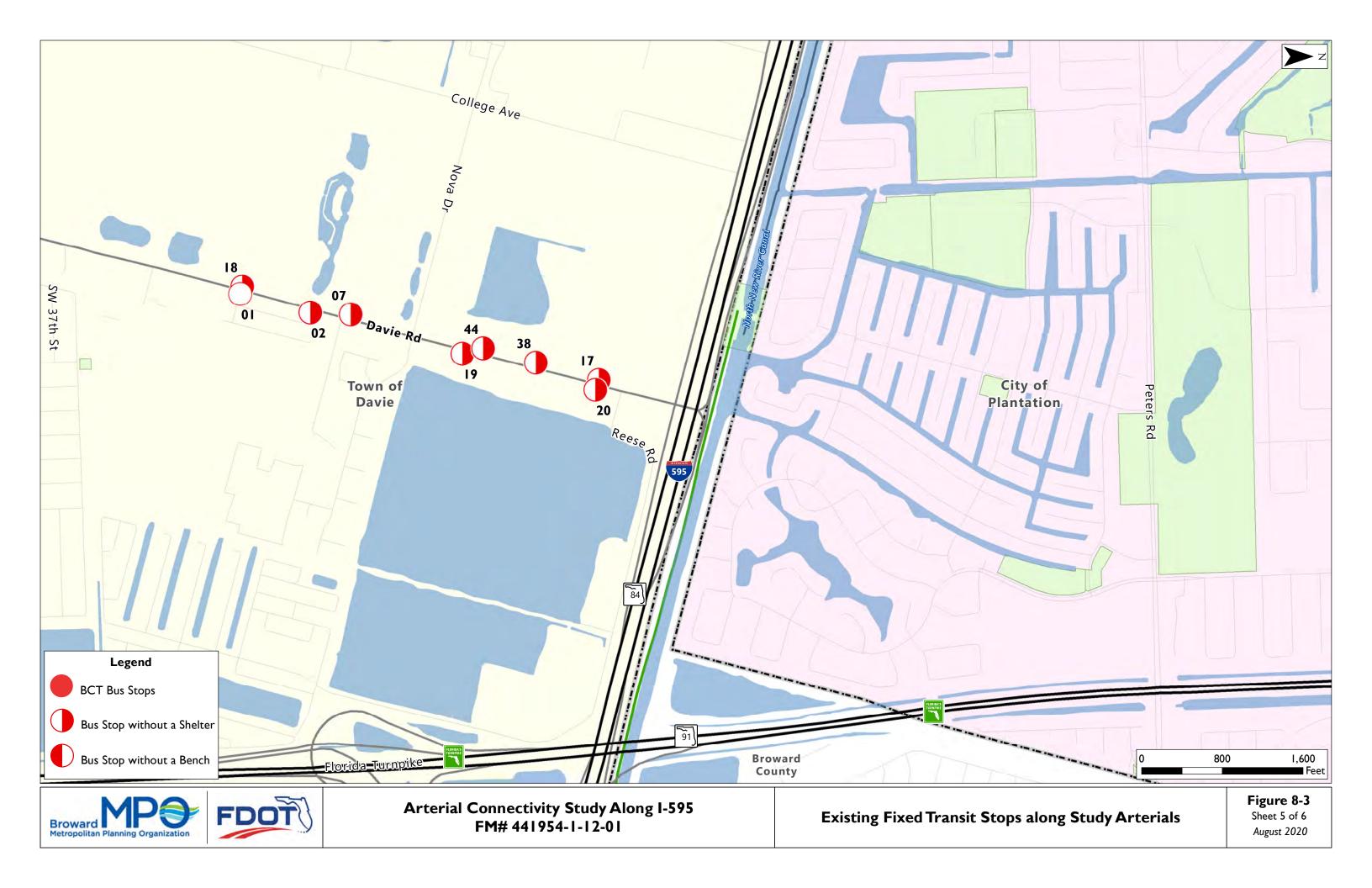
Table 8-6 summarizes the characteristics and amenities found at each stop location based on the most recent available data from BCT and Google Streetview. In addition to a general description of the stop location, this table contains a randomly assigned Map ID Number which corresponds to Figures 8-2 and 8-3. It also contains the following information about each transit stop:

- BCT bus routes serving the stop,
- Combined boardings and alightings based on BCT's most recent passenger counts, and
- Presence of stop amenities: shelter, bench, bicycle rack, trash can, bus bay, landing pad, shelter pad, sign advertising BCT's mobile application for real-time bus arrival information, sticker showing the BCT Stop ID Number, and sticker showing the stop is ADA-compliant.









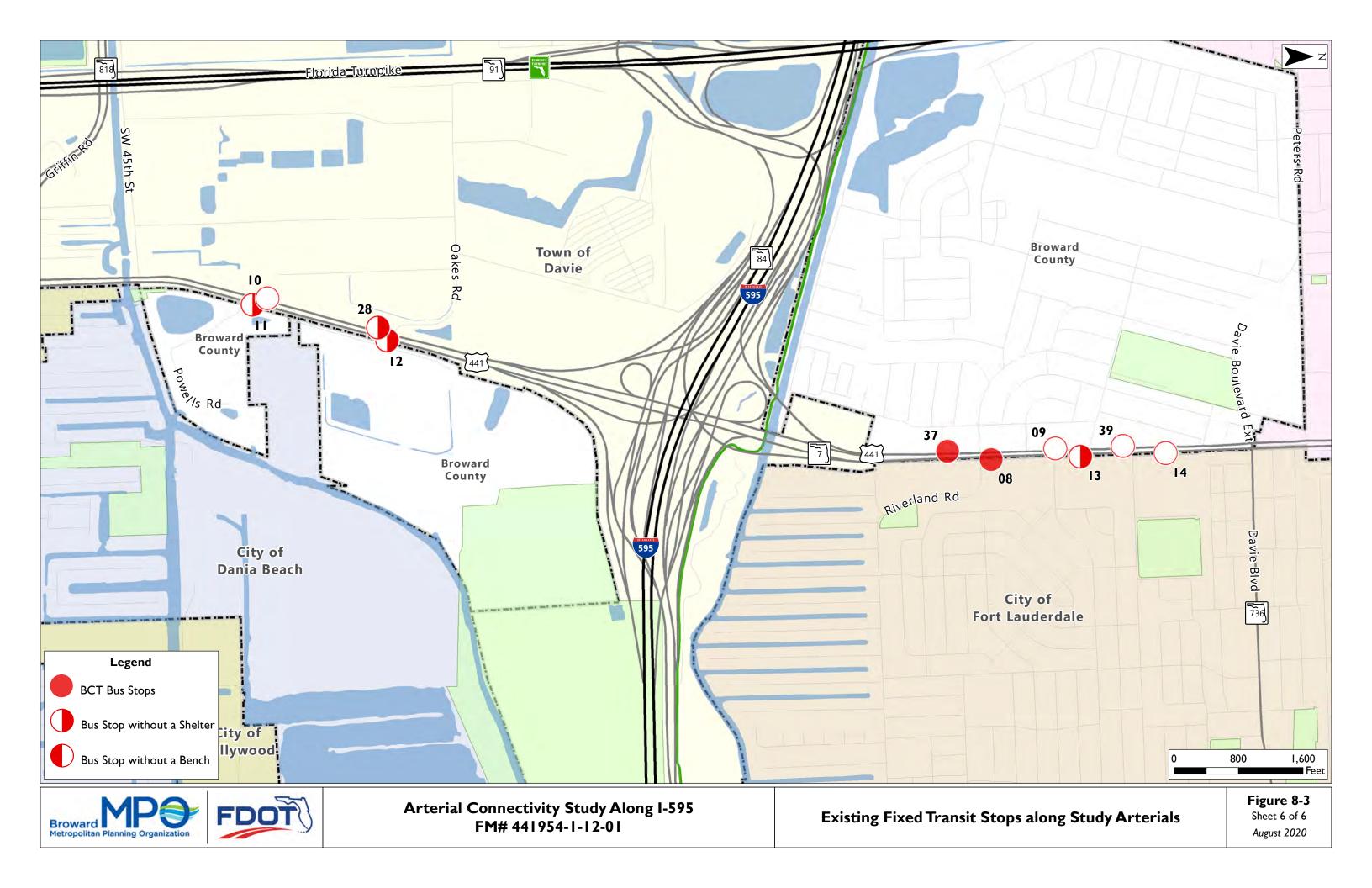


Table 8-6: Transit Stop Existing Conditions Summary Table

Map ID#	BCT Stop ID#	Main Street	Cross Street	BCT Route(s) Served	Total Daily Stop Activity*	Shelter?	Bench?^	Bike Rack?	Trash Can?	Bus Bay?	Sidewalk?	Landing Pad?	Shelter Pad?	Real-Time App Info?	ID Sticker?	ADA Sticker?
45	5265	NW 136 Ave	NW 3 St	Route 23	0	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No
46	5266	NW 136 Ave	NW 2 St	Route 23	0	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No
47	5267	NW 136 Ave	NW 6 St	Route 23	0	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No
48	5268	NW 136 Ave	NW 8 St	Route 23	0	No	No	No	No	No	Yes	Yes	No	Yes	Yes	Yes
49	5269	NW 136 Ave	NW 8 St	Route 23	0	No	Yes	No	Yes	No	Yes	Yes	No	Yes	Yes	No
50	5270	NW 136 Ave	NW 6 St	Route 23	0	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No
51	5271	NW 136 Ave	NW 2 St	Route 23	0	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No
52	5272	NW 136 Ave	NW 3 St	Route 23	0	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No
34	3591	Flamingo Rd	Broward Blvd	Route 22	21	No	Yes	No	Yes	No	Yes	Yes	No	Yes	No	No
35	3604	Flamingo Rd	Vista Isles Dr	Route 22	4	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No
40	4069	Flamingo Rd	Vista Isles Dr	Route 22	4	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No
41	4080	Flamingo Rd	NW 8 St	Route 22	4	No	No	No	No	No	No	Yes	No	Yes	Yes	No
30	3572	Pine Island Rd	SW 3 St	Route 30	34	No	Yes	No	Yes	No	Yes	Yes	No	Yes	Yes	No
31	3573	Pine Island Rd	SW 3 St	Route 30	19	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	No
32	3574	Pine Island Rd	SW 6 St	Route 30	24	No	Yes	No	Yes	No	Yes	Yes	No	Yes	Yes	No
33	3575	Pine Island Rd	SW 6 St	Route 30	19	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	No
03	0164	University Dr	Nova Dr	Route 2, 12, & University Breeze	92	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
04	0165	University Dr	SW 13 PI	Route 2 & 12	39	Yes	Yes (2)	No	Yes (2)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
05	0166	University Dr	Peters Rd	Route 2, 12, & University Breeze	106	Yes	Yes (2)	No	Yes (2)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
06	0277	University Dr	I-595	Route 2 & 12	55	No	Yes	No	No	Yes	Yes	Yes	No	Yes	Yes	No
15	2469	University Dr	SW 10 St	Route 2 & 12	6	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes
16	3203	University Dr	SW 8 St	Route 2 & 12	24	Yes	Yes (2)	No	Yes (2)	No	Yes	Yes	Yes	Yes	Yes	Yes
21	3416	University Dr	K-Mart	Route 2 & 12	43	Yes	Yes	Yes (2)	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
22	3417	University Dr	SW 8 St	Route 2 & 12	20	Yes	Yes (2)	No	Yes (2)	Yes	Yes	Yes	Yes	Yes	Yes	Yes
23	3446	University Dr	SW 30 St	Route 2 & University Breeze	122	Yes	Yes (2)	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
24	3448	University Dr	Nova Dr	Route 2 & University Breeze	85	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	No
25	3449	University Dr	Arrowhead Plz	Route 2	9	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes
26	3450	University Dr	SW 30 St	Route 2	7	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes

Map ID#	BCT Stop ID#	Main Street	Cross Street	BCT Route(s) Served	Total Daily Stop Activity*	Shelter?	Bench?^	Bike Rack?	Trash Can?	Bus Bay?	Sidewalk?	Landing Pad?	Shelter Pad?	Real-Time App Info?	ID Sticker?	ADA Sticker?
27	3451	University Dr	SW 30 St	Route 2 & University Breeze	121	Yes	Yes (2)	Yes (2)	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
29	3495	University Dr	#2640	Route 2	15	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes
36	3783	University Dr	Peters Rd	Route 2 & 12	18	No	Yes	No	Yes	No	Yes	Yes	No	Yes	Yes	Yes
42	4194	University Dr	SW 6 St	Route 2 & 12	20	No	Yes	No	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes
43	4254	University Dr	Federated Rd	Route 2 & 12	13	Yes	Yes (2)	No	Yes (2)	No	Yes	Yes	Yes	Yes	Yes	Yes
53	5637	University Dr	Peters Rd	Route 2, 12, & University Breeze	133	No	Yes	No	Yes	No	Yes	Yes	No	Yes	Yes	Yes
01	0156	Davie Rd	Criminal Justice	Route 9 & 12	3	No	No	No	No	No	Yes	Yes	No	No	Yes	Yes
02	0157	Davie Rd	Toscana Dr	Route 9 & 12	40	No	Yes	No	No	No	Yes	Yes	No	Yes	No	Yes
07	0281	Davie Rd	Silver Oaks Entrance	Route 9 & 12	58	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes
17	3378	Davie Rd	Reese R SFWMD	Route 9	15	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes
18	3379	Davie Rd	Criminal Justice	Route 9 & 12	3	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes
19	3382	Davie Rd	Nova Dr	Route 9	42	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes
20	3383	Davie Rd	Reese R Shoneys	Route 9	15	No	Yes	No	No	No	Yes	Yes	No	Yes	No	No
38	3824	Davie Rd	Nova SE University	Route 9	4	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	Yes
44	4617	Davie Rd	Nova Dr	Route 9	28	No	Yes	No	No	No	Yes	Yes	No	No	No	No
08	0709	SR 7/US 441	Riverland Rd	Route 18 & 441 Breeze	247	Yes	Yes (2)	Yes	Yes	No	Yes	Yes	Yes	Yes	Yes	No
09	1294	SR 7/US 441	SW 19 St	Route 18	29	No	No	No	Yes	No	Yes	Yes	No	Yes	Yes	No
10	1295	SR 7/US 441	U-Pull It Car Scrap	Route 18	8	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No
11	1383	SR 7/US 441	Powell Rd / U-Pull It	Route 18	11	No	Yes (2)	No	No	Yes	No	Yes	Yes	Yes	Yes	No
12	1384	SR 7/US 441	Oakes Rd	Route 18	53	No	Yes (2)	No	No	No	No	Yes	Yes	Yes	Yes	No
13	1385	SR 7/US 441	SW 18 St	Route 18	29	No	Yes	No	Yes	No	Yes	Yes	No	Yes	Yes	No
14	1386	SR 7/US 441	SW 14 St	Route 18	29	No	No	No	Yes	No	Yes	Yes	No	No	No	No
28	3487	SR 7/US 441	Oakes Rd	Route 18	30	No	Yes	No	No	No	Yes	Yes	No	Yes	Yes	No
37	3823	SR 7/US 441	SW 20 St	Route 9, 18, & 441 Breeze	365	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	No	Yes	Yes
39	3877	SR 7/US 441	SW 16 St	Route 18	44	No	No	No	No	No	Yes	Yes	No	Yes	Yes	No

Source: Broward County Transit and Google Streetview

^{*}Total daily stop activity is the combined boardings and alightings at each stop location. Ridership is based on a combination of counts collected by Broward County Transit in 2011 and 2014.

[^]Rows with (2) indicate the presence of multiple amenities of that type at a given stop location.

Of the 53 stops assessed for this analysis, roughly one-third (18 locations) have daily boardings or alightings totaling less than 10, which is BCT's threshold for installing a shelter. Slightly more than one-half (27 locations) range between 10 and 60, and one-tenth (6 locations) have more than 100. The stop with the highest activity, 365 boardings or alightings, is located on State Road 7 just north of I-595. With respect to major amenities typically found at transit stops, 23% (12 locations) of study area stops are equipped with a shelter.

All stops with shelters also contain benches and trash cans. Seven stops with shelters also contain bicycle racks, but no stops without shelters are currently equipped with bicycle racks. The majority, 72% (38 locations), of stops contain a bench, 42% (22 locations) a trash can, 13% (7 locations) a bicycle rack, and 15% (8 locations) are located adjacent to a bus bay. All study area stops currently have a paved landing pad for boardings and alightings.

Additional information from BCT's stop database for the fixed stops within the study area, including Google Streetview images at each location, can be found in Appendix G.

8.4 Transit Services and Park-and-Ride Performance

8.4.1 Transit Services

Broward County, as part of its annual budget, adopts targets for various aspects of transit performance. Two performance measures are useful for evaluating deficiencies for the transit services in the study area – on-time performance and passengers per revenue hour. For the local and express bus routes, the FY 2019 budget has a target for on-time performance of 73%. For community shuttle services, there is a number of passengers per revenue hour target of 25.5. Tables 8-7 and 8-8 provide the 2019 data for these two performance measures, respectively. Color-coded arrows indicate if the route is meeting (\Leftrightarrow) , exceeding (\updownarrow) , or not meeting (\clubsuit) the target set in the FY 2019 budget.

Table 8-7: Local and Express Bus Routes Reported On-Time Performance for 2019

Route	Corridor	2019 Reported On-Time Performance
2	University Drive	69.8% 👨
6	Broward Terminal – SR-84 – Ravenwood – County Line Road	74.1% û
9	Broward Terminal – Riverland Road – Davie Road – Johnson Street	66.4% •
12	Sheridan Street – Davie Road – University Drive	72.9% ⇔
18	SR-7 – South of Lauderhill Mall	66.5% 👨
22	Broward Boulevard	67.6% 😃
23	Pembroke Lakes Mall to Sawgrass Mills Mall	N/A
30	Davie Boulevard/Peters Road	75.1% ₺
88	Pine Island Road/Coral Springs Drive	75.2% ₺
102	Breeze University Drive	61.5% 😃
114	595 Express Sunrise to Miami Civic Center	64.3% 😃
115	75 Express	N/A
122	Breeze Broward Boulevard	76.4% û
441	Breeze SR-7/US-441	59.0% 😃

Source: Broward County Transit

Table 8-8: Community Shuttle Routes Reported Passengers per Revenue Hour for 2019

Route	2019 Passengers per Revenue Hour
Davie Green	6.8 ♣
Davie Blue	16.0 ♣
Davie SFEC Shuttle (Tri-Rail)	11.5 ♣

Source: Broward County Transit

As indicated in Table 8-7, a majority (58.3%) of the local and express bus routes that operate in the study area did not meet the on-time performance target in 2019. There are a number of factors that influence on-time performance, including roadway congestion, passenger loading times, and maintenance issues. Without additional analysis of the individual routes, specific reasons cannot be given for the on-time performance issues. Regarding the community shuttles, none of the routes operating in the study area met the target for the number of passengers per revenue hour in 2019. This performance measure does not indicate a deficiency in the service provided, rather that there is insufficient use of these routes in the study area.

As part of Commitment 2045, the Broward MPO conducted a travel demand and transit market segmentation analysis¹ that identified transit service gaps within the county. Within the study area, the following service gaps were identified:

- Community shuttle service in western Fort Lauderdale, in the area generally bounded by Florida's Turnpike to the west, I-595 to the south, Broward Boulevard to the north, and SW 31st Avenue to the east.
- Premium transit (bus rapid transit or rail) along SR-7/US-441 south of I-595.
- Premium transit (bus rapid transit or rail) along University Drive.

As identified in Technical Memorandum #1, Existing Data, Broward County has planned transit service improvements (rapid bus) along both SR-7/US-441 and University Drive. Therefore, these identified needs will be addressed with future improvements. Community shuttle services are operated by municipalities, and according to information gathered from the stakeholder meeting

with the City of Fort Lauderdale on February 12, 2020, the City is not proposing any additional transit services in the area described above.

8.4.2 Park-and-Ride Lots

The Davie Park-and-Ride lot and BB&T Center Park-and-Ride lot both serve the 595 Express Bus route that runs through the study area along a portion of I-595. The Davie Park-and-Ride lot is located in the south-east corner of the Davie Road and SR 84 intersection within the Town of Davie. The BB&T Center Park-and-Ride lot is situated within the sports arena and concert venue across from the Sawgrass Mills mall in the south-east corner of the Sawgrass Expressway and Pat Salerno Drive intersection, in the City of Sunrise.

Both Park-and-Ride lots are FDOT-managed facilities, and inventories of these lots occur on a regular (typically bi-annual) basis to track usage and condition. The Park-and-Ride lot inventory reports from the past five years (2015-2019) were obtained for these two Park-and-Ride lots, and the information was evaluated to determine any deficiencies. The inventory data includes the observed number of occupied parking spaces. Per the *State Park-and-Ride Guide*, published by FDOT, lots with occupancy rates of between 60% and 80% are exhibiting satisfactory operating conditions. As the occupancy percentage approaches or exceeds 80%, lot expansion needs to be considered. The data for each Park-and-Ride lot was reviewed and findings are summarized in the paragraphs that follow.

¹ For more information, see *Technical Report #7 – Travel Demand and Transit Market Segmentation*:

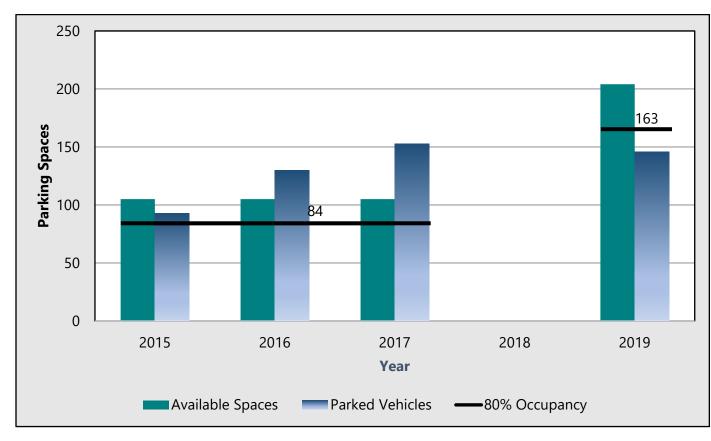
http://www.browardmpo.org/images/WhatWeDo/2045 MTP/20180604 TR7 BMPO Transit Market Segmentation FINAL D

RAFT ADA.pdf

Davie Park-and-Ride Lot

This Park-and-Ride lot was recently reconstructed (completed in 2018) to provide additional parking. Before the reconstruction, the Park-and-Ride lot had 105 total motorized vehicle parking spaces. After the reconstruction, the Park-and-Ride lot now has 204 total motorized vehicle parking spaces. Prior to the 2018 reconstruction, parking occupancy rates were exceeding 100% due to vehicles illegally parking in non-designated spaces such as drop-off and grass areas once the lot was full. Based on FDOT's Fall 2019 Biannual Report, the field review conducted on Wednesday, October 2, 2019, at 11:30 am, reported that 72% of the 204 parking spaces were occupied. The vehicle and bicycle parking occupancy data recorded in each of the last five years is summarized in Table 8-9.

According to FDOT's Fall 2019 Biannual Report, this Park-and-Ride lot was determined to be in good condition. All of the site's signs and amenities (lighting, trash cans, benches, shelters, etc.) were found to be in good condition and no maintenance issues were identified.


Table 8-9: Five-Year Parking Occupancy Rate for the Davie Park-and-Ride Lot

Parking Space Occupancy / Year	2015	2016	2017	2018*	2019
Total Available Motorized Vehicle Parking Spaces	105	105	105	-	204
Total Parked Motorized Vehicles	93	130	153	-	146
% Occupancy Motorized Vehicle Parking Spaces	89%	124%	146%	-	72%
Total Available Bicycle Parking Rack Spaces	6	6	6	-	5
Total Parked Bicycles	1	1	0	-	1
% Occupancy Bicycle Parking Rack Spaces	17%	17%	0%	-	20%

Source: FDOT District 4 Fall Park-and-Ride Inventory Reports (2015 – 2019) *Due to reconstruction of the lot in 2018, data for this year is not reported.

As shown in Figure 8-4, this lot continues to be highly utilized, with the motorized vehicle parking space occupancy rate trending upwards between 2015 and 2017. Since it was reconstructed, the parking space occupancy rate is now within the satisfactory operating condition range. However, if parking continues to increase at this Park-and-Ride lot location, and reaches the 80% occupancy threshold, another expansion may need to be considered.

Figure 8-4: Davie Park-and-Ride Parking Space Occupancy Five-Year Trend

Source: FDOT District 4 Fall Park-and-Ride Inventory Reports (2015 – 2019)

*Due to reconstruction of the lot in 2018, data for this year is not reported.

BB&T Center Park-and-Ride Lot

The BB&T Park-and-Ride lot has a total of 340 motorized vehicle parking spaces. The vehicle and bicycle parking occupancy data recorded in each of the last five years is summarized in Table 8-10. Figure 8-5 shows the historical vehicle parking space occupancy data for this lot since 2015.

A field review for this location was conducted as part of FDOT's 2019 Fall Biannual Report. The field review was conducted on Wednesday, October 2, 2019, at 12:30 pm and reported that 67% of the spaces were occupied. Based on this data, the lot is performing at satisfactory occupancy rates (below 80% of the available parking spaces). Since the parking occupancy rate has been fairly stable over the last five years, and has not exceeded an 80% occupancy rate, it does not appear that the lot will need expansion in the short-term.

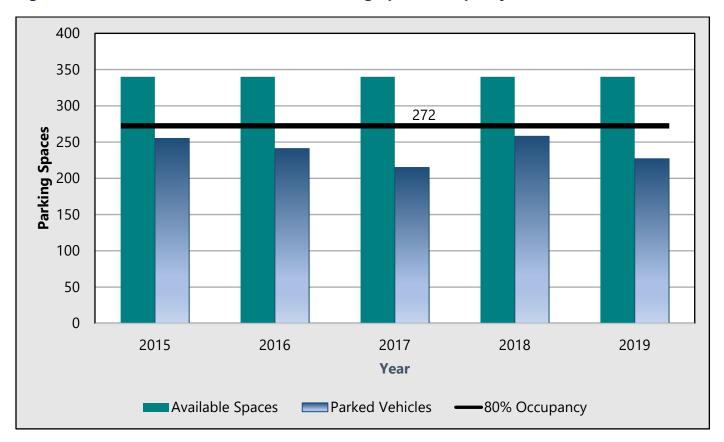

The overall condition of this lot was found to be good according to FDOT's 2019 Fall Biannual Report. All of the site's signs and amenities (lighting, trash cans, benches, shelters, etc.) were found to be in good condition and no maintenance issues were identified.

Table 8-10: Five-Year Parking Occupancy Rate for the BB&T Center Park-and-Ride Lot

Parking Space Occupancy / Year	2015	2016	2017	2018	2019
Total Available Motorized Vehicle Parking Spaces	340	340	340	340	340
Total Parked Motorized Vehicles	255	241	215	258	227
% Occupancy Motorized Vehicle Parking Spaces	75%	71%	63%	76%	67%
Total Available Bicycle Parking Rack Spaces	12	6	5	6	6
Total Parked Bicycles	0	1	1	0	0
% Occupancy Bicycle Parking Rack Spaces	0%	17%	20%	0%	0%

Source: FDOT District 4 Fall Park-and-Ride Inventory Reports (2015 – 2019)

Figure 8-5: BB&T Center Park-and-Ride Parking Space Occupancy Five-Year Trend

Source: FDOT District 4 Fall 2019 Park-and-Ride Inventory Reports (2015 – 2019)

8.5 Transit and Park-and-Ride Deficiencies

8.5.1 Transit Services and Stop Locations

Recommendations to improve overall arterial performance will have a positive effect on transit operations. In addition, operational deficiencies are expected to be identified by BCT during their upcoming Comprehensive Operations Analysis (COA). As such, transit deficiencies described here are related only to supportive infrastructure deficiencies. This includes two important stop amenities for transit passengers: shelters and benches.

After reviewing the 53 fixed transit stops within the study area, 23 were have no shelter, but meet the BCT ridership threshold of 10 boardings or alightings per day to justify a need for one. Eight stops were identified as not having a bench. BCT does not currently have a ridership threshold for installing benches, but has noted through coordination efforts that its preference is for all stops to have a bench in cases where there is sufficient space to install and meet ADA clearance requirements. Due to this, any stop with no bench, except for those with no daily ridership activity, was identified as being deficient. Stops deficient of shelters and benches are shown in Table 8-11 and 8-12, respectively.

The stop locations in the tables are listed in order based on the highest total daily stop activity at the top and those with the lowest at the bottom. While stops are all missing the same amenities, those closer to the top may be considered to have a higher need because they serve more passengers. In addition to considering the number of passengers a stop serves, stops with potentially longer wait times due to longer headways or stops serving multiple routes may also be considered higher priority.

8.5.2 Park-and-Ride Lots

As of the Fall of 2019, both park-and-ride lots within or near the study area (Davie Park-and-Ride and BB&T Center Park-and-Ride) are in good condition and are below the 80% capacity threshold used for determining expansion needs. Therefore, there are currently no park-and-ride deficiencies. However, the Davie Park-and-Ride lot has shown increasing usage since 2015. If the trend continues, this lot could exceed capacity again within a few years.

Table 8-11: Stop Locations with No Existing Shelter

Map ID #	BCT Stop ID #	Main Street	Cross Street	Service Direction	BCT Route(s) Served	Jurisdiction	Right-of-Way Type	Total Daily Stop Activity
53	5637	University Dr	Peters Rd	SB	Route 2, 12, & University Breeze	Plantation	State	133
07	0281	Davie Rd	Silver Oaks	SB	Route 9 & 12	Davie	County	58
06	0277	University Dr	I-595	SB	Route 2 & 12	Davie	State	55
12	1384	SR 7	Oakes Rd	NB	Route 18	Davie	State	53
39	3877	SR 7	SW 16 St	SB	Route 18	Broward County	State	44
19	3382	Davie Rd	Nova Dr	NB	Route 9	Davie	County	42
02	0157	Davie Rd	Toscana Dr	NB	Route 9 & 12	Davie	County	40
30	3572	Pine Island Rd	SW 3 St	NB	Route 30	Plantation	County	34
28	3487	SR 7	Oakes Rd	SB	Route 18	Davie	State	30
09	1294	SR 7	SW 19 St	SB	Route 18	Broward County	State	29
13	1385	SR 7	SW 18 St	NB	Route 18	Fort Lauderdale	State	29
14	1386	SR 7	SW 14 St	NB	Route 18	Fort Lauderdale	State	29
44	4617	Davie Rd	Nova Dr	SB	Route 9	Davie	County	28
32	3574	Pine Island Rd	SW 6 St	NB	Route 30	Plantation	County	24
34	3591	Flamingo Rd	Broward Blvd	NB	Route 22	Plantation	Local	21
42	4194	University Dr	SW 6 St	SB	Route 2 & 12	Plantation	State	20
31	3573	Pine Island Rd	SW 3 St	SB	Route 30	Plantation	County	19
33	3575	Pine Island Rd	SW 6 St	SB	Route 30	Plantation	County	19
36	3783	University Dr	Peters Rd	SB	Route 2 & 12	Plantation	State	18
29	3495	University Dr	#2640	NB	Route 2	Davie	State	15
17	3378	Davie Rd	Reese Rd SFWMD	SB	Route 9	Davie	County	15
20	3383	Davie Rd	Reese Rd Shoneys	NB	Route 9	Davie	County	15
11	1383	SR 7	Powells Rd	NB	Route 18	Hollywood	State	11

Source: Broward County Transit and Google Streetview

Table 8-12: Stop Locations with No Existing Bench

Map ID #	BCT Stop ID #	Main Street	Cross Street	Service Direction	BCT Route(s) Served	Jurisdiction	Right-of-Way Type	Total Daily Stop Activity
39	3877	SR 7	SW 16 St	SB	Route 18	Broward County	State	44
09	1294	SR 7	SW 19 St	SB	Route 18	Broward County	State	29
14	1386	SR 7	SW 14 St	NB	Route 18	Fort Lauderdale	State	29
10	1295	SR 7	U-Pull It Car Scrap	SB	Route 18	Davie	State	8
35	3604	Flamingo Rd	Vista Isles Dr	SB	Route 22	Sunrise	Local	4
40	4069	Flamingo Rd	Vista Isles Dr	SB	Route 22	Sunrise	Local	4
41	4080	Flamingo Rd	NW 8 St	NB	Route 22	Sunrise	Local	4
01	0156	Davie Rd	Criminal Justice	NB	Route 9 & 12	Davie	County	3

Source: Broward County Transit and Google Streetview

9. SUMMARY OF EXISTING CONDITIONS DEFICIENCIES

As part of Task One for the Arterial Connectivity Study along I-595 Corridor, Technical Memorandum 2 documents the analysis of existing conditions throughout the study area. Existing traffic operational deficiencies, bicycle, pedestrian and greenway facility deficiencies, transit facility deficiencies, and safety deficiencies are identified. Existing conditions analyses presented herein indicate where deficiencies are located within the study area and quantify the severity of the deficiencies. This base existing condition information informs where improvements are needed in the immediate future, and in some cases, suggested improvements are identified for mitigating the deficiencies.

9.1 Existing Traffic Operational Analysis

9.1.1 Study Roadways Level of Service Analysis

The following roadway segments have 2019 Annual Average Daily Traffic (AADT) volumes that exceed the generalized service volume thresholds for Level of Service (LOS) D:

- 1. University Drive/SR 817 north of SR 84/I-595 exceeds capacity by 36%
- 2. University Drive/SR 817 south of SR 84/I-595 exceeds capacity by 19%
- 3. SR 7/US-441 north of SR 84/I-595 exceeds capacity by 2%
- 4. SR 7/US-441 south of SR 84/I-595 exceeds capacity by 6%
- 5. Westbound SR 84 east of SW/NW 136th Avenue exceeds capacity by 5%
- 6. Eastbound SR 84 east of SW/NW 136th Avenue exceeds capacity by 19%
- 7. Eastbound SR 84 east of Flamingo Road exceeds capacity by 7%
- 8. Eastbound SR 84 east of Davie Road exceeds capacity by 28%

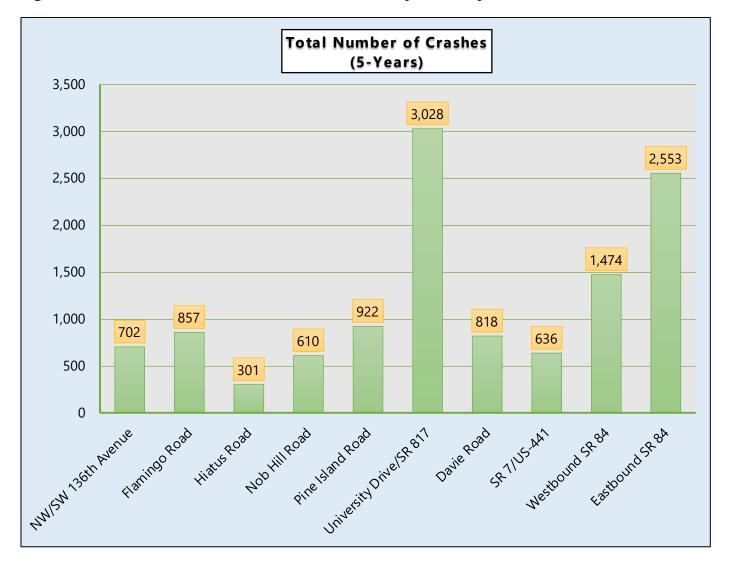
Where the volumes significantly exceed capacity, significant modifications may be needed such as additional travel lanes, and/or volume reducing strategies such as improving or adding alternative routes.

9.1.2 Existing (2019) Condition Intersection Operational Analysis

The following 17 study intersections do not meet the overall intersection LOS target of D in the AM and/or PM peak hour:

- 1. NW/SW 136th Avenue at SR 84 eastbound in the AM peak hour.
- 2. NW/SW 136th Avenue at SR 84 westbound in both AM and PM peak hours.
- 3. SR 84 westbound at Commodore Drive in both AM and PM peak hours.
- 4. Flamingo Road / SR 823 at SR 84 eastbound in both AM and PM peak hours.
- 5. Flamingo Road / SR 823 at SR 84 westbound in both AM and PM peak hours.
- 6. Hiatus Road at SR 84 eastbound in both AM and PM peak hours.
- 7. Hiatus Road at SR 84 westbound in both AM and PM peak hours.
- 8. Hiatus Road at Broward Boulevard in both AM and PM peak hours.
- 9. Nob Hill Road at SR 84 eastbound in both AM and PM peak hours.
- 10. Nob Hill Road at SR 84 westbound in both AM and PM peak hours.
- 11. Nob Hill Road at Broward Boulevard in the PM peak hour.
- 12. Pine Island Road at SR 84 eastbound in both AM and PM peak hours.
- 13. Pine Island Road at SR 84 westbound in both AM and PM peak hours.
- 14. University Drive / SR 817 at SR 84 westbound in the AM peak hour.
- 15. University Drive / SR 817 at Peters Road in the AM peak hour.
- 16. Davie Road at SR 84 eastbound in both AM and PM peak hours.
- 17. SR 7/US-441 at SW 20th Street / Riverland Road in both AM and PM peak hours.

The existing conditions peak hour operations at these intersections indicate a need for improvement.


9.2 Crash Data and Safety Analysis

Crash data for the ten study corridors was reviewed and analyzed.

9.2.1 Total Crashes Study Roadways

The total number of crashes that occurred on each of the study roadway segments within the last five years of available data is summarized in Figure 9-1. The study roadway with the highest number of crashes over five years is University Drive with a total of 3,028 crashes. Eastbound SR 84 has the second highest number of crashes within the last five years, with a total of 2,553.

Figure 9-1: Total Number of Crashes (5-Years) Study Roadways

9.2.2 Fatal Crashes

SR 7/US-441 had the highest number of fatal crashes (10) of any of the eight north-south study roadways. University Drive / SR 817 has the second highest number of fatal crashes (7).

9.2.3 Pedestrian and Bicycle Crashes

The number of pedestrian and bicycle related crashes that have occurred within the last five years on each study roadway segment was summarized and the following findings are noted.

- University Drive / SR 817 had the highest number of pedestrian related crashes (13) over the last five years.
- SR 7/US-441 had the second highest number of pedestrian related crashes (10).
- The highest number of bicycle related crashes occurred on Flamingo Road, with nine (9) bicycle related crashes.
- Eight (8) bicycle related crashes occurred within the last five years on both University Drive/SR 817 and SR 7/US-441.

9.2.4 Crash Hotspots and High Crash Locations

Thirty-six (36) locations were identified as crash hotspots and high crash locations for further study. Listed below are the thirty-six crash hotspots and high crash locations that were identified.

- 1. NW/SW 136th Avenue at NW 8th Street
- NW/SW 136th Avenue at NW 2nd Street
- Flamingo Road at Broward Boulevard
- 4. Flamingo Road at SW 8th Street
- 5. Hiatus Road at Broward Boulevard
- 6. Nob Hill Road at Broward Boulevard
- 7. Nob Hill Road at Hawks View Boulevard
- 8. Pine Island Road at New River Canal Road
- Pine Island Road at Peters Road

- 10. Pine Island Road at SW 6th Court
- 11. Pine Island Road at SW 3rd Street
- 12. University Drive/SR 817 at Peters Road
- 13. University Drive/SR 817 at Nova Drive
- 14. University Drive/SR 817 at S 1900 Block
- 15. University Drive/SR 817 at S 2300 Block
- 16. University Drive/SR 817 at SW 10th Street
- 17. University Drive/SR 817 at SW 13th Place
- 18. University Drive/SR 817 at the Fountains
- 19. Davie Road at Nova Drive
- 20. SR 7/US-441 at SW 20th Street
- 21. SR 7/US-441 at Oakes Road
- 22. Westbound SR 84 at NW/SW 136th Avenue
- 23. Westbound SR 84 at Flamingo Road
- 24. Westbound SR 84 at Hiatus Road
- 25. Westbound SR 84 at Nob Hill Road
- 26. Westbound SR 84 at Pine Island Road
- 27. Westbound SR 84 at University Drive/SR 817
- 28. Westbound SR 84 at Davie Road
- 29. Eastbound SR 84 at NW/SW 136th Avenue
- 30. Eastbound SR 84 at Flamingo Road
- Eastbound SR 84 at Hiatus Road
- 32. Eastbound SR 84 at Nob Hill Road
- 33. Eastbound SR 84 at Pine Island Road
- 34. Eastbound SR 84 at University Drive/SR 817
- 35. Eastbound SR 84 at Davie Road
- 36. Eastbound SR 84 at SW 75th Avenue

9.3 Intelligent Transportation Systems (ITS) and Transportation Systems Management & Operations (TSM&O) Existing Conditions Analysis

Based on a review of existing ITS devices within the study area it is recommended to update the SR 84 corridor to furnish ITS devices for roadway monitoring, traffic data collection, and traveler information dissemination. In addition, the following corridors within the project study area, which are part of the TSM&O Strategic Network, do not have ITS devices currently deployed yet:

- SR 84 (devices at intersections accounted for on crossroad)
- Davie Road (Broward County road)
- Pine Island Road, north of SR 84 (Broward County road)
- Flamingo Road/ SR 823
- NW 136 Ave (Broward County road)

Based on the existing communications system and ITS devices that are deployed, the following deficiencies should be addressed to enhance ITS coverage within the study area:

- SR 84 Install ITS devices and signal system improvements to enhance coverage with ability to actively manage.
- Program projects to deploy communications system and ITS devices on the following arterial roadways and areas of operational interest within the study area:
 - o NW/SW 136th Avenue
 - o Flamingo Road
 - Hiatus Road
 - o Nob Hill Road
 - o Pine Island Road
 - Davie Road
 - o Davie Road Park and Ride
 - o Florida 595 Truck Stop

- o Major Activity Centers:
 - South Florida Education Center
 - Plantation Midtown
 - Sawgrass International Corporate Park
 - Sawgrass Mills Mall
 - BB&T Center

A new communications system and ITS devices are also recommended to be deployed to support new TSM&O strategies that are not currently being used within the study area.

9.4 Pedestrian Facilities Existing Conditions Analysis

The pedestrian Level of Service (LOS) analysis results showed the following deficiencies:

- Flamingo Road pedestrian LOS F north of I-595
- 2. Flamingo Road pedestrian LOS F south of I-595
- 3. University Drive/SR 817 pedestrian LOS F north of I-595
- 4. University Drive/SR 817 pedestrian LOS F south of I-595
- 5. SR 7 / US-441 pedestrian LOS F south of I-595 between Oakes Road and SW 21st Street
- 6. Westbound SR 84 pedestrian LOS F east of NW/SW 136th Avenue
- 7. Westbound SR 84 pedestrian LOS F east of Flamingo Road
- 8. Westbound SR 84 pedestrian LOS E east of Hiatus Road
- 9. Westbound SR 84 pedestrian LOS E east of Nob Hill Road
- 10. Westbound SR 84 pedestrian LOS F east of Pine Island Road
- 11. Westbound SR 84 pedestrian LOS F east of University Drive/SR 817
- 12. Eastbound SR 84 pedestrian LOS E east of NW/SW 136th Avenue
- 13. Eastbound SR 84 pedestrian LOS E east of Flamingo Road
- 14. Eastbound SR 84 pedestrian LOS E east of Pine Island Road
- 15. Eastbound SR 84 pedestrian LOS E east of University Drive/SR 817

Sidewalk gaps were also assessed. Of the ten study roadways, only the study segment of Davie Road had no sidewalk gaps. All other nine study roadways have sidewalk gaps that should be addressed. Twenty-five sidewalk gap locations were noted. Sidewalk facilities were found to currently cover approximately 75% of the study area roadway miles.

All the north-south study roadway New River Greenway Crossings were identified as substandard, except for the crossing at SR 7/US-441. The New River Greenway crosses underneath SR 7/US-441, hence there are no conflicts. However, additional connections may be desirable to provide access to the Greenway for pedestrians on SR 7/US-441.

9.5 Bicycle Facilities Existing Conditions Analysis

The bicycle LOS analysis results showed the following deficiencies:

- 1. NW/SW 136th Avenue Bicycle LOS F north of I-595
- 2. NW/SW 136th Avenue Bicycle LOS E south of I-595
- 3. Flamingo Road Bicycle LOS E north of I-595
- 4. Flamingo Road Bicycle LOS E south of I-595
- 5. Hiatus Road Bicycle LOS F south of I-595
- 6. Nob Hill Road Bicycle LOS E north of Broward Boulevard
- 7. Nob Hill Road Bicycle LOS E south of I-595
- 8. Pine Island Road Bicycle LOS E north of Broward Boulevard
- 9. SR 7 / US-441 Bicycle LOS F south of I-595

In addition to the LOS ratings for the existing bicycle facilities along the study roadways, bicycle facility gaps were assessed. All ten study roadways have at least one bicycle facility gap that should be addressed. A total of thirteen (13) bicycle facility gap locations were noted. Bicycle facilities were found to currently cover approximately 71% of the study area roadway miles.

9.6 Transit Facilities Existing Conditions Analysis

9.6.1 Study Roadway Bus LOS Analysis Results

The following study roadways have a bus Level of Service (LOS) lower than the target LOS D:

- 1. NW/SW 136th Avenue south of I-595
- 2. Flamingo Road south of I-595
- 3. Hiatus Road south of I-595
- 4. Hiatus Road north of I-595
- 5. Nob Hill Road north of I-595
- 6. Nob Hill Road south of I-595
- 7. Pine Island Road south of I-595
- 8. Westbound SR 84 from east of I-75 to east of University Drive/SR 817
- 9. Eastbound SR 84 from east of I-75 to east of University Drive/SR 817

9.6.2 Transit Stop and Park-and-Ride lot Assessment

Amenities at the 53 existing fixed bus stops within the study area were reviewed and the findings are summarized below.

- Twenty-three (23) bus stops have no shelter but meet the BCT ridership threshold of 10 boardings or alightings per day to justify a need for one.
- Eight (8) stops do not have a bench. All bus stops are recommended to have a bench.

No existing deficiencies were identified at the Davie Park-and-Ride lot or at the BB&T Park-and-Ride lot. However, if usage continues to increase at the Davie Park-and-Ride lot, it may reach parking capacity once again, and need additional motorized vehicle parking spaces.

APPENDICES

- **Appendix A Peak Hour Factors, Bicycle and Pedestrian Crossing Volumes**
- **Appendix B Signal Timing Plans**
- **Appendix C HCM2000 Intersection Operational Analysis Reports & Summary Tables**
- **Appendix D Safety Analysis Field Review Notes & Fatal, Bicycle, and Pedestrian Crash Details**
- **Appendix E Crash Probable Causes and Potential Countermeasures Summary Tables**
- **Appendix F ARTPLAN Reports**
- **Appendix G Bus Stop Information**

Appendix A - Peak Hour Factors, Bicycle and Pedestrian Crossing Volumes

Table A-1: Existing (2019) Conditions Peak Hour Factors

ID	Intersection		А	M			P	M	
		EB	WB	NB	SB	EB	WB	NB	SB
1	NW 136th Ave & NW 2nd St	0.80	-	0.93	0.91	0.87	-	0.92	0.94
2	SW 136th Ave & SR 84 WB	-	0.90	0.95	0.94	-	0.96	0.96	0.91
3	SW 136th Ave & SR 84 EB	0.94	-	0.80	0.88	0.95	-	0.90	0.96
4	SW 136th Ave & Shenandoah Pkwy	0.83	0.80	0.79	0.85	0.89	0.77	0.91	0.93
5	Flamingo Rd & Broward Blvd	0.68	0.93	0.91	0.91	0.92	0.85	0.95	0.96
6	Flamingo Rd & SR-84 WB	-	0.90	0.92	0.79	-	0.87	0.96	0.89
7	Flamingo Rd & SR-84 EB	0.86	-	0.87	0.95	0.89	-	0.88	0.91
8	Flamingo Rd & SW 8th St	0.73	-	0.95	0.90	0.82	-	0.88	0.88
9	Hiatus Rd & Broward Blvd	0.82	0.81	0.85	0.90	0.86	0.85	0.86	0.89
10	Hiatus Rd & SR 84 WB	-	0.90	0.87	0.86	-	0.91	0.90	0.88
11	Hiatus Rd & SR 84 EB	0.95	-	0.89	0.86	0.96	-	0.90	0.86
12	Nob Hill Rd & Broward Blvd	0.91	0.92	0.93	0.92	0.87	0.94	0.94	0.87
13	Nob Hill Rd & Hawks View Blvd	0.63	-	0.96	0.85	0.82	-	0.95	0.96
14	Nob Hill Rd & SR 84 WB	-	0.91	0.87	0.94	-	0.93	0.86	0.91
15	Nob Hill Rd & SR 84 EB	0.86	-	0.90	0.95	0.86	-	0.91	0.94
16	Nob Hill Rd & SW 101st Rd	0.71	0.69	0.91	0.90	0.70	0.64	0.92	0.94
17	Nob Hill Rd & SW 13th St	0.69	0.68	0.93	0.94	0.56	0.90	0.93	0.92
18	Pine Island Rd & SW 6th Ct	0.85	0.71	0.93	0.95	0.76	0.77	0.82	0.93
19	Pine Island Rd & New River Canal Rd	0.82	0.58	0.80	0.89	0.82	0.84	0.95	0.89
20	Pine Island Rd & SR 84 WB	-	0.90	0.94	0.95	-	0.88	0.93	0.94
21	Pine Island Rd & SR 84 EB	0.97	-	0.87	0.93	0.97	-	0.91	0.98
22	Pine Island Rd & Orange Grove Dr	0.85	-	0.94	0.93	0.84	-	0.89	0.97
23	Pine Island Rd & Nova Dr	0.86	0.85	0.89	0.92	0.91	0.90	0.88	0.94
24	SW 80th Ter & Peters Rd	0.83	0.86	0.45	0.67	0.90	0.86	0.61	0.75
25	Davie Rd & SR 84 WB	-	0.94	0.91	-	-	0.94	0.79	-
26	Davie Rd & SR 84 EB	0.97	-	0.96	0.95	0.85	-	0.93	0.91
27	Davie Rd & Reese Rd	0.25	0.88	0.89	0.89	0.53	0.79	0.77	0.95
28	Davie Rd & Nova Dr	0.92	0.94	0.91	0.86	0.85	0.90	0.85	0.95
29	SR 7/US-441 & Riverland Rd	0.86	0.90	0.92	0.98	0.84	0.88	0.97	0.96
30	SR 7/US-441 & Oakes Rd	0.93	-	0.99	0.96	0.78	-	0.94	0.97
31	Pine Island Rd & Peters Rd	-	0.90	0.93	0.94	-	0.84	0.96	0.95

Table A-2: Existing (2019) Conditions Peak Hour Bicycle & Pedestrian Traffic Counts

ID	Intersection			AM					PM		
						Peds ar		ces			
		EB	WB	NB	SB	Total	EB	WB	NB	SB	Total
1	NW 136th Ave & NW 2nd St	3	0	2	0	5	0	0	1	0	1
2	SW 136th Ave & SR 84 WB	0	0	0	0	0	0	0	0	0	0
3	SW 136th Ave & SR 84 EB	0	0	1	0	1	0	0	14	0	14
4	SW 136th Ave & Shenandoah Pkwy	12	0	3	2	17	22	2	4	9	37
5	Flamingo Rd & Broward Blvd	1	2	8	6	17	1	0	2	1	4
6	Flamingo Rd & SR-84 WB	0	0	0	10	10	0	0	0	3	3
7	Flamingo Rd & SR-84 EB	7	0	8	0	15	7	0	13	0	20
8	Flamingo Rd & SW 8th St	2	0	0	0	2	2	0	1	0	3
9	Hiatus Rd & Broward Blvd	0	2	1	3	6	2	0	0	0	2
10	Hiatus Rd & SR 84 WB	0	0	0	3	3	0	0	0	1	1
11	Hiatus Rd & SR 84 EB	1	0	1	0	2	1	0	3	0	4
12	Nob Hill Rd & Broward Blvd	0	0	0	0	0	0	0	1	0	1
13	Nob Hill Rd & Hawks View Blvd	0	0	0	0	0	0	0	0	0	0
14	Nob Hill Rd & SR 84 WB	0	0	0	0	0	0	1	0	0	1
15	Nob Hill Rd & SR 84 EB	0	0	3	0	3	0	0	6	0	6
16	Nob Hill Rd & SW 101st Rd	2	0	0	0	2	5	0	0	0	5
17	Nob Hill Rd & SW 13th St	2	2	4	3	11	2	1	0	0	3
18	Pine Island Rd & SW 6th Ct	0	0	0	1	1	0	0	1	0	1
19	Pine Island Rd & New River Canal Rd	5	2	2	1	10	1	0	1	0	2
20	Pine Island Rd & SR 84 WB	1	0	0	0	1	4	4	0	0	8
21	Pine Island Rd & SR 84 EB	2	0	3	0	5	2	1	12	0	15
22	Pine Island Rd & Orange Grove Dr	0	0	0	0	0	2	0	1	2	5
23	Pine Island Rd & Nova Dr	4	1	0	5	10	2	1	0	1	4
24	SW 80th Ter & Peters Rd	0	0	2	1	3	2	0	2	0	4
25	Davie Rd & SR 84 WB	0	2	1	0	3	0	1	0	0	1
26	Davie Rd & SR 84 EB	3	0	0	0	3	0	0	0	0	0
27	Davie Rd & Reese Rd	0	0	0	1	1	3	0	2	2	7
28	Davie Rd & Nova Dr	0	1	2	5	8	15	1	12	34	62
29	SR-7 & Riverland Rd	1	0	2	15	18	2	0	4	9	15
30	US-441 & Oakes Rd	0	0	0	0	0	0	0	0	0	0
31	Pine Island Rd & Peters Rd	0	1	0	0	1	0	1	0	1	2
32	University Dr & SW 30th St	15	5	11	7	38	9	2	11	5	27
33	University Dr & Nova Dr	2	6	5	5	18	2	2	1	6	11
34	University Dr & SW 23rd St	1	1	0	0	2	3	1	3	0	7
35	University Dr & Kolsky Blvd	1	0	1	1	3	1	0	0	2	3
36	University Dr & SR 84 EB	1	0	1	2	4	0	0	1	1	2
37	University Dr & SR 84 WB	3	4	0	1	8	9	4	0	0	13
38	University Dr & Peters Rd	3	1	2	5	11	2	0	3	2	7
39	University Dr & The Fountains	4	0	0	0	4	1	0	0	0	1
40	University Dr & Federated Rd	4	0	0	0	4	1	0	0	0	1

Appendix B – Signal Timing Plans

NW/SW 136th Avenue

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 2321 Initial Operation Date 6/1/85

Controller Type 2070 LN System Number

Modification Number 26 Modification Date 07/25/2017

Drawing/Project No 8607 5-3420 FPL Grid Number 86379918009

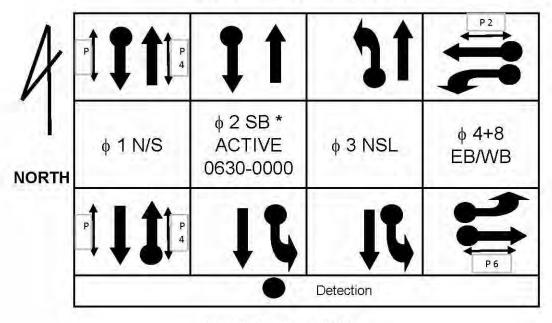
Intersection SR 84 and SW 136 AVENUE

Municipality DAVIE

Controller Phase	1	2	3	4	5	6	7	8
Face Number								- in
Direction	N/S	SB	NSL	EB				WB
Initial Green(MIN)	7	7	7	7				7
Vehicle Ext.(GAP)	3,0	3.0	2.0	3.0				3,0
Maximum Green I	16	7	15	18				18
Maximum Green II								
Yellow Clearance	5.0	5.0	5.0	5.5				5,5
All Red Clearance	2.0	2.0	2.0	2.0				2.0
Phase Recall	MIN	OFF	OFF	OFF				OFF
Detector Delay								
Walk	7			7				7
Pedestrian Clearance	20			26				32
Permissive								
Flash Operation	RED	RED	RED	RED				RED

Attachment 2321-26 SOPpdf

NOTES:


- 1. DUAL ENTRY HARDWIRED PHASES 4+8 (EB/WB).
- 2. PHASE 2 OMITTED 0000-0630, 7 DAYS.
- 3. RING AND BARRIER:
- 123 4

18

4. MOD, 26 CHANGES THE ACTIVATION TIMES FOR PHASE 2.

Carlotta Programme To the Control of		
uh mitted By	Annroyed By	

SR 84 and SW 136 Ave 2321

Ring and Barrier 123|4 |8

Station: 2321 - SR 84 & SW 136 Ave (Standard File)

Phase	(ST)	2	3 (WT)	4	5 (NT)	6 (ET)	7	8	9	10	11	12	13	14	15	16
Walk	7		1	7				7								
Ped Clearance	20			26				32								
Min Green	7	7	7	7				7								
Gap Ext	3	3	2	3				3								
Max1	16	7	15	18				18								
Max2																
Yellow Clr	5	5	5	5.5	4	4	4	5.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2				2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce										1						
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit			İ													
Dynamic Max Step																
Enable	ON	ON	ON	ON	1			ON								
Auto Flash Entry				ON				ON								
Auto Flash Exit	ON															
Non-Actuated 1	1									1						
Non-Actuated 2																
Lock Call									ON							
Min Recall	ON									-						
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry				ON				ON								
Sim Gap Enable				ON				ON								
Guar Passage																
Rest In Walk																
Cond Service			Î						Î							
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash						
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration					121	
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green					1	
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			1		
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					
Lock			1		
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table					

Dwell Cyc Veh 7		
Dwell Cyc Veh 8		
Dwell Cyc Veh 9		
Dwell Cyc Veh 10		
Dwell Cyc Veh 11		
Dwell Cyc Veh 12		
Dwell Cyc Ped1		
Dwell Cyc Ped2		
Dwell Cyc Ped3		
Dwell Cyc Ped4		
Dwell Cyc Ped5		
Dwell Cyc Ped6		
Dwell vPed7		
Dwell Cyc Ped8		
Exit 1		
Exit 2		
Exit 3		3,5
Exit 4		

Prepared By	Date Implemented

Broward County Timing Sheet

Station: 2321 - SR 84 & SW 136 Ave (Standard File)

Coordination

			Cycle	Offset	Split	Seque	Short 1	ong Dwe	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
lan									Eas															
	1	1			1	1		17	16	7	15	18				18								
30	2	2			2	1		17	16	7	15	18				18								
	-1	1			1	1		17	16	7	15	18				18								
																							الما	
									-															
									_															
									-															
-							\vdash	_	+	_		_	_					_	_					
_							-	_	-	_							_		_					
lan '	2					_		-	For										_					
Tan .		- 1				100		72.1	_		1122								_					
	_																				-			
30					_									-			_	_	_	-	_	_	_	
-	1	1			1	1	\vdash	17	16	1	15	18	-	-		18	_	_	_			_	_	
				-				-	-										_		_			-
_								_	+	-		-					_			-	-		-	
		-				-		-	+	-							-	-	-	-	-	-	-	
-								-	+									_	_			-	_	
									1					-				-						
									+	_											-			
									1															-
									1															
									1												-		1	
-		30 2 1	30 2 2 1 1 1 2 2 30 2 2	30 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 2 2 2 1 17 1 1 1 1 17 2 1 1 1 1 17 30 2 2 2 2 1 17	30 2 2 2 1 17 16 16 1 1 1 1 17 16 16 17 16 18 18 18 18 18 18 18 18 18 18 18 18 18	30 2 2 2 1 17 16 7 1 1 1 1 1 17 16 7 Plan 2 Easy 30 2 2 1 17 16 7	30 2 2 2 1 17 16 7 15 15 1 1 1 1 1 17 16 7 15 30 2 2 2 2 1 17 16 7 15	30 2 2 2 1 17 16 7 15 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 2 2 1 17 16 7 15 18 11 1 1 1 17 16 7 15 18 18 18 18 18 18 18 18 18 18 18 18 18	30 2 2 1 17 16 7 15 18 1 1 1 1 1 17 16 7 15 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30 2 2 1 17 16 7 15 18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30	30 2 2 1 17 16 7 15 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1	30	30 2 2 1 17 16 7 15 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1	30	30 2 2 1 1 17 16 7 15 18 18 18 1	30 2 2 1 17 16 7 15 18 18 18 18 18 1 1 1 1 1 1 1 1 1 1 1	30 2 2 1 17 16 7 15 18 18 18 1

4/9/2020 9:42:12 AM

ay	Plan	3						Eas	y										Ţ
		1	1	1, 1	1	1	17	16	7	15	18			8					
6	30	2	2		2	1	17	16	7	15	18		1	8					Г
		1	1		1	1	17	16	7	15	18		1	.8					L
-			-		-							+		+			-	+	
					-									-			_		L
-				-	+	-	-			-	-	+	-	+	\vdash	-	+	+	H
																			t
_					-									-		-	-	-	H
-		-			-									_		-	+		H
\exists																	_		1

Broward County Timing Sheet 4/9/2020 9:42:12 AM

Station: 2321 - SR 84 & SW 136 Ave (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	Plan										Eas												7			
	_	-				_				-			_						_	-						_
																-										
	-																									
												_													_	
																					_					

Scheduler

	M	on	th											D	ay	of	W	/ee	k		1)a	y c	of]	Mo	nt	h				1										2										3		
Plan	J	F	M	A	M	J		Ţ,	A	S	o	N	D	S	M	1	V	V :	r	F	3	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	Day Pla
1	1	1	1	1	1	1	1	i	1	1	1	1	1		1	1	1		i i			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1		T							1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	ı	1	1	1	1	1	1				T				1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1		T			T	T	T				Г			1	1	1		1 1			1														T		T	T														2
5	1	Г	T	T	T	T	T	T			Г	Г	Т		1		T		T		T	T	1						Г	Г				Г	T			T							Г				0.7				2
6			Т	Г	1	Т	T	1				Γ	Τ	T	1		T	T	T	T	T	T							Γ	Γ				Г	Г	T		T	T	T	Г					1	1	1	1	1	1	1	2
7		Г	T	Г	T	Τ	1	ı	٦		Г	Г	Τ	Т	Г	T	Τ	T			T	T		1			Г							Г	Т			T	T						Г								2
8			T	Г	T	Τ	1	1				Π	Γ	T	1	1	1		1 1	ı		T			1								Г	Г	Г	T	Г	T	T	T					Г					Г			2
9		Г	Т	Т	T	Τ	1	ı	Ī			Г	Γ		1	Т	Τ	T		T	T	Ī	Ī			1			Γ	Γ	П			Τ	T			T	T	T	T		Г	Г	Г		Г					Ī	2
10			T		1	T	T	1		1			T		1			T		1		1	1	1	1	1	1	1										T	T														2
11			T	Т	T	T	T	T				1			Г	T	T		1																								1	1	1	1	1	1	1				2
12		Г	Г	Г	T	Т	T	T			Г	1	Γ		Г	Т	Т	T			T	T																T	T					1	1	1	1	1	1	1			2
13			T	Γ	T	T	T	T				Γ	1		1	T	Τ	T			T	T							Г	Г				Π	T				T						1		Г						2
14			I	Γ	T	Τ	T	T					1	T	1	1	1		1	I	T	T								Г				Г	Г	T		T	T							1							2
15				Γ	T	T	T	T					1		1	T	T	T				T													I			T									1						2
16					T	Τ	T	T					1		1	T	T			L																																1	2
17				Γ	T	Τ	T	T				Г	Γ		Τ	T	Τ	T	T	T	T	T							Γ	Γ				Π	T	T		I	I						Г								1
18				Γ		T	T	1					Γ		Г		T		T	T	T	T								Г					Г	Т		T	T														1
19			T	T	T	T	T	T					T				T					T		L,														T		T													1
20							T	1																														T	T	T													1
21					T	I	T	T					Г								T	T																															1
22			T	Г	1	T	T	T					T		Г		T	T	T	T	T	T													T	T	T	T	T														1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 2408 Initial Operation Date 10/03/2007

Controller Type 2070 LN System Number

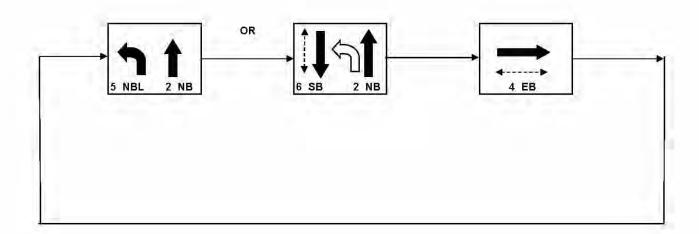
Modification Number 1 Modification Date 07/07/2014

Drawing/Project No 060613000 FPL Grid Number

Intersection NW 136 AVENUE and NW 2 STREET

Municipality SUNRISE

Controller Phase	1 2	3	4	5	6	7	8
Face Number	2		4	5	6		
Direction	NB		EB	NBL	SB		
Initial Green(MIN)	12		6.	4	12		
Vehicle Ext.(GAP)	3,0		2.0	1,5	3.0		
Maximum Green I	50		25	20	50		
Maximum Green II							
Yellow Clearance	4.0		4.0	4.0	4.0		
All Red Clearance	1.5		2.0	1.5	1.5		
Phase Recall	MIM		OFF	OFF	MIN		
Detector Delay			20-RT				
Walk			5		7		
Pedestrian Clearance			23		20		
Permissive				5-SECT			
Flash Operation	YELLOW		RED		YELLOW		


Attachment

NOTES:

- 1, ANTI-BACKDOWN NB; PHASES 2+6 ON--->OMIT PHASE 5.
- 2. MOD. 1 DEPLOYS SIGNAL ONTO ATMS, NOW.

N. C. A. C. C.		
ub mitted By	Approved By	

Sequence of Operation NW 136 Avenue and NW 2 Street Intersection Number 2408

Station: 2408 - NW 136 Ave & NW 2 St (Standard File)

Phase	1	2 (NT)	3	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Walk		7		5		7										
Ped Clearance				23		20		15								
Min Green		12		6	4	12										
Gap Ext	1	3		2	1.5	3							1			
Max1		50		25	20	50										
Max2																
Yellow Clr	4	4	4	4	4	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	1.5	1.5	1.5	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial								11								
Time Before Reduce																
Cars Before Reduce																
Time To Reduce																
Reduce By																
Min Gap	1															
Dynamic Max Limit																
Dynamic Max Step				Ì												
Enable		ON		ON	ON	ON										
Auto Flash Entry				ON												
Auto Flash Exit	1	ON				ON									1 - 1	
Non-Actuated 1		ON				ON				-						
Non-Actuated 2						01,			11							
Lock Call	1			ON					ON	ON						
Min Recall	1	ON				ON						-			1	
Max Recall																
Ped Recall																
Soft Recall	1															
Dual Entry																
Sim Gap Enable				1					ON	ON						
Guar Passage	1										-11		21,			
Rest In Walk	1	ON		Ì		ON										
Cond Service	1	0.1		1					1							
Add Init Calc																

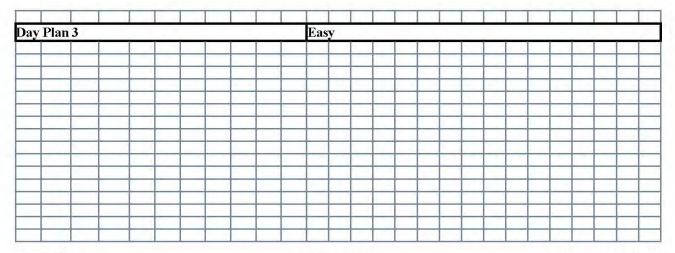
Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash					ON	ON
Override Higher Preempt					ON	ON
Flash in Dwell]					
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6	6		
Min Walk						
Ped Clear						
Track Green						
Min Dwell	8	8	8	8		
Max Presence	180	180	180	180		
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			1	
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4				
Lock				
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table	-			

Dwell Cyc Veh 7		
Dwell Cyc Veh 8		
Dwell Cyc Veh 9		
Dwell Cyc Veh 10		
Dwell Cyc Veh 11		
Dwell Cyc Veh 12		
Dwell Cyc Ped1		
Dwell Cyc Ped2		
Dwell Cyc Ped3		
Dwell Cyc Ped4		
Dwell Cyc Ped5		
Dwell Cyc Ped6		
Dwell vPed7		
Dwell Cyc Ped8		
Exit 1		
Exit 2		
Exit 3		
Exit 4		


Prepared By	Date Implemented
Reviewed By	Traffic Engineer

Broward County Timing Sheet 4/9/2020 9:43:22 AM

Station: 2408 - NW 136 Ave & NW 2 St (Standard File)

Coordination

Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long Dwe	II Split	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	100	254																						
	2	2	120		2	1	1	25	15	70		35	15	70		35								
	100	254																						
									-															
			_		_				+	-		_	-				-		_			_	_	
									+				_		_				_	-	\vdash	_		_
									1										_		-			
1																								
									-															
	_					-													_					_
Plan :	2					_			Eas	У				_	_	_	_			_	_		_	_
										1														
					_		-		-			_	-		_		_		_		_		-	
	_				_				+				\vdash		-				-			_	_	
									+										_					
1																								
/																							J i	
									-															
			_		_				+										-	-				
									+			1	-				-			-	-		-	
									+	-			-		_						\vdash			
	Plan	Plan 1 100 2	Plan 1	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	Plan 1	Plan 1	Plan 1	Plan 1	Plan 1 100 254	Plan 1	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	Plan 1 100 254	100 254

Broward County Timing Sheet 4/9/2020 9:43:22 AM

Station: 2408 - NW 136 Ave & NW 2 St (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
Day	Plan	4									Eas															
		-				-			-				_						_					-		_
						-							_						_		_					
	-																							-		
						-																				
	1											_														
								_																	1	
		-							-													-		-		

Scheduler

	M	on	th											D	ay	0	f١	Ve	ek			D	ıy	of	M	or	ıth	ı				1											2										1	3	1	
Plan	J	F	M	A	N.	IJ	J	A		S	o	Ν	D	S	N	1	T	W	T	F									7	8	9	0	1	. 2	3	3	4	5	6	7	8	9	0	1	2	3	4	5	1	5	7 8	3	9	0	ı I	Day Plan
1	1	1	1	1	1	1	1	1		1	1	1	1		1		1	1	1	1		1	1	1	1		I	1	1	1	1	1	1	1	1	ı	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	j	ı,	1	1	ı	1
2	1	1	1	1	1	1	1	1		1	1	1	1	T	T	T					1	1	1	1	1		I	1	1	1	1	1	1	1	T	Π	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	2
3	1	1	1	1	1	1	1	1		1	1	1	1	1		T						1	1	1	1		I	1	1	1	1	1	1	1	1	ı	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1			1	1	1	3
4	1					T	T	T	T						1		1	1	1	1		1				T	T									T													T		T	T				2
5	1					Γ	Γ	I	I				Γ		1	L							1			T								T	I	T										Γ	Τ			I	T	I	-		T	2
6				Γ	1	I	T	T	I						1											T	T	1					Ι	T	T	T										T	I	1	1	1	. [1	1	1	2
7							1													1				1												1			,											I	I					2
8			L		L		1		I						1		1	1	1	1					1																						L	L				1	1	1	1	2
9						Γ	1		I						1									I		1	L						I		I	T											I	I	I	I	I					2
10								1	1	1					1				A			1	1	1	1			1	1							1											L					1	1	1	1	2
11									I			1							1																I	Ţ									1	1	1	1	1	. 1						2
12									I			1								1																										1	1	1	1	. 1			1			2
13						Ι		I	I				1		1					1																I											1		Ι	I	I	I			1	2
14									1				1		1		1	1	1	1																1											L	1	L	1		1	1	1	1	2
15													1		1						J,												I			Ţ													1	I	T					2
16			L	L	L	L			1				1		1			T		1																										L	L	L				1			1	2
17								I	I																											I											I		I	I	I		1			1
18					L	L		1	I							I									I	T	T						I	I	I	T										I	I	L	I	I	I	I	1	1	1	1
19						Ι										I				J,	J,	J.									-					Ţ											I		I	I	I					1
20								I	I							I										I	I							I	I	I													I	I	I	T	1	T	I	-1
21						Γ		I	I																											I													Г				T	T	T	1
22					I	T	I	I	I								1								T	T	T	1					T	T	I	T										I	T	I	I			T	T		I	1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 3333 Initial Operation Date 4/6/92

Controller Type 2070 LN System Number

Modification Number 7 Modification Date 03/02/2016

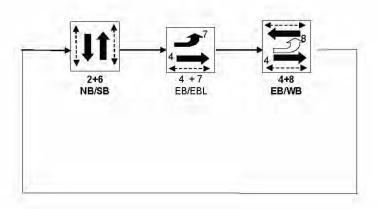
Drawing/Project No FPL Grid Number 86379926109

Intersection SW136 AVENUE and SHENANDO AH PKWY /SW5 ST.

Municipality DAVIE

Controller Phase	1	2	3	4	5	6	7	8
Face Number		2		4		6	7	8
Direction .		NB		EB		SB	EBL	WB
Initial Green(MIN)		20		6.		20	4	6
Vehicle Ext.(GAP)		3,0		2.0		3,0	2.2	2,0
Maximum Green I		60		25		60	20	25
Maximum Green II								
Yellow Clearance		4.0		4.0		4.0	4.0	4.0
All Red Clearance		1.0		2.0		1.0	2.0	2.0
Phase Recall		MIN		OFF		MIN	OFF	OFF
Detector Delay				20-RT				20-RT
Walk		7		7		7		7+A
Pedestrian Clearance		21		24		21		24
Permissive							5-SECT	
Flash Operation	Y	ELLOW		RED		YELLOW		RED

Attachment


NOTES:

- 1. FLASH OPERATION: 0000-0600, 7 DAYS.
- 2. DUAL ENTRY HARDWIRED EAST/WEST
- 3. AUDIBLE PEDESTRIAN WESTBOUND (P8): PROVIDES BEEP.
- 4. MOD. 7 UPDATES INITIAL GREEN AND MAXIMUM GREEN VALUES FOR PHASES 2 AND 6 (NORTHBOUND/SOUTHBOUND).

Sub mitted By	Approved By	
om will fear DA	Approved by	

Sequence of Operation for (3333) SW 136 Ave and Shenandoah Pkwy./SW 5 St

Davie

Station: 3333 - SW 136 Ave & Shenandoah Pkwy (Standard File)

Phase	1	2 (NT)	3	4 (ET)	5	6 (ST)	7 (EL)	8 (WT)	9	10	11	12	13	14	15	16
Walk		7		7		7		7								
Ped Clearance		21		24		21		24								
Min Green		20		6		20	4	6								
Gap Ext		3		2		3	2.2	2								
Max1		60		25		60	20	15								
Max2																
Yellow Clr	4	4	4	4	4	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr		1	11.1	2		1	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce	1															
Cars Before Reduce																
Time To Reduce																
Reduce By																
Min Gap	1															
Dynamic Max Limit																
Dynamic Max Step																
Enable		ON		ON	-	ON	ON	ON								
Auto Flash Entry	1			ON				ON								
Auto Flash Exit		ON				ON				1 1					1 1	
Non-Actuated 1								Ì		1					1	
Non-Actuated 2																
Lock Call									ON							
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry				ON				ON							1	
Sim Gap Enable									ON							
Guar Passage																
Rest In Walk		ON				ON										
Cond Service																
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash						
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration					121	
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green					1.	
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5					i Eil	
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable					
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1			1		
Priority P2					
Priority P3					
Priority P4					
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table					

Dwell Cyc Veh 7			
Dwell Cyc Veh 8			
Dwell Cyc Veh 9			
Dwell Cyc Veh 10			
Dwell Cyc Veh 11			
Dwell Cyc Veh 12			
Dwell Cyc Ped1			
Dwell Cyc Ped2			
Dwell Cyc Ped3	1		
Dwell Cyc Ped4	3 (
Dwell Cyc Ped5			
Dwell Cyc Ped6			
Dwell vPed7			
Dwell Cyc Ped8			
Exit 1			
Exit 2			
Exit 3			
Exit 4			

Prepared By	Date Implemented

Broward County Timing Sheet

Station: 3333 - SW 136 Ave & Shenandoah Pkwy (Standard File)

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqno	Short	Long)well	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan										Eas															
		25	255																							
6		100	254																							
	1																				_	_			-	
		_						\vdash		_	_				-	-		-	_		-	_	-	_		
									_	_	_	_		_	-		_	-			_		_	_	_	
		_			_					_		_						-	_		-			_	_	_
		-					-			-	-			-				-		-	-		-	-	-	
										_		_			-						-				_	
									_	_	-	_									_			_		
																									_	
Dav	Plan	2									Eas	v														
-		25	255																							
6		100	254																							
	1																									
																									111	
	, ,																	-								4
	1																									
	1																									

4/9/2020 9:40:45 AM

ay Pla	an 3				Easy						
	25	255									
6	100	254									F
											+
							-		1		-
							1				+
											I
											+
											I
						-					+
-											1
											1

Broward County Timing Sheet 4/9/2020 9:40:45 AM

Station: 3333 - SW 136 Ave & Shenandoah Pkwy (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	Plan										Eas												Y			
	_				-								-			-										-
									-																	
											-															
	_					-							_													
	-																				_					
																-	-			-						

Scheduler

	M	on	th											E	ay	0	f	Vε	eel	ζ.		D	ay	7 0	f]	Mo	on	th					1											2											3		1	
Plan	J	F	M	A	M	J	J	1	1	S	o	Ν	E								S								T	7 :	8	9	0	1	2	3	ī	4	5	6	7	8	9	()	1	2	3	4	5	6	7	8	3 9	,)]	ı I	ay Plan
1	1	1	1	1	1	1	1	1	i	1	1	1	1			i	1	1	1	1		1		1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1		1	1	1	1	1	1	1]		L,	i j		1
2	1	1	1	1	1	1	1	1	1	1	1	1	1		T					T	1	1	T	1	1	1	1	1	T	ı	1	1	1	1	1	1	T	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	I	ı	1 1	I	2
3	1	1	1	1	1	1	1	1	ı	1	1	1	1	. 1	L							1		1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	. 1		1 1		3
4	1							T	1							1	1	1	1	1		1							T	T			5									T	T		T	T		X					Γ	T		1		2
5	1							I	I	П			I			1						T	T	1					T								T								T	I		Y			1			I	I		I	2
6					1	Γ		T	1						1	1					T		I					T	T	T	I					I	T					T	T	T	T	T				1	1	1	1	1		1 1	1	2
7							1													1					1												1			,				T	I								T					1
8							1									1	1	1	1	1						1			T				n										T		T									I		1		1
9							1		I				Ι			1						I	I				1		T	T							T					I	I	I	I	T									I			2
10								1	1	1			I		1	1						1	T	1	1	1	1	1	[1	1	I						T					T	T	T	Ţ	T							I	I	1	T	T	2
11												1		I					1																		Ţ		_	,			I	T	T		1	1	1	1	1	1	1					2
12								I				1		1				M		1									I	T												T	I		T			1	1	1	1	1	1		I	I		2
13							L	1	1				1							1																	1												1					1			1	2
14									1				1			1	1	1	1	1																														1				1	1	1	1	2
15													1			1																							H												1							2
16			L		L	L							1			1		П																																		L	L	1	1	1		2
17								1																																													L	1	1			1
18				L		L																																							1								L	1	1	1	1	1
19																									L							-							<u> </u>																			1
20																		M																																								1
21									I																																																	1
22									1														T	T						T	1															T												1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		\Box	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number	2253	Initial Operation Date	4/12/83
Mark Advanced Transporters at 1			

Controller Type 2070 LN System Number 2253

Modification Number 17 Modification Date 03/30/2017

Drawing/Project No 435703-1-52-01 FPL Grid Number 86579036002

Intersection SR 84 and FLAMINGO ROAD (SR 823)

Municipality DAVIE

Controller Phase	1	2	3	4	5	6	7	8
Face Number	6	6, 8R	3	2	2	4		
Direction .	SB St	SB	WB	NB St	NB	EB		
Initial Green(MIN)	2	10	10	2	10	10		
Vehicle Ext.(GAP)	1.0	3.0	3.0	1.0	3.0	3,0		
Maximum Green I	2	30	25	2	30	25		
Maximum Green II								
Yellow Clearance	5.5	5.5	5.5	5.5	5,5	5.5		
All Red Clearance	2.0	3.0	2.5	2.0	3.0	2.5		
Phase Recall	OFF	OFF	OFF	OFF	OFF	MIN		
Detector Delay								
Walk		7	7		7	7		
Pedestrian Clearance		17	20		17	20		
Permissive		DUAL			DUAL			
Flash Operation	RED	RED	RED	RED	RED	RED		

Attachment B-253 Mod 17 pdf

NOTES:

- 1. DIODE STRAPPING: PH2 DETECT CALL PH1, PH5 DETECT CALL PH4.
- 2. SEQUENCE OF OPERATION ATTACHED.
- 3. PHOTO ENFORCEMENT, TOWN OF DAVIE.
- 4. MOD. 17 INSTALLS A WESTBOUND RIGHT TURN INDICATION PER FDOT PROJECT.

Submitted By	Approved By
Switches Di	spproved by

			Sequence	e of Operation	for 2253			
			SR 84 AND F	LAMINGO RO	AD (SR 823)			
	φ1 SB ST	ф2 SB	ф3 WB	φ4 NB ST	φ5 NB	фб ЕВ	φ 7 NOT USED	φ8 NOT USED
NORTH SIDE	11	111	ij	1	111	11		
SOUTH SIDE	-	116	11	11	111	-		

Station: 2253 - Flamingo Rd & SR 84 (Standard File)

Phase	1	2 (ST)	3 (WT)	4	5 (NT)	6 (ET)	7	8	9	10	11	12	13	14	15	16
Walk	1	7	7		7	7										
Ped Clearance		17	20		17	20										
Min Green	2	10	10	2	10	10										
Gap Ext	1	3	3	1	3	3							1			
Max1	2	30	25	2	30	25										
Max2																
Yellow Clr	5.5	5.5	5.5	5.5	5.5	5.5			3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	3	2.5	2	3	2.5			1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce															7	
Time To Reduce																
Reduce By								11 11 1								
Min Gap																
Dynamic Max Limit																
Dynamic Max Step																
Enable	ON	ON	ON	ON	ON	ON										
Auto Flash Entry				200 19-19												
Auto Flash Exit	(1												1 1	
Non-Actuated 1	1				-					-						
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall						ON						-			1	
Max Recall	-															
Ped Recall										-						
Soft Recall																
Dual Entry	1														1	
Sim Gap Enable	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage		1					7.63	A 7.0					0.70			
Rest In Walk	1	1				ON										
Cond Service									ì							
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash		ON				
Override Higher Preempt		ON				
Flash in Dwell		ON				
Link to Preempt						
Delay						
Min Duration					121	
Min Green			6	6	6	6
Min Walk						
Ped Clear						
Track Green					1 1	
Min Dwell			8	8	8	8
Max Presence		180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1			2	3	5	6
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6					100	

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			1	
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4				
Lock				
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table				

Dwell Cyc Veh 7				
Dwell Cyc Veh 8				
Dwell Cyc Veh 9				
Dwell Cyc Veh 10	1			
Dwell Cyc Veh 11				
Dwell Cyc Veh 12				
Dwell Cyc Ped1				
Dwell Cyc Ped2				
Dwell Cyc Ped3				
Dwell Cyc Ped4				
Dwell Cyc Ped5				
Dwell Cyc Ped6				
Dwell vPed7				
Dwell Cyc Ped8				
Exit 1	3	4	6	1
Exit 2				
Exit 3				
Exit 4				

Prepared By	Date Implemented

Station: 2253 - Flamingo Rd & SR 84 (Standard File)

Coordination

Broward County

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqno	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan										Eas															
		100	254																							
									_			_														
										-																
	1																									
	_		_				-		\vdash		-	_		_	-	-				_	_		_	_		
												_									_					
Day	Plan	2									Eas	y														
		100	254									1						1_								
																			_	_						
		_										_			-					-	_					
																					_					
													_													
									-			_							_	-						
		-								-									_							
	1 17																									

Timing Sheet

4/9/2020 9:45:35 AM

y Pla	n 3					Easy							
	100	254	1 1										
					1								
-			-		_		-		+	-	_		+
			+				_		+	+			+
					1								
	1												
-								-	-	-			+
_			-		-		-		+	+		-	+
			+						+				1

Broward County Timing Sheet 4/9/2020 9:45:35 AM

Station: 2253 - Flamingo Rd & SR 84 (Standard File)

linute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
																						Y			
	-				_			-				_			_					_					
																								_	
							-																-		
											_														
																								1	
		Plan 4																							Timute Action Pattern Cycle Offset Split S

Scheduler

	M	on	th									П		D۵	y (of	W	eel	ζ.		D:	ay	of	M	on	th				1										2				Т						3		
Plan	J	F	M	A	M	J	J	A	S	6	Э.	N	D	S	М	T	W	T	F	S	1	2	3	4	5	6	7	8	9	0	1	2	3	4	4 5	5 (6	7 3	8 9) (1	2	3	4	5	6	7	8	9	0	1	Day Pla
1	1	1	1	1	1	1	1	1	1	. 1	1	1	1		1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	l I	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1						T	1	1	1	1	1	1	1	1	1	1	1	1	1	1				ı	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1	1		1	1	1	1			П	Г		T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	l I	ı	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1	Г					Γ	Г	T	T	T				1	1	1	1	1		1				Г	T	Г	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T		T	T	Τ						2
5	1					Г	Г	Г	Т	T	T	I			1				T	T	T	1	Γ	Ī	T	T		T		T	T	T	T	T		T	T	T		T		T	T	T	T				F			2
6		Г			1	Г			Г	T	T				1	П	Г		T	T	T		T	T	T	T	T	T	T	T	Т	T	T	Τ	T	T	T	T	T	T	T	Т	T	Τ	1	1	1	1	1	1	1	2
7	Г	Г			T		1	Γ	Τ	T	T						Г		1	Γ	Г	Γ	1			Γ		Г	T	T	I	T	T	I			T	T		T		T	T	T	T	T	T					1
8							1		Г	T	T				1	1	1	1	1	Г				1	Γ	Γ	Г	Т	Γ	Γ	T	Τ	T	T			T	T		T	T	T		Τ	T	T						1
9		Г	Г	Г	Γ	Г	1	Г	Γ	T	T	I			1			Г	Γ	T	Ī	Ī	Ī	Ī	1	T	Γ	T	Γ	Τ	T	T	T	T	T	T	T	T		T	T	Τ	T	T	Τ	T	T		Г			2
10									1	T	T				1				T	T	1	1	1	1	1	1	1	T	T	T	Т	T	T	T	T	T	T	T	T	T	T	Т	T	Τ	T	I						2
11	Γ	Γ			T	Г		Γ	Γ	T	I	1						1		Γ			T		T	Г		T			T	T	T	T		T	T	T		T	T	1	1	1	1	1	1	1				2
12									Τ	T	T	1							1						Г			T	Γ		T		T	T			T	T		T		T	1	1	1	1	1	1	1			2
13								Γ	Г	T	T	T	1						1	T	I		T			T		T			T	T	T	T				T				T	T	1	T	T						2
14									I	1			1		1	1	1	1	1														I	I	I		T	T		I			I	I	1	I	I					2
15													1		1																			I												1						2
16									Г	I	1		1		1																L	I						1		1		L		Ι		L					1	2
17										I	I																								I			I		I				I								1
18									T	T	T											Г	T		T	T		T	T	T	Т	T		T	Т	Т	T	T	T	T	T	Г	T	Τ	T	I						1
19											T																							I																		1
20											I																											T						I								1
21								L		I	J																															I		I								1
22					I				T	T	T								T	I		Г	T	T	T	T		T	T	T	T	T	T	T			T	T		T		T	T	T	T	T	T					1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		\Box	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 2356 Initial Operation Date UNKNOWN

Controller Type 2070 LN System Number 2356

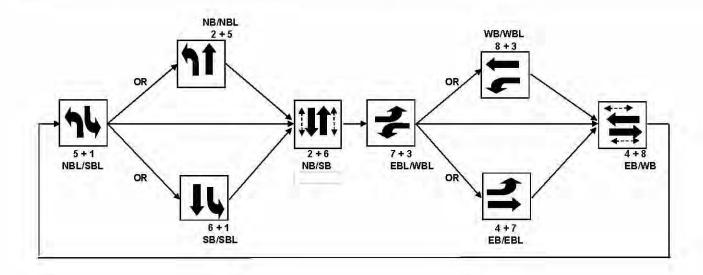
Modification Number 7 Modification Date 12/05/2018

Drawing/Project No GROUP 5 FPL Grid Number 86580061201

Intersection FLAMINGO ROAD (SR 823) and BROWARD BOULEVARD

Municipality PLANTATION

Controller Phase	1	2	3	4	3	ó	7	8
Face Number	-1	2	3	4	5	6	7	8
Direction .	SBL	NB	WBL	EB	NBL	SB	EBL	WB
Initial Green(MIN)	5	7	5	6.	5	7	5	6
Vehicle Ext.(GAP)	1.5	3.0	1.5	2,5	1,5	3,0	1.5	2.5
Maximum Green I	18	40	18	40	18	40	18	40
Maximum Green II								
Yellow Clearance	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5,0
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Phase Recall	OFF	MIN	OFF	OFF	OFF	MIN	OFF	OFF
Detector Delay								
Walk		7		7		7		7
Pedestrian Clearance	-	30	-	28		30		30
Permissive	DUAL		DUAL		NO		NO	
Flash Operation	RED	RED	RED	RED	RED	RED	RED	RED


Attachment

NOTES:

- 1. DUAL ENTRY HARDWIRED EAST/WEST.
- 2. MOD. 7 REFLECTS INTERSECTION REBUILD.

Submitted By	Approved By	
July Hit Hate 131	imployed D;	

Sequence of Operation for Flamingo Road (SR 823) and Broward Boulevard (2356)

Station: 2356 - Flamingo Rd & Broward Blvd (Standard File)

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(SL)	(NT)	(WL)	(ET)	(NL)	(ST)	(EL)	(WT)				100				
Walk		7	1	7		7	45	7								
Ped Clearance		30		28		30		30								
Min Green	5	7	5	6	5	7	5	6								
Gap Ext	1.5	3	1.5	2.5	1.5	3	1.5	2.5								
Max1	18	40	18	40	18	40	18	40								
Max2																
Yellow Clr	5	5	5	5	5	5	5	5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce																
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit																
Dynamic Max Step																
Enable	ON		1													
Auto Flash Entry				ON				ON								
Auto Flash Exit	1	ON				ON									1 7	
Non-Actuated 1					-					-						
Non-Actuated 2																
Lock Call			ON		ON				ON							
Min Recall		ON				ON						-				
Max Recall		O.T.														
Ped Recall																
Soft Recall																
Dual Entry			1	ON				ON	-						1	
Sim Gap Enable				O.T.				511	ON							
Guar Passage									OIT	J.		511	511	OIT	SIT	- Or
Rest In Walk		ON				ON										
Cond Service		O.V				CIN										
Add Init Calc																

Preemption

Channel	1	2	3	4	- 5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash						
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green						
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4	V				1	
Dwell Cyc Veh 1	2	4	1	3	2	4
Dwell Cyc Veh 2	6	8	6	8	5	7
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable		-	1	
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4				
Lock			1	
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table				

Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11						
Dwell Cyc Veh 12						
Dwell Cyc Ped1						
Dwell Cyc Ped2						
Dwell Cyc Ped3						
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7						
Dwell Cyc Ped8						
Exit 1	3	1	2	4	1	4
Exit 2	7	5	6	8	6	8
Exit 3						
Exit 4					(- 1	

Prepared By	Date Implemented

Broward County Timing Sheet

Station: 2356 - Flamingo Rd & Broward Blvd (Standard File)

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seque	Short	Long Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan									Eas															
		100	254																						
6		2	2	160	61	2	1	10	50	28	60	28	44	28	60	28	44								
9		3	3	160	80	3	-1-	10	50	28	60	28	44	28	60	28	44								
15		4	4	160	80	4	1	10	50	28	60	28	44	28	60	28	44								
20		3	3	160	80	3	1	10	50	28	60	28	44	28	60	28	44								
Dov	Plan	2								Eas															
Day	1 lan	3	3	160	80	3	1	10	50	28	60	28	44	28	60	28	44								
1		100	254	100	80	3	1	10	30	20	00	28	44	28	00	28	44	-	_		-	-		-	
6	30	3	3	160	80	3	1	10	50	28	60	28	44	28	60	28	44								
											\vdash														

4/9/2020 9:46:49 AM

ay	Plan	3								Eas	У											
		3	3	160	80	3	1	10	50	28		28	44	28	60	28	44					
1		100	254									200										
6	30	3	3	160	80	3	1	10	50	28	60	28	44	28	60	28	44					
23		100	254																			
\Box																						
\dashv														_					-	+		-
\Box																						
-	_																	-	_	+	-	-
																						_
																						\neg

Broward County Timing Sheet 4/9/2020 9:46:49 AM

Station: 2356 - Flamingo Rd & Broward Blvd (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqno	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	Plan										Eas												Y			
	_	-							-	-						-										-
									-																	
		-				-																				
	_																				_					-
															7	-	-							1		

Scheduler

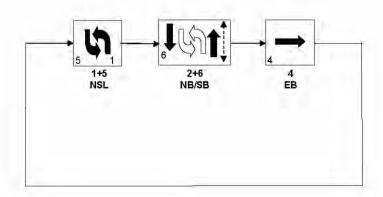
	M	on	th											D	ay	of	W	ee	k		D	ay	0	fN	Io.	ntl	h				1										2										3		
Plan	J	F	M	A	M	J	J	A		s	o	N	D	S	M	1	W	7	ľ	1	1	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	3 9	0	1	2	3	4	5	6	7	8	9	0	1	Day Pla
1	1	1	1	1	1	1	1	1		1	1	1	1		1	1	1	1	1		1		ı	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1		1	1	1	1	Г				T		1	1	1	i	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1		1	1	1	1	1	Г			T			1		1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1						Г	T	T	T					1	1	1	1	1		1	T	1													T	T	T	T	T	T												2
5	1						Г	T	T	Ī					1		T	T	T	T	T		1															T	T														2
6		Г		Г	1	Г	Г	Г	T	I				Г	1		T	T	T	T	T	T	T	T	I										Г	Τ	Т	T	T	T	T		Г			1	1	1	1	1	1	1	2
7		Г		Г			1	Γ	T	T		П	Г	Г	Г	Г	Γ	T	1		T	T		1	П		П								Γ		T	T	T		T				Г								2
8							1	Τ	T	T					1	1	1	1	1			T		T	1										Г	T	Т	T	T	T	T												2
9		Г	Г	Г	T	Г	1	Т	T	I			Г	Г	1	Г	Т	Т	T	T	T	T	T	T	T	1					П		Г		T	T	T	T	T		T	T	Г	Г	Г	Г	Γ	Г					2
10								T		1					1					T	1		1	1	1	1	1	1									T	T	T	T	T								4				2
11							Г	T	T	T		1				Г		1																			T						1	1	1	1	1	1	1				2
12		Г					Г	Т	T	T		1		П		Г	Г	T	1		T	T	1	T													T	T	T		T			1	1	1	1	1	1	1			2
13				Г			Γ	Т	T	I			1		1	Г	Т	T	1	T	T	T	T	T	П										Т	T	T	T	T		T				1								2
14					T			Γ	T				1	Г	1	1	1	1	1	T	T	T	T	T	I											T	Т	T	T	T	T					1							2
15								T	T	T			1		1	Г	Г	Τ				T		T	П											I	T	T									1						2
16					Г		Г	Т	T				1		1		I	T	1																		T	T														1	2
17				Г		Г	Γ	Г	T	I							Т	T	T	T	T	T	T	T											Γ	T	T	T	T	I	T				Г								1
18								T	T					Г	Г		Γ	T	T	T	T	T	T	T	T										Г	T	Т	T	T	T	Г												1
19							Γ	T	T	I																											T	I															1
20								T	T	T																														T									1				1
21								Г	T	T										T	T	T	T	T																													1
22			I	Г	I		Г	T	T	T							Г	T	T	T	T	T	T	1											Г	T	T	T	T		T												1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		\Box	1
31											П						T					1
32					1																	1

User Comments:

Intersection Number	3556		Initia	l Operation	Date	08/13/14		
and the second s	TS2			m Number		3556		
Controller Type			1200			2320		
Modification Number	0		Mod	ification Dat	te			
Drawing/Project No	427012-2-5	2-01	FPL	Grid Numb	er			
Intersection	FLAMING	o road (sr	823) and S	W8 STREE	Т			
Municip ality	DAVIE							
Controller Phase	1	2	3	4	3	6	7	8
Face Number	1	2		4	5	6		
Direction	SBL	NB		EB	NBL	SB		
Initial Green(MIN)	4	18		6.	4	18		
Vehicle Ext.(GAP)	1.5	3.0		2.0	1,5	3,0		
Maximum Green I	15	55		25	15	55		
Maximum Green II								
Yellow Clearance	5.5	5.5		4.0	5,5	5.5		
All Red Clearance	2.0	2.0		2.0	2.0	2.0		
Phase Recall	OFF	MIN		OFF	OFF	MIN		
Detector Delay								
Walk						7		
Pedestrian Clearance						14		
Permissive	5-SECT				5-SECT			
Flash Operation		YELLOW		RED		YELLOW		

Attachment


NOTES:

- 1. ANTI-BACKDOWN DIODES NORTH/SOUTH.
- 2. INITIAL OPERATION DATE IS DATE OF BROWARD COUNTY INSPECTION.

Sub mitted By	Approved By	
340 Maria 13	. Approved by	

Sequence of Operation for (3556) Flamingo Rd & SW 8 Street

Davie

Station: 3556 - Flamingo Rd & SW 8 St (Standard File)

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(SL)	(NT)		(ER)	(NL)	(ST)							1			
Walk						7	5 1									
Ped Clearance						14										
Min Green	4	18		6	4	18										
Gap Ext	1.5	3		2	1.5	3										
Max1	15	55		25	15	55										
Max2																
Yellow Clr	5.5	5.5	3.5	4	5.5	5.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	1.5	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce				Î											1	
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit				Î												
Dynamic Max Step																
Enable	ON	ON		ON	ON	ON										
Auto Flash Entry		ON				ON										
Auto Flash Exit				ON												
Non-Actuated 1					-											
Non-Actuated 2																
Lock Call									ON							
Min Recall		ON				ON										
Max Recall						11										
Ped Recall																
Soft Recall																
Dual Entry															1	
Sim Gap Enable					-				ON							
Guar Passage									-							
Rest In Walk																
Cond Service				Î												
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash	ON	ON	ON	ON	ON	ON
Override Higher Preempt	ON	ON	ON	ON	ON	ON
Flash in Dwell	ON	ON	ON	ON	ON	ON
Link to Preempt						
Delay						
Min Duration						
Min Green						
Min Walk						
Ped Clear						
Track Green						
Min Dwell						
Max Presence						
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			1	
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt			1 = 1	
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4				
Lock			1	
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table				

Dwell Cyc Veh 7		
Dwell Cyc Veh 8		
Dwell Cyc Veh 9		
Dwell Cyc Veh 10		
Dwell Cyc Veh 11		
Dwell Cyc Veh 12		
Dwell Cyc Ped1		
Dwell Cyc Ped2		
Dwell Cyc Ped3		
Dwell Cyc Ped4		
Dwell Cyc Ped5		
Dwell Cyc Ped6		
Dwell vPed7		
Dwell Cyc Ped8		
Exit 1		
Exit 2		
Exit 3		
Exit 4		

Prepared By	Date Implemented

Broward County Timing Sheet

Station: 3556 - Flamingo Rd & SW 8 St (Standard File)

Coordination

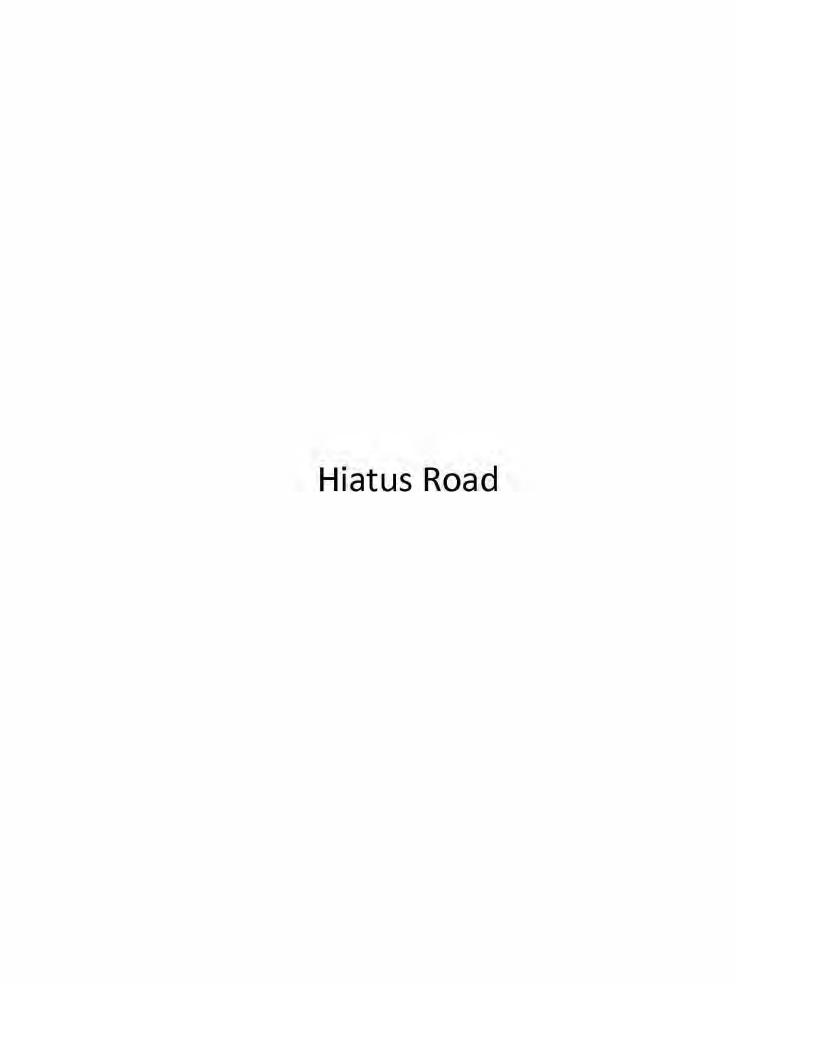
Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seque	Short	Long Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan									Eas															
		100	254																						
7		2	2	160	159	2	1	10	50	20	100		40	20	100		40								
9		3	3	80	18	3	1	5	40	13	49		18	13	49		18								
15		4	4	160	18	4	1	10	50	20	100		40	20	100		40								1 1
20		3	3	80	18	3	1	5	40	13	49		18	13	49		18								
22		100	254																	_					
		-																							
		_																							
Day	Plan	2								Eas	у														
		3	3	80	18	3	1	5	40	13	49		18	13	49		18				1			-	
1		100	254																						
6	30	3	3	80	18	3	1	5	40	13	49		18	13	49		18								
						_										-		_		_					
													-				-	-			_	-			

4/9/2020 9:44:37 AM

ay	Plan	3								Eas	У							
		3	3	80	18	3	1	5	40	13		18	13	49	18			
1		100	254															
6	30	3	3	80	18	3	1	5	40	13	49	18	13	49	18			I
23		100	254															F
_															1			t
\Box																		L
\dashv															++			H
\dashv												-	-		1		1	L
_															++			t
																		I

Broward County Timing Sheet 4/9/2020 9:44:37 AM

Station: 3556 - Flamingo Rd & SW 8 St (Standard File)


Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
Day	Plan	4									Eas												F			
		-				-	-						-			-				_						-
								-												_		_				
												_	_							_						

Scheduler

	M	on	th											Da	y (of	W	eel	ζ.		D۵	ıy	of	M	ont	h				1										2									1	3		
Plan	J	F	M	A	M	J	J	A	. 5	5 0	C	V	D	S	M	T	W	T	F								7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	Day Plai
1	1	1	1	1	1	1	1	1	1		1	1	1		1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1		1		1
2	1	1	1	1	1	1	1	1	1		1	1	1							1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1	1		1	1	1	1	П		П				1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1		1	1	1	1	1	3
4	1			T			T	T	T	T					1	1	1	1	1		1																						X.									2
5	1		T		T		T	T	T	T	Ī	T			1							1																					Y					0.1				2
6			T	T	1	Ī	T	T	1	1	1				1				T						T																				1	1	1	1	1	1	1	2
7		Г	T	T	T	T	1	T	T	T	T	T							1	П	П	Г	1					Г																							T	2
8			T			T	1		T	T	T				1	1	1	1	1					1	Г																											2
9		Г	Г	Г	T	Г	1	T	T	T	T	I			1				Γ	Π		Г	Γ	Ī	1																										Ī	2
10			T	Γ		I	T	T	1		T				1				T		1	1	1	1	1	1	1																								1	2
11		Γ	T	T	T	Г	T	T	T	T		1				П		1	Γ																							1	1	1	1	1	1	1			T	2
12			T				T	T	T	T		1					T		1											9				Ľ									1	1	1	1	1	1	1			2
13			T	Г				T	T	T	T	T	1		1				1																									1							I	2
14			T	Γ	T	Γ	T	T	T	T	1		1		1	1	1	1	1						Г																				1						T	2
15										T			1		1					J.												<u></u>														1						2
16			T				Г	T	T	T			1		1		T		1														4															1			1	2
17			T	Г		Г	Γ	T	T	T	T	T													Г																										T	1
18			I	Γ		I		T	T	T	T	I																																							T	1
19				T		Г	Г	T	T	T	T	I								J,	J,								-																						T	1
20									T						T		1																															1				1
21				Г						I	I	I																																							I	1
22			T	Г	T	Г		T	T	T	T	T																																							1	1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

Intersection Number	2277		Initia	l Operation	Date	1/27/88			
Controller Type	2070 LN		Syste	m Number		2277			
Modification Number	16		Mod	ification Da	te	W.O.			
Drawing/Project No			FPL	Grid Numb	er	866804109	05		
Intersection	BROWARI	D BOULEV	ARD and I	HIATUS RC	AD				
Municip ality	PLANTAT	ION							
Controller Phase	1	2	3	4	5	ó	7	8	
Face Number	1	2	3	4	- 5	6	7	8	
Direction .	SBL	NB	WBL	EB	NBL	SB	EBL.	WB	
Initial Green(MIN)	4	12	4	6.	4	12	4	6	1
Vehicle Ext.(GAP)	3.0	3.0	1.5	2.0	3.0	3,0	1.5	2,0	
Maximum Green I	12	50	25	30	20	50	12	30	1
Maximum Green II									1
Yellow Clearance	5,0	5.0	5.0	5.0	5,0	5.0	5.0	5,0	1
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1
Phase Recall	OFF	MIN	OFF	OFF	OFF	MIN	OFF	OFF	

7

32

RED

YES

7

32

RED

7

32

RED

YES

Attachment

Permissive

Flash Operation

Detector Delay

Pedestrian Clearance

Walk

NOTES:

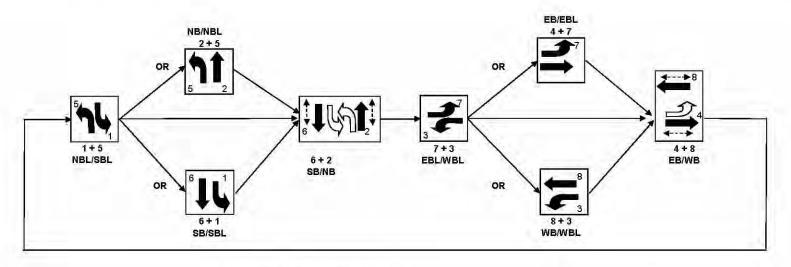
1. ANTI-BACKDOWN NORTH/SOUTH: PHASES 2+6 ON--->OMIT PHASES 1+5

YES

7

32

RED


- 2. DUAL ENTRY HARDWIRED EAST/WEST.
- 3. MOD. 16 CONVERT WESTBOUND LEFT TURN MOVIMENT TO DUAL LEFT TURN AND CHANGE DEFINATION OF MAJOR STREET DIRECTION TO NORTH/SOUTH VIA WORK ORDER: WOIT2019062453...

DUAL

RED

Submitted By	Approved By	
A STATE OF THE STA		

Sequence of Operation for Broward Boulevard and Hiatus Road (2277)

◆----
Denotes pedestrian signal

Denotes permissive left turn

Station: 2277 - Broward Blvd & Hiatus Rd (Standard File)

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(EL)	(WT)	(SL)	(NT)	(WL)	(ET)	(NL)	(ST)				L. Call				
Walk		7		7		7	12.00	7								
Ped Clearance		32		32		32		32								
Min Green	4	12	4	6	4	12	4	6								
Gap Ext	3	3	1.5	2	3	3	1.5	2								
Max1	12	50	25	30	20	50	12	30								
Max2																
Yellow Clr	5	5	5	5	5	5	5	5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce															1	
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit				Î												
Dynamic Max Step																
Enable	ON	ON														
Auto Flash Entry		ON				ON										
Auto Flash Exit				ON				ON		1					1 1	
Non-Actuated 1																
Non-Actuated 2																
Lock Call																
Min Recall		ON				ON										
Max Recall						10										
Ped Recall																
Soft Recall																
Dual Entry		ON				ON									1	
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk				ON				ON								
Cond Service								1								
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash	ON	ON	ON	ON	ON	ON
Override Higher Preempt	ON	ON	ON	ON	ON	ON
Flash in Dwell	ON	ON	ON	ON	ON	ON
Link to Preempt						
Delay						
Min Duration						
Min Green						
Min Walk						
Ped Clear						
Track Green						
Min Dwell						
Max Presence						
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3]					
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			1	-
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4				
Lock				
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table	-			

Dwell Cyc Veh 7			
Dwell Cyc Veh 8			
Dwell Cyc Veh 9			
Dwell Cyc Veh 10			4
Dwell Cyc Veh 11			6
Dwell Cyc Veh 12			
Dwell Cyc Ped1			1
Dwell Cyc Ped2			
Dwell Cyc Ped3			
Dwell Cyc Ped4			i li
Dwell Cyc Ped5			
Dwell Cyc Ped6			
Dwell vPed7			
Dwell Cyc Ped8			
Exit 1		İ	
Exit 2			
Exit 3			
Exit 4			

Prepared By	Date Implemented

Broward County Timing Sheet

Station: 2277 - Broward Blvd & Hiatus Rd (Standard File)

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqno	Short	Long Dwel	l Split	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
Day	Plan	1								Eas	y														
		100	254																						
6		2	2	160	8	2	1	5	50	26	49	33	52	29	46	17	68								
9		3	.3	160	127	3	1	5	50	17	60	33	50	24	53	17	66								
15		4	4	160	104	4	1.	5	50	21	56	37	46	30	47	23	60								
20		3	3	160	127	3	1	5	50	17	60	33	50	24	53	17	66								
22		100	254							-															
																							-		
Day	Plan	2								Eas	y														
		100	254																						
																		_					-		-
													-							-		-			
		1																							
	1 1																								
																		_							

4/9/2020 9:48:41 AM

y Pl	an 3				Easy								
	100	254											
-							\vdash		_		_	-	_
+	-			-	-	_		-		\vdash	_		-
-				-	1			+		-	-	-	-
+	-		+	+	+++			+	-	\vdash	_	+	-
													_
+				_							-		_
													_

Broward County Timing Sheet 4/9/2020 9:48:41 AM

Station: 2277 - Broward Blvd & Hiatus Rd (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	Plan										Eas												Y			
		-				_							_		-						_					
						-															-				_	
	-																							-		
												_													_	
																									1	

Scheduler

	M	on	th											D	ay	0	f١	Ve	ek			D	ıy	of	M	or	ıth	ı				1											2										1	3	1	
Plan	J	F	M	A	N.	IJ	J	A		S	o	Ν	D	S	N	1	T	W	T	F									7	8	9	0	1	. 2	3	3	4	5	6	7	8	9	0	1	2	3	4	5	1	5	7 8	3	9	0	ı I	Day Plan
1	1	1	1	1	1	1	1	1		1	1	1	1		1		1	1	1	1		1	1	1	1		I	1	1	1	1	1	1	1	1	ı	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	j	ı .	1	1	ı	1
2	1	1	1	1	1	1	1	1		1	1	1	1	T	T	T					1	1	1	1	1		I	1	1	1	1	1	1	1	I	Π	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	2
3	1	1	1	1	1	1	1	1		1	1	1	1	1		T						1	1	1	1		I	1	1	1	1	1	1	1	1	ı	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1			1	1	1	3
4	1					T	T	T	T						1		1	1	1	1		1				T	T									T													T		T	T				2
5	1					Γ	Γ	I	I				Γ		1	L							1			T								T	I	T										Γ	Τ			I	T	I	-		T	2
6				Γ	1	I	T	T	I						1											T	T	1					Ι	T	T	T										T	I	1	1	1	. [1	1	1	2
7							1													1				1												1			,											I	I					2
8			L		L		1		I						1		1	1	1	1					1																						L	L				1	1	1	1	2
9						Γ	1		I						1									I		1	L						I		I	T											I	I	I	I	I					2
10								1	1	1					1				A			1	1	1	1			1	1							1											L					1	1	1	1	2
11									I			1							1																I	Ţ		_							1	1	1	1	1	. 1						2
12									I			1								1																										1	1	1	1	. 1			1			2
13						Ι		I	I				1		1					1																I											1		Ι	I	I	I			1	2
14									1				1		1		1	1	1	1																1											L	1	L	1		1	1	1	1	2
15													1		1						J,												I			Ţ													1	I	T					2
16			L	L	L	L			1				1		1			T		1																										L	L	L				1			1	2
17								I	I																											I											I		I	I	I		1			1
18					L	L		1	I							I									I	T	T						I	I	I	T										I	I	L	I	I	I	I	1	1	1	1
19						Ι										I				J,	J,	J.									-					Ţ											I		I	I	I					1
20								I	I							I										I	I							I	I	I													I	I	I	T	1	T	I	-1
21						Γ		I	I																											I													Г				T	T	T	1
22					I	T	I	I	I								1								T	T	T	1					T	T	I	T										I	T	I	I	T		T	T	T	I	1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

Intersection Number 2305 Initial Operation Date 4/12/83

Controller Type 2070 LN System Number

Modification Number 14 Modification Date 05/14/2015

Drawing/Project No COUNTY 5143 FPL Grid Number 86679113102

Intersection SR 84 and HIATUS ROAD

Municipality DAVIE

Controller Phase	1	2	3	4	5	6	
Face Number		-					
Direction .	SBST	SB	WB	NBST	NB	EB	
Initial Green(MIN)	2	6	6	2	6	10	
Vehicle Ext.(GAP)	0;	2,5	2.5	0.	2.0	2,5	
Maximum Green I	2	35	35	2	25	35	
Maximum Green II							
Yellow Clearance	5.0	5.0	5.5	5.0	5,0	5.5	
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0	
Phase Recall	OFF	OFF	OFF	OFF	OFF	MIN	
Detector Delay					20-RT		
Walk		7	7		7	7	
Pedestrian Clearance		10	20		13	17	
Permissive		DUAL			5-SECT		
Flash Operation	RED	RED	RED	RED	RED	RED	

Attachment

SR 84 & Hiatus Rd (2305) SOP pdf

NOTES:

1. DIODE STRAPPING: PHASE 6 ON---|<---PHASE 1 DETECT PHASE 3 ON---|<---PHASE 4 DETECT.

P2 ON---|<---OMIT 2R.

- 2. SEQUENCE OF OPERATION ATTACHED.
- 3. DOUBLE CLEARANCE SOUTHBOUND: 7G, 5Y, 2AR.
- 4. MOD 14 UPDATES NOTE 1.

ub mitted By	Approved By	
multiple Di	rapproved by	

Sequence of Operation SR 84 and Hiatus Road, B- 305 (with modification 11 and higher) **\$1 \$2** SBL φ4 **\$5** ф3 **\$6** SBST SB CLEARANCE WB NB EB **NBST** NORTH SIDE SOUTH SIDE

*P2 ON—|<--2R OMIT PHASE 6 ON--|<--PHASE 1 DETECT PHASE 3 ON--|<--PHASE 4 DETECT DOUBLE CLEARANCE SOUTHBOUND LEFT: 7 GREEN, 5 YELLOW, 2 ALL RED

DETECTOR

Station: 2305 - SR 84 & Hiatus Rd (Standard File)

Phase	1	2 (ST)	3 (WT)	4	5 (NT)	6 (ET)	7	8	9	10	11	12	13	14	15	16
Walk		7	7		7	7										
Ped Clearance		10	20		13	17										
Min Green	2	6	6	2	6	10										
Gap Ext		2.5	2.5		2	2.5							1			
Max1	2	35	35	2	25	35										
Max2								1 - 1								
Yellow Clr	5	5	5.5	5	5	5.5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2		16.7	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce			Ì												7	
Time To Reduce																
Reduce By								1111								
Min Gap																
Dynamic Max Limit																
Dynamic Max Step								1								
Enable	ON	ON	ON	ON	ON	ON										
Auto Flash Entry				3839.9												
Auto Flash Exit															1 1	
Non-Actuated 1					ON					-					1	
Non-Actuated 2																
Lock Call			ON						ON							
Min Recall						ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry															1	
Sim Gap Enable	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage									-							
Rest In Walk					ON											
Cond Service									ì							
Add Init Calc																

Preemption.

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash	ON	ON	ON	ON	ON	ON
Override Higher Preempt	ON	ON	ON	ON	ON	ON
Flash in Dwell	ON	ON	ON	ON	ON	ON
Link to Preempt						
Delay						
Min Duration						
Min Green						
Min Walk						
Ped Clear						
Track Green						1
Min Dwell						
Max Presence						
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2			/			
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			7-		
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table					

Dwell Cyc Veh 7		
Dwell Cyc Veh 8		
Dwell Cyc Veh 9		
Dwell Cyc Veh 10		
Dwell Cyc Veh 11		
Dwell Cyc Veh 12		
Dwell Cyc Ped1		
Dwell Cyc Ped2		
Dwell Cyc Ped3		
Dwell Cyc Ped4		
Dwell Cyc Ped5		
Dwell Cyc Ped6		
Dwell vPed7		
Dwell Cyc Ped8		
Exit 1		
Exit 2		
Exit 3		
Exit 4		

Prepared By	Date Implemented
Reviewed By	Traffic Engineer

Broward County Timing Sheet

Station: 2305 - SR 84 & Hiatus Rd (Standard File)

Coordination

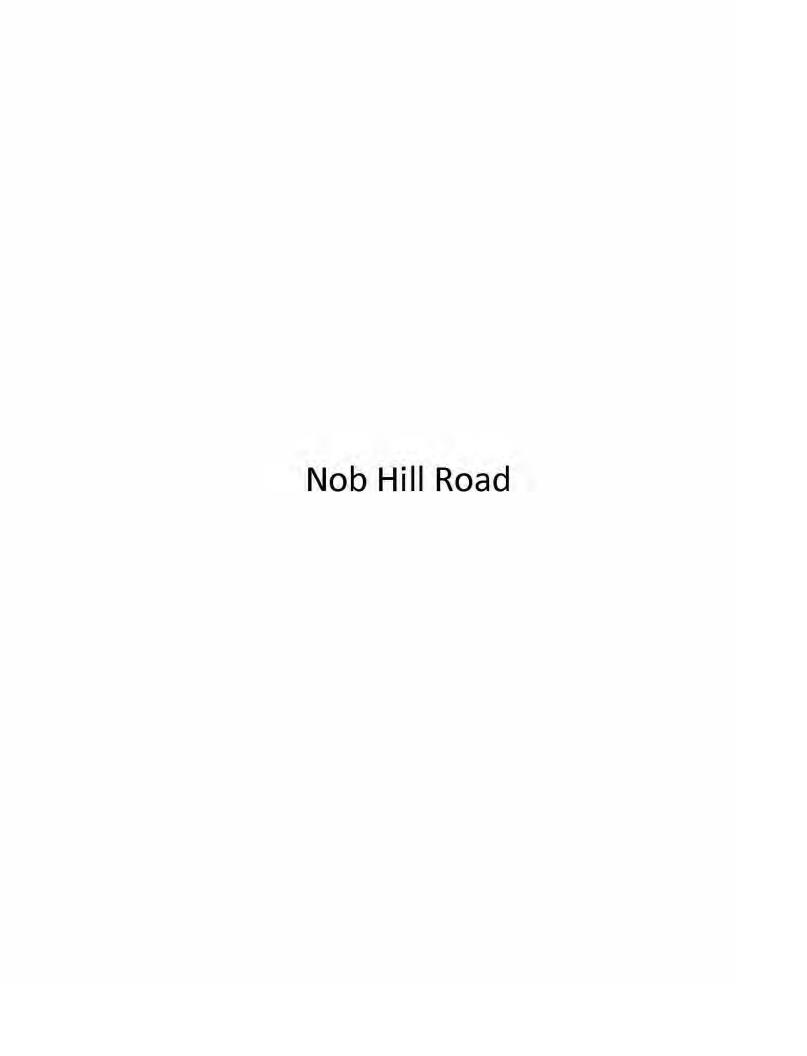
Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	Plan										Eas															
		-	_								-				_	_				_			_	_		
									_		_	_	_			_									_	_
																	1									
		_											-					_								_
																										_
Dov	Plan	2									Eas	.,														-
Day	гіап	4									Las	<u>y</u>														
					-					_																
									_		-	-						_				-	-		-	-
	-										_										_				_	
	1 1																									

4/9/2020 9:47:41 AM

ny Plan 3	Easy		

Broward County Timing Sheet 4/9/2020 9:47:41 AM

Station: 2305 - SR 84 & Hiatus Rd (Standard File)


Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
Day	Plan	4									Eas															
												_														
																				_			_			

Scheduler

	M	on	th										I)a	y (of	W	eel	ζ.		D	ay	7 0	f I	Mo	on	th	6			1											2	5									3	1	
Plan	J	F	M	A	M	J.	J	A	S	o	N	I) ;	S	М	T	W	T	F	S	1	T	2	3	4	5	6	7	8	3 9	1	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1 I	Day Plan
1											Γ																T		T		T										T				Т			Π					T	1
2		Г				1	1			Г	T	T							Т	T	T	T	T				T	T	T	T	T	T	T				Г		T	T	T	T	Т	Т	T	Г	Г						T	1
3		Г				T	T		П	Г	Т	T	T						П			T	T				T	T	T	T	T	T	T	٦				Г	T	T	T		T	Т	T	Т	Г	T	Г	Г	Г	П	T	1
4																													T											T	T													1
5							1				I	I									I	I	I								T	I									I				I								I	1
6						1	1															I						I	I	1	I	1	1																				1	1
7																																																						1
8																																													L		L		L	L				1
9											L											1									1																							1
10																																																						1
11																																																						1
12		L				1	1			L	L																												L		L	L	L	L	L	L	L	L	L	L				1
13							1			L	L	L							L				1								1		1	_			L									L							1	1
14		L				1	4				L		1	_														1			1	1	1				L			1					_	L			L				1	1
15											L		-									1				_		_	1		1		1												_		L	_	L				1	1
16					1	1	1			L	L	L										1	1				L	L	1	1	1	1	1					L	L	1	1		L	L	L	L	L	L	L				1	1
17		L	Ш	Ц	4	4	4			L	L	L	1	_					L	L	L	1	4				_	_	1	1	1	4	4	4	Ц	Ш	L	L	1	1	1		1	L	1	L	L	\perp	L	\perp	L	Ц	4	1
18	L	L				1				L	L	1	1	_						_		1	1				L	L	1	1	1	1	1				L	L	1	1	1	_	L	1	1	L	L		L		L		1	1
19		L									L											1							1		1															L	L						1	1
20		L			1	1	1				L	L										1	1						1		1		1						L	1	1	1	L	1	L	L	L	L	L				1	1
21				Ц	1	1	1				L	1	1								1	1	4				1	1	1	1	1	1	4															L				Ц	1	1
22							1																																															1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

Intersection Number 2341 Initial Operation Date 1/17/89

Controller Type 2070 LN System Number

Modification Number 15 Modification Date 11/20/2017

Drawing/Project No 86095-3421 FPL Grid Number 86779110403

Intersection SR 84 and NOB HILL ROAD

Municipality DAVIE

Controller Phase	1	2	3	4	5	6
Face Number				1.4		
Direction .	SBST	SB	WB	NBST	NB	EB
Initial Green(MIN)	2	15	5	3	10	10
Vehicle Ext.(GAP)	2.0	2,5	2.0	2.0	2,5	2,5
Maximum Green I	2	45	45	3	50	50
Maximum Green II						
Yellow Clearance	5.0	5.0	5.5	5.0	5,0	5,5
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0
Phase Recall	OFF	OFF	OFF	OFF	MIN	OFF
Detector Delay			30-RT			
Walk		7	7		7	7
Ped estrian Clearance		20	35		15	20
Permissive		DUAL			3-SECT	
Flash Operation	RED	RED	RED	RED	RED	RED

Attachment 2341 SOPp df

NOTES:

1. DIODE STRAPPING: PHASE 6 ON --- J<--- PHASE 1 DETECT

PHASE 3 ON ---]<--- PHASE 4 DETECT

- 2. FIREHOUSE PRE-EMPTION:
- (A) TIME BEFORE PRE-EMPTION: 0.0 SECOND,
- (B) MINIMUM GREEN BEFORE PRE-EMPTION: 5.0 SECONDS,
- (C) PHASE 5 (NB/NBL) 50 SECONDS,
- (D) RETURN TO PHASE 3 (WB).
- 3. SEQUENCE OF OPERATION ATTACHED.
- 4. SYNC LINE HARDWIRED TO NOB HILL AND SW 101 RD (3467):

RELEASES 4+8 @101 DURING PHASES 2 (SB) AND 5 (NB) YELLOW @ SR 84. USES SPECIAL O/L 12 AND DUMMY LOAD SWITCH.

5 MOD. 15 UPDATES SYNC LINE NOTES.

Children Phila 3 Dhia	Acceptance of Day	
Submitted By	Approved By	
to and attended that the	77DF7547F7F	

	φ1 SBST	φ2 SB	φ3 WB	φ 4 NBST	φ.5 NB	ф 6 ЕВ
NORTH SIDE	6A,1A 1 2A	6A,1A P6A 2A	P8 8 8 3	*** 8 **** 3	5 2A P2A	1 5 2A
SOUTH SIDE	7 5	6 1 1 4 4 4	6 1 L	6 1 2,5A	6 1 2 5 8 9 9	7 1 4 1 P4

Station: 2341 - SR 84 & Nob Hill Rd (Standard File)

Phase	1	2 (ST)	3 (WT)	4	5 (NT)	6 (ET)	7	8	9	10	11	12	13	14	15	16
Walk	1	7	7		7	7										
Ped Clearance		20	35		15	20										
Min Green	2	15	5	3	10	10	5	5								
Gap Ext	2	2.5	2	2	2.5	2.5	1	1								
Max1	2	45	45	3	50	50	25	25								
Max2																
Yellow Clr	5	5	5.5	5	5	5.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert										1						
Added Initial																
Max Initial																
Time Before Reduce			İ													
Cars Before Reduce			i i													
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit			Ì												1	
Dynamic Max Step																
Enable	ON	ON	ON	ON	ON	ON										
Auto Flash Entry						ON										
Auto Flash Exit			Ì		ON					1 - 1					1 1	
Non-Actuated 1					1										7	
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall			İ		ON											
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry		ON	Ì	ON		ON		ON								
Sim Gap Enable	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk		ĺ														
Cond Service															1	
Add Init Calc																

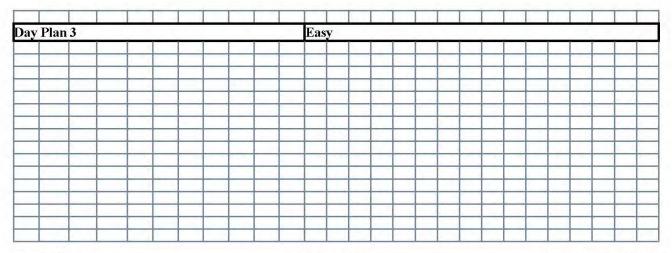
Preemption.

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash	ON	ON	ON	ON	ON	ON
Override Higher Preempt	ON	ON	ON	ON	ON	ON
Flash in Dwell						1
Link to Preempt						
Delay						
Min Duration	65					
Min Green						
Min Walk						
Ped Clear						
Track Green						1
Min Dwell	65					
Max Presence	-					
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1	5					
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			7		
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table					

Dwell Cyc Veh 7					
Dwell Cyc Veh 8					
Dwell Cyc Veh 9					
Dwell Cyc Veh 10					
Dwell Cyc Veh 11					
Dwell Cyc Veh 12					
Dwell Cyc Ped1					
Dwell Cyc Ped2					
Dwell Cyc Ped3		J. L			
Dwell Cyc Ped4					
Dwell Cyc Ped5					
Dwell Cyc Ped6					
Dwell vPed7		I I			
Dwell Cyc Ped8					
Exit 1	6				
Exit 2					
Exit 3					
Exit 4			110		


Prepared By	Date Implemented
Reviewed By	Traffic Engineer

Broward County Timing Sheet 4/9/2020 9:51:33 AM

Station: 2341 - SR 84 & Nob Hill Rd (Standard File)

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
Day	Plan	1									Eas	y														
							_		_			_		_	-						_		_	-	_	
									_			_								_	_					
	1																									
																	100									
			_			_			_		_	_	_		H			_	_	_	_	_	_	-		_
										_		_	_							_	_		_	-		_
Day	Plan	2									Eas	y														
																				_						
									-	-			-													
	1																									
						-			-	-		_								_	-			-	_	_
	1																									
						_				-		_								_	_				-	_
	1 1									1)				

Broward County Timing Sheet 4/9/2020 9:51:33 AM

Station: 2341 - SR 84 & Nob Hill Rd (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spl 16
	Plan										Eas															
		-																		-						-
																			_	_		_				-
																				_						-
																										-
	-							_																		
		-								-												-				

Scheduler

	M	on	th		7								D	ay	oi	٢V	Ve	ek		Ī)a	y (of I	Mo	ont	th				1										2										3	1	
Plan	J	F	M	A	м	J	J	A	S	О	N	D) 5	N	1	r	W	T	F	s	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0 1	D	ay Plan
1											T	T																																								1
2						1					T	T							T	1							T	T	T								T	Т												1	T	1
3									Г	T	T	T	T	T	T	T			I				Ш														T		П												T	1
4		Г								Γ	Т	T	1																T		Г				T		T	T													T	1
5											Ι	Τ																Г			Γ			T			T														T	1
6						1																						T	Γ																					1	T	1
7												T																																								1
8																																																				1
9											Ι	Ι																																								1
10						1						I																T	T																						I	1
11																		4,	<u>.</u>				Į,																													1
12																																					L															1
13											L	L																	L																							1
14																																																				1
15																																																				1
16																															L		L	L	L																	1
17										L																																										1
18																																																				1
19																		-					L																													1
20																																																1				1
21																																																				1
22																		1	T	T																																1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

 Intersection Number
 2358
 Initial Operation Date
 4/2/90

 Controller Type
 2070 TS2 (BIU)
 System Number
 2358

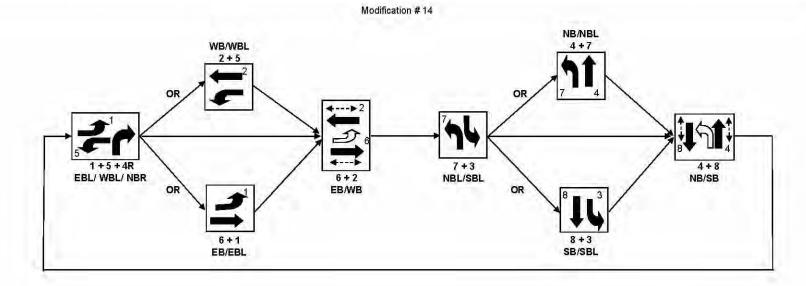
 Modification Number
 14
 Modification Date
 01/25/2019

 Drawing/Project No
 T1200209P1
 FPL Grid Number
 86780040901

Intersection BROWARD BOULEVARD and NOB HILL ROAD

Municipality PLANTATION

Controller Phase	1	2	3	4	5,4R	6	7	8
Face Number	1	2	3	4	- 5	6	7	8
Direction .	EBL	WB	SBL	NB	WBL	EB	NBL.	SB
Initial Green(MIN)	5	10	5	6.	5	10	5	6
Vehicle Ext.(GAP)	2.0	3.0	2.0	2.5	2.0	3,0	2.0	2.5
Maximum Green I	15	45	20	45	25	45	30	45
Maximum Green II								
Yellow Clearance	5,0	5.0	4.5	4.5	5,0	5.0	4.5	4.5
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Phase Recall	OFF	MIN	OFF	OFF	OFF	MIN.	OFF	OFF
Detector Delay				20-RT				20-RT
Walk		7		7		7		7
Pedestrian Clearance		35		35		35		35
Permissive	5 SECT		DUAL		DUAL		5 SECT	
Flash Operation		RED	RED	RED	RED	RED		RED


Attachment

NOTES:

- 1. DUAL ENTRY HARDWIRED NORTH-SOUTH.
- 2. ANTI-BACKDOWN WITH RED REVERT: CALL ON PHASE 5 IN ABSENCE OF 4+8 ACTIVATES 4.0 SECOND RED REVERT THEN PHASES 2+5.
- 3. MOD. 14 UPDATES YELLOW CLEARANCES ON ALL PHASES, WALK ON PHASES 4 & 8. PEDESTRIAN CLEARANCES ON PHASES 2, 4, 6 & 8 PER CURRENT STANDARDS.

Sub mitted By	Approved By	
SWI IN II LEU DY	STREET DA	

Sequence of Operation for Broward Boulevard and Nob Hill Road (2358)

Station: 2358 - Broward Blvd & Nob Hill Rd (Standard File)

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(EL)	(WT)	(SL)	(NT)	(WL)	(ET)	(NL)	(ST)	70.1			100		1000		
Walk		7		7		7		7								
Ped Clearance		35		35		35		35								
Min Green	5	10	5	6	5	10	5	6								
Gap Ext	2	3	2	2.5	2	3	2	2.5					1			
Max1	15	45	20	45	25	45	30	45								
Max2																
Yellow Clr	5	5	4.5	4.5	5	5	4.5	4.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3
Red Clr	2	2	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.:
Red Revert		4				4										
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce				Î											1	
Time To Reduce																
Reduce By																
Min Gap		Ì														
Dynamic Max Limit				Î												
Dynamic Max Step																
Enable	ON	ON	ON	ON	ON	ON	ON	ON							1	
Auto Flash Entry				ON				ON								
Auto Flash Exit		ON				ON										
Non-Actuated 1						,									7	
Non-Actuated 2																
Lock Call																
Min Recall		ON		Î		ON										
Max Recall															1	
Ped Recall																
Soft Recall																
Dual Entry				ON				ON								
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	
Guar Passage																
Rest In Walk																
Cond Service				Ì												
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash	ON	ON	ON	ON	ON	ON
Override Higher Preempt	ON	ON	ON	ON	ON	ON
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green						
Min Walk						
Ped Clear						
Track Green						
Min Dwell						
Max Presence						
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						1
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			1	-	
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table					

Dwell Cyc Veh 7		
Dwell Cyc Veh 8		
Dwell Cyc Veh 9		
Dwell Cyc Veh 10		
Dwell Cyc Veh 11		
Dwell Cyc Veh 12		
Dwell Cyc Ped1		
Dwell Cyc Ped2		
Dwell Cyc Ped3		
Dwell Cyc Ped4		
Dwell Cyc Ped5		
Dwell Cyc Ped6		
Dwell vPed7		
Dwell Cyc Ped8		
Exit 1		
Exit 2		
Exit 3		
Exit 4		

Prepared By	Date Implemented
Reviewed By	Traffic Engineer

Station: 2358 - Broward Blvd & Nob Hill Rd (Standard File)

Coordination

Broward County

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seque	Short	Long	Dwell	Split 1	Split 2	Split	Split	Split 5	Split	Split	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split
	Plan										Eas					-			-	2.0						2.0
		100	254																							
6		2	2	160	88	2	1	10	50		23	56	30	51	23	56	30	51								
9		3	3	160	80	3	1	10	50		25	60	25	50	25	60	25	50								
15		4	4	160	85	4	1		50		27	52	25	56	29	50	25	56								
17		5	5	160	85	5	1		50		27	42	25	66	29	40	25	66								
19		3	3	160	80	3	1	10	50		25	60	25	50	25	60	25	50								
Day	Plan	2									Eas	у														
4.5		3	3	160	80	3	1	10	50		25	60	25	50	25	60	25	50								
1		100	254					110																		
6	30	3	3	160	80	3	1	10	50		2.5	60	25	50	25	60	25	50								
																							-			
																					-					

Timing Sheet

4/9/2020 9:53:39 AM

ay	Plan	3								Eas	У											
		3	3	160	80	3	1	10	50	25	60	25	50	25	60	25	50					
1		100	254																			
6	30	3	3	160	80	3	1	10	50	25	60	25	50	25	60	25	50					
23		100	254																			T
																			-		-	+
																						1
-														_					-	-	-	+
																		-	-	-	_	+
																					_	+
																						+

Broward County Timing Sheet 4/9/2020 9:53:39 AM

Station: 2358 - Broward Blvd & Nob Hill Rd (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
Day	Plan	4									Eas															
		-				-										-								-		_
																			_	-				-		
	-																									
																								_		
															_					-	-			_		
									-							-										

Scheduler

	M	on	th											D	ay	of	W	ee	k		D	ay	0	fN	Io.	ntl	h				1										2										3		
Plan	J	F	M	A	M	J	J	A		S	o	Ν	D	S	M	1	W	7	ľ	1	1	1 2	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	3 9	0	1	2	3	4	5	6	7	8	9	0	1	Day Pla
1	1	1	1	1	1	1	1	1		ı	1	1	1		1	1	1	1	1		1	1	ı	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1		1	1	1	1	Г				T		1	1	1	i	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1		1	1	1	1	1	Г			T			1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1						Г	T	T	T					1	1	1	1	1		1		1													T	T	T	T	T	T												2
5	1						Г	T	T	Ì					1		T	T	T	T	T	1	1															T	T														2
6		Г		Г	1	Г	Г	Г	T	T				Г	1		T	T	T	T	T	T	T	T	I										Г	Τ	Т	T	T	T	T		Г			1	1	1	1	1	1	1	2
7		Г		Г			1	Γ	T	T			Г	Г	Г	Г	Г	T	1		T	T		1	П		П								Γ		T	T	T		T			Г	Г								2
8							1	Τ	T						1	1	1	1	1			T		T	1										Г	T	Т	T	T	T	T												2
9		Г	Г	Г	T	Г	1	Т	T	T			Г	Г	1	Г	Т	Т	T	T	T	T	T	T	T	1					П		Г		T	T	T	T	T		T	T	Г	Г	Г	Г	Γ	Г					2
10								T		1					1					T	1	1	1	1	1	1	1	1									T	T	T	T	T								4				2
11							Г	T	T	T		1				Г		1																			T						1	1	1	1	1	1	1				2
12		Г					Г	Т	T	T		1		П		Г	Г	T	1		T	T	1	T													T	T	T		T			1	1	1	1	1	1	1			2
13				Г				Т	T	T			1		1	Г	Т	T	1	T	T	T	T	T	П										Т	T	T	T	T		T				1								2
14					T			Γ	T	I			1	Г	1	1	1	1	1	T	T	T	T	T	I											T	Т	T	T	T	T					1							2
15								T	T	T			1		1	Г	Г	Τ				T		T	П											I	T	T									1						2
16					Г		Г	Т	T				1		1		I	T	1			T															T	T														1	2
17				Г		Г	Γ	Г	T	T							Т	T	T	T	T	T	T	T											Γ	T	T	T	T	I	T				Г								1
18								T	T	I				Г	Г		Γ	T	T	T	T	T	T	T	T										Г	T	Т	T	T	T	Г												1
19							Γ	T	T	T																											T	I															1
20								T	T																															T									1				1
21								Г	T	T										T	T	T	T	T																													1
22			I	Г	I		Г	T	T	T							Г	T	T	T	T	T	T	1											Г	T	T	T	T		T												1

23					<u>.</u>				П									1
24																		1
25										\Box								1
26								П	П	П								1
27								П							П			1
28								П	П	П								1
29								П	П	П					П			1
30	П							П	П	П	П	П			П		П	1
31								П	П					П	П			1
32																		1

User Comments:

Intersection Number 2402 Initial Operation Date 02/05/03

Controller Type 2070 System Number 2402

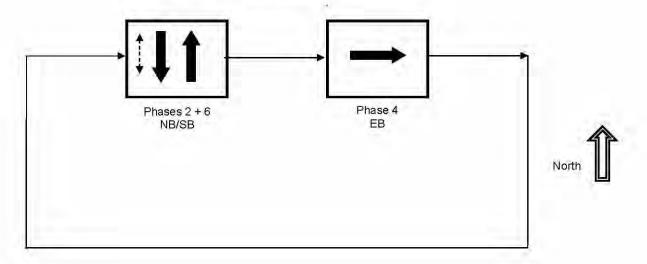
Modification Number 3 Modification Date W.O.

Drawing/Project No 01-2055 FPL Grid Number 86779068601

Intersection NOB HILL ROAD and HAWKS VIEW BOULEV ARD

Municipality PLANTATION

Controller Phase	1 2	3	4	5	6	7	8
Face Number	2		4	3	ó		
Direction .	NB		EB	NBL	SB		
Initial Green(MIN)	12		6	4	12:		
Vehicle Ext.(GAP)	3,0		2.0	1,5.	3.0		
Maximum Green I	50		25	12	50		
Maximum Green II							
Yellow Clearance	5.0		4.0	5,0	5.0		
All Red Clearance	2.0		2.0	2.0	2.0		
Phase Recall	MIM		OFF	OFF	MIN		
Detector Delay							
Walk					7		
Pedestrian Clearance					19		
Permissive				5-SECT			
Flash Operation	YELLO	W	RED		YELLOW		


Attachment

NOTES:

- 1. ANTI-BACKDOWN NORTHBOUND: PHASES 2+6 ON:-->OMIT PHASE 5.
- 2. WITH WOIT2018062358 DATED 6/26/18, INSTALLS PHASE 5 (NBL).

Sub mitted By	Approved By	
AND INCHESIAL TO	tapping of 12)	

Sequence of Operation Nob Hill Road and Hawks View Boulevard (2402) <u>Plantation</u>

Intersection Number 3454 Initial Operation Date 8/28/97

Controller Type 2070 LN System Number

Modification Number 8 Modification Date 05/22/2019

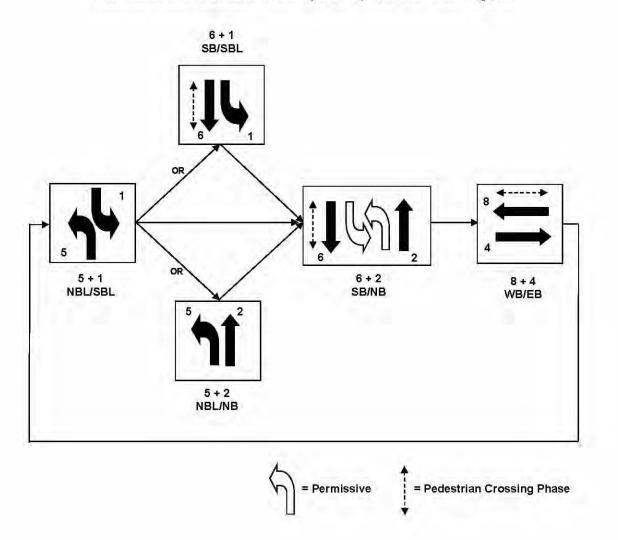
Drawing/Project No FPL Grid Number 86778157201

Intersection NOB HILL ROAD and SW13 STREET

Municipality DAVIE

Controller Phase						
Face Number	1	2	4	5	6	8
Direction .	SBL	ИВ	EB	NBL	SB	WB
Initial Green(MIN)	4	12	6.	4	12	6
Vehicle Ext.(GAP)	1.5	3.0	2.0	1,5	3.0	2,0
Maximum Green I	30	70	25	15	70	25
Maximum Green II						
Yellow Clearance	5.0	5.0	4.0	5,0	5.0	4.0
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0
Phase Recall	OFF	MIN	OFF	OFF	MIN	OFF
Detector Delay						
Walk			7		.7	
Pedestrian Clearance			26		17	
Permissive	5-SECT			5-SECT	t	
Flash Operation		YELLOW	RED		YELLOW	RED

Attachment


NOTES:

- 1. DETECTION NORTH SOUTH NOT USED, SIGNAL OPERATES SEMI-ACTUATED.
- 2. LOCAL TIME SWITCH FOR FLASH OPERATION: 2300-0600, 7 DAYS.
- 3. ANTI-BACKDOWN NORTH/SOUTH AND DUAL ENTRY HARDWIRED EAST/WEST.
- 4. MOD. 8 UPDATES YELLOW CLEARANCE

A Section 2 and a section 2 and 2 an		
CALL MALE DEC	Anarous 2 Do	
Submitted By	Approved By	

Sequence of Operation

Nob Hill Road and SW 13 Street Intersection Number 3435 (Davie) Mod 8 and Higher

 $\textbf{Station: } 3454 \text{ -} \operatorname{Nob} \operatorname{Hill} \operatorname{Rd} \& \operatorname{SW} 13 \operatorname{St} \left(\operatorname{Standard} \operatorname{File} \right)$

Phase	(SL)	2 (NT)	3	4 (ET)	5 (NL)	6 (ST)	7	8 (WT)	9	10	11	12	13	14	15	16
Walk				7	7-0	7										
Ped Clearance				26		17										
Min Green	4	12		6	4	12		6								
Gap Ext	1.5	3	1	2	1.5	3	1	2					7			
Max1	30	70		25	15	70		25								
Max2																
Yellow Clr	5	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial										(1 - 1)						
Time Before Reduce													Ì			
Cars Before Reduce				Î												
Time To Reduce				1												
Reduce By																
Min Gap																
Dynamic Max Limit				Î												
Dynamic Max Step																
Enable	ON	ON		ON	ON	ON		ON								
Auto Flash Entry				ON				ON								
Auto Flash Exit		ON		Î		ON									1 1	
Non-Actuated 1																
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry				ON				ON								
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk				Î												
Cond Service				Î				1 1					Î			
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash					ON	ON
Override Higher Preempt					ON	ON
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green						1
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						1
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			-		
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table					

Dwell Cyc Veh 7			
Dwell Cyc Veh 8			
Dwell Cyc Veh 9			
Dwell Cyc Veh 10			
Dwell Cyc Veh 11	1		1.
Dwell Cyc Veh 12			
Dwell Cyc Ped1			
Dwell Cyc Ped2			
Dwell Cyc Ped3			
Dwell Cyc Ped4			
Dwell Cyc Ped5			
Dwell Cyc Ped6			
Dwell vPed7			1, 8
Dwell Cyc Ped8			
Exit 1			
Exit 2			
Exit 3		1	
Exit 4			

Prepared By	Date Implemented
Reviewed By	Traffic Engineer

Broward County Timing Sheet

Station: 3454 - Nob Hill Rd & SW 13 St (Standard File)

Coordination

Hour	Minute	Action	Pattern C	ycle Offse	Split	Seqno	Short	Long D	well	plit 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan									Cas															
23		1	255																						
		1	255									10													
6		2	254																						
7		3	3		3	1		17		36	70		40	15	70		40								
8		2	254																						
16	10	4	4		4	1		17		36	70		40	15	70		40								
16	30	2	254						4																
		-			-			-	-	-		-							-		_	-			-
									+																
									-																
									+	-			_	_		_			_		_			_	
		_		_					-	-	_											\vdash	_		
Day	Plan	2							- lu	Cas	.,														
Day	1 lan	L							- 11	Jas	_														
				_					\rightarrow												-	-			
									\rightarrow																
									\rightarrow																
	1 3	1												- 1					- 3						
									-																
					-				-	_															
									-	_			-				-	-			-	_			
							-		+	_		-						-	_			_			-

4/9/2020 9:49:36 AM

y Plan 3		Easy			
	1 1 1 1 1				
					1
			$\overline{}$		+
					1
					1 1 1
					+

Broward County Timing Sheet 4/9/2020 9:49:36 AM

Station: 3454 - Nob Hill Rd & SW 13 St (Standard File)

Iour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long Dwe	l Split	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spl 16
Day	Plan	4								Eas	y											H			
		-								-															
										-															
										-															
		-								-															-
\dashv																									
									-					7					-				-		

Scheduler

	Me												1)a	у (of	W	eel	ζ.		D	ay	of	N	Io	ntl	1				1										2										3	1	
Plan	J	F	M	A	M	J	J	A	S	O	N	I I) ;	S	м	T	W	T	F	S	1	2		3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0 1	Da	y Plan
1				1																																													1		1 1		1
2									Г	T	T	T							T	T	T	T	T	T	T	1										T	T	Т	T	T											T	T	1
3				Г						T	T	T											T		1													T		T		П											1
4																П																																					1
5											I	T									I		T	T																													1
6										I	I	I								I	I	I		I	I														I														1
7										I	I	I																																									1
8													1										1								9						L																1
9										L	L													1																													1
10										L														1	1																												1
11											T	T																																									1
12																m																						L	L														1
13								L		L																																											1
14																								1																													1
15																																																					1
16			L																				1													L	L																1
17								L	L	L																																											1
18										L																																											1
19																												-																									1
20																																																					1
21																																																					1
22																									T	T																											1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number	3.467		Initia	l Operation l	Date	05/06/99			
Controller Type	2070 LN		Syste	m Number					
Modification Number	10		Modi	fication Date		05/21/2019			
Drawing/Project No	98100501		FPL	Grid Number	r	8677817790	13		
Intersection	NOB HILL	ROAD an	d SW101 R	OAD					
Municip ality	DAVIE	2000	N. P. S. P.	1/10/					
Controller Phase	1	2	3	4	5	ŏ	7	8	1
Face Number		2	3	4		6		8	1
Direction .		NB	WBL*	EB		SB		WB	1
Initial Green(MIN)		12	35	7		12		7	1
Vehicle Ext.(GAP)		3.0	0,0	2.0		3.0		2,0	1
Maximum Green I		55	35	30		55		30	1
Maximum Green II									1
Yellow Clearance		5.0	4.0	4.0		5.0		4.0	1
All Red Clearance		2.0	2.0	2.0		2.0		2.0	T
Phase Recall		MIN	OFF	OFF		MIN		OFF	T
Detector Delay									1
Walk		7				.7			1
Pedestrian Clearance		14				14			T
Permissive			5-SECT						T

RED

YELLOW

RED

Attachment

Flash Operation

NOTES:

- 1. DUAL ENTRY HARDWIRED EAST/WEST.
- 2. INTERSECTION IS LOCALLY INTERCONNECTED TO SR 84(2341).
- 3. EAST/WEST, PHASES 4+8, RELEASE DURING AMBER PHASES 2(SB) AND 5(EB) AT SR 84 WHEN CALL PRESENT.
- 4. *WESTBOUND LEFT, PHASE 3, ONLY USED FOR PRE-EMPTION.
- 5. FIREHOUSE PRE-EMPTION SEQUENCE:
- (A) TIME BEFORE PRE-EMPTION: 0.0,
- (B) PHASES 3+8 (WB/WBL): 35 SEC. GREEN, 40 SEC. YELLOW, 20 SEC. ALL RED.


YELLOW

- (C) RETURN TO PHASES 2+6 (NORTH/SOUTH).
- 6. MOD. 10 UPDATES YELLOW AND ALL RED CLEARANCE.

Submitted By	Approved By	
	The state of the s	_

Sequence of Operation Nob Hill Road and SW 101 Road

Intersection Number 3467 (Davie) Mod 10 and Higher

Station: 3467 - Nob Hill Rd & SW 101 Rd (Standard File)

Phase	1	2 (NT)	3 (WL)	4 (ET)	5	6 (ST)	7	8 (WT)	9	10	11	12	13	14	15	16
Walk		7				7										
Ped Clearance		14				14										
Min Green		12	35	7		12		7								
Gap Ext		3		2		3		2								
Max1		55	35	30		55		30								
Max2																
Yellow Clr	4	5	4	4	4	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	0	2	2	2		2		2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce		Ť T														
Cars Before Reduce		1				1 1									7	
Time To Reduce																
Reduce By																
Min Gap	1	Ì														
Dynamic Max Limit		1														
Dynamic Max Step																
Enable		ON	ON	ON	-	ON		ON								
Auto Flash Entry	1			ON				ON								
Auto Flash Exit		ON				ON									1 1	
Non-Actuated 1					-											
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall		1														
Soft Recall																
Dual Entry			1	ON				ON							1	
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage		1														
Rest In Walk		ON				ON										
Cond Service		1														
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash					ON	ON
Override Higher Preempt	ON	1			ON	ON
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration	6				121	
Min Green	35	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green					1 1	
Min Dwell	6	8	8	8	8	8
Max Presence	360	180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1	3					
Dwell Cyc Veh 2	8					
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			7	1	
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					1
Lock					1
Headway					
Group Lock					1
Queue Jump					
Free Mode					1
Alt Table					

Dwell Cyc Veh 7				
Dwell Cyc Veh 8				
Dwell Cyc Veh 9				
Dwell Cyc Veh 10				
Dwell Cyc Veh 11				
Dwell Cyc Veh 12				
Dwell Cyc Ped1				
Dwell Cyc Ped2				
Dwell Cyc Ped3				
Dwell Cyc Ped4				
Dwell Cyc Ped5				
Dwell Cyc Ped6				
Dwell vPed7				
Dwell Cyc Ped8				
Exit 1	2			
Exit 2	6			
Exit 3		5	-	
Exit 4				

Prepared By	Date Implemented

Broward County Timing S

Station: 3467 - Nob Hill Rd & SW 101 Rd (Standard File)

Timing Sheet 4/9/2020 9:50:32 AM

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Snlit	Searc	Short Lo	ng Dwa	Split	Split	Split	Split	Split	Split	Split	Split	Split	Split	Split	Split	Split	Split	Split	Spli
			rattern	Cycle	Oliset	Spin	Seque	SHOLLE	ng Dwe			3	4	5	6	7	8	9	10	11	12	13	14	15	16
Day	Plan	1								Eas	y														
7		2	2			2	1		7		60	31	36		60		36								
9	30	100	254																						
15	30	4	4			4	1	1	7		60	31	36		60		36								
16	30	100	254								1														
									-	-	_	_		_					_						
				_	_				-	-	-	-	-	<u> </u>					-	_		-	_		_
		-			-				-	-		-							-	_		_			
		-							-	+	-		-				_		-	-	-	-		_	
		_							-	+	-									_		_			
		-																							
																									1
Dav	Plan	2								Eas	v														
	1																								
		1															-								
									-	-									_	_					
					-				-	-			_		_										
									-	-				_							_				
			-	-					-	+	-	_		-	-				-	_		_			-

y Plan 3		Easy			
					+
					+++
				+++	-
					1
					-
					-

Broward County Timing Sheet 4/9/2020 9:50:32 AM

Station: 3467 - Nob Hill Rd & SW 101 Rd (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	Plan										Eas												Y			
	_	-			-				-							-								-		-
									-																	
																								_		
		-				-																				
	_											-									_					
									-								-					-				

Scheduler

	Me	on	th						ī					D	ay	of	W	/ee	k		Ī	Da	у (of :	M	on	th	4			Ţ											2	5						-			3		
Plan	J	F	M	A	M	J	J	A		S	o	Ν								F									18	3 3	9	0	1	2	3	4	5	6	7	18	3 5	0	1	1 2	2 3	3	1 5	5 (5 7	7	8 9	0	1	Day Plan
1	1	1	1	1	1	1	1	1	1	i	1	1	1		1	1	1		l			1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	l I	1	1	i, J		1	1 1	1	1		1 1	1	1	1
2								Г	T	T					Г	T	T	T	T	T	T			Г		T	T	T	T	T	T	T					T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T		1
3		Г				П		Г	T	T			Г		Г	Т	T	Τ		T	Ţ				Г	T	T	T	T	T	1	╗					Γ		T	T	T	T	T	T	T	T	T	T	T	T	T	T	Г	1
4							Г	Г	T	T					Г	T			T							T	T	T	T	T	T	T					T		T	T	T	T	T	T	T	1		T	T	T				1
5									T	T	I				Г	T	T		T	T	T						T	T	T	T	T	I			П		T		T	T	T	T	T	T	T	T	T		T	T		T	Г	1
6							Г	Г	T	T					Г	T	T	T	T	T	T			Г		T	T	T	T	T	T	П					Т	T	T	T	T	T	T	T	T	T	T	T	T	T		T		1
7								Γ	T	T								I		T	T						T		T	1									I	I	I	T	I	I	T	T	T	T	T	T				1
8							Г	Γ	T						Г	T	T	T		T						Γ	T	T	T	T	T	T					Г	T	T	T	T	T	T	T	T	1		T	T	T		T		1
9									T	T						T		T	T	T	T						T	T	T	T	T	T							T	T	T	T	T	T	T	T		T	T	T				1
10									T	I											T					T	T	T	T	T	T									T	T	T	T	T	I	I	1		1	I				1
11									T	T														J.			T												T	I	I		T	I	T		T	T	T	Ţ				1
12									T	I																	I		I											T				T	I									1
13									I	I																																		I	I	I			I	I				1
14									T	1										I	I						T	I	T	T	T	I								I	I	I	I	T	J	I	I	I	I	I				1
15										I								I																<u>. </u>							I		I							T				1
16																																														1								1
17									I	I										I																					I			I	I			I		I				1
18									I	I								I		I	I						I	I	T	T	T								I	I	I	I	T	I	I	I	I	I	I	I				1
19										I								Ι				<u>.</u>																			T			I	I	I		T	I	I				1
20									T	1																			I		1									T				I						I				1
21									I	I										I	T										T	I																						1
22									T	T								T	T	T	T					T	T	T	T	T	T	T					I	I						T	T	T				T		I		1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

ΝB Sequence of Operation Pine Island Road and Peters Road Intersection Number 2272 NB/SB SB/SBL/WBR

WESTBOUND RIGHT IS OVERLAPPED TO SOUTHBOUND LEFT TURN

5030: 2272 - Pine Island Rd & Peters Rd (Upload File)

Phase [1,1.1]

	1 (WR)	2 (ST)	3	4 (WT)	5	6	7	8	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	0	0	0	0	0	0	0	0	0	0	0
Ped Clearance	0	25	0	32	0	0	0	0	0	0	0	0	0	0	0.	0
Min Green	4	10	0	6	0	0	0	0	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	0	2	0	0	0	0	0	0	0	0	0	0	0	0
Max 1	25	50	0	30	0	0	0	0	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	4.5	4.5	0	4.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	0	2	0	0	0	0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	15

Phase Option [1.1.2]

	(WR)	2 (ST)	3	(WT)	5	6	7	8	9	10	11	12	13	14	15	16
Enable	ON	ON		ON												
Lock Call							-		ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON														
Max Recall				1					-	-			-			
Ped Recall																
Dual Entry																
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON		1-1												

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	2	7	8	0	2	0	4	0	6	0	-8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	- 8
Switch Phase	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0
Dielay Time	0	0	0	O.	0	0	0	0	0	0	0	0	0	0	0	0

Approved By: Carmen Li

Date:

Broward County System Timing Sheet 10/15/2019

5030 : 2272 - Pine Island Rd & Peters Rd (Upload File)

TB Coor, Day Plan [4,4]

Day Plan Table 1	1	2	3	4	5	6	7.	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20											
Minute																
Action	100	2	3	4	3								2			
Day Plan Table 2	1.	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute			30							17						
Action	3	100	3													
							7			T 40						
Day Plan Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		_ 1	6	23												
3.75			30													
Minute		100	3	100						1						

Coordination, Pattern 1-16 [2.1]/Coordination, Alt Tables+[2.6]

	Section 1															
Pattern	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Cycle Time		160	160	160									1			1
Offset Time		58	45	147												
Split Number	-	2	3	4		J										
Seq Number	1	1	1.	1	- 1	1	1	1	1	1	1	1	1	1	1	1
Ph Opt Alt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ph Time Alt	0	0	-0	0	- 0	0	0	0	0	0 -	0	- 0	0	0	0	0

Coordination, Splits [2.7.1]

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	41	. 73		46												
Mode	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON		11												
Split Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	38	76		46												
Mode	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	1			
Time								0	2	10	11	12	13	14	15	16
THIE	36	78		46				0	9	10	1.1	12	13	14	15	16
Mode	NON	78 MXP	NON		NON	NON	NON	NON	NON	NON	NON	NON	NON	14 NON	15 NON	16 NON
	-		NON	46												
Mode Coord Phase	NON	MXP		46 NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	иои
Mode Coord Phase Split Table 5	-	MXP	NON 3	46												
Mode Coord Phase Split Table 5 Time	NON 1	MXP ON	3	46 NON	NON 5	NON 6	NON 7	NON 8	NON 9	NON 10	NON	NON 12	NON 13	NON 14	NON 15	NON 16
Mode Coord Phase Split Table 5 Time Mode	NON	MXP		46 NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	иои
Mode Coord Phase Split Table 5 Time	NON 1	MXP ON	3	46 NON	NON 5	NON 6	NON 7	NON 8	NON 9	NON 10	NON	NON 12	NON 13	NON 14	NON 15	NON 16
Mode Coord Phase Split Table 5 Time Mode Coord Phase	non 1 Non	MXP ON 2 NON	3 NON	46 NON	NON 5	6 NON	NON 7	NON 8	y NON	NON 10 NON	NON 11 NON	NON 12 NON	NON 13 NON	NON 14 NON	NON 15	non 16 non
Mode Coord Phase Split Table 5 Time Mode Coord Phase	NON 1	MXP ON	3	46 NON	NON 5	NON 6	NON 7	NON 8	NON 9	NON 10	NON	NON 12	NON 13	NON 14	NON 15	NON 16
Mode Coord Phase Split Table 5 Time Mode Coord Phase Split Table 6 Time	non 1 Non	MXP ON 2 NON	NON 3	46 NON 4 NON	NON 5	6 NON	NON 7	NON 8	NON 9	10 NON	NON 11	NON 12 NON 12	NON 13	NON 14 NON 14	15 NON 15	NON 16
Mode Coord Phase Split Table 5 Time Mode Coord Phase	non 1 Non	MXP ON 2 NON	3 NON	46 NON	NON 5	6 NON	NON 7	NON 8	y NON	NON 10 NON	NON 11 NON	NON 12 NON	NON 13 NON	NON 14 NON	NON 15	non 16 non

Approved By: Carmen Li	Date:

5030 : 2272 - Pine Island Rd & Peters Rd (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash		ON				ON
Override Higher Preempt		ON				ON
Flash in Dwell		ON				ON
Link to Preempt						
Delay						
Min Duration						
Min Green	6		6	6	6	
Min Walk					6	
Ped Clear						
Track Green		-				
Min Dwell	8		8	8	6	
Max Presence	180		180	180	180	
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						1
Dwell Cyc Veh 1	2		1-1-	4	4	
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4	T T					
Dwell Cyc Veh 5						
Dwell Cyc Veh 6		-				1
Dwell Cyc Veh 7						
Dwell Cyc Veh 8		-				
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11		-				
Dwell Cyc Veh 12						
Dwell Cyc Ped1						
Dwell Cyc Ped2						
Dwell Cyc Ped3						
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7						
Dwell Cyc Ped8						1
Exit 1	4		2	1	2	1- 1
Exit 2						
Exit 3						
Exit 4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON	-	ON	ON	ON	-
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERO
Skip Track						
Volt Mon Flash						
Coord in Preempt	ON		ON	ON	ON	
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell						
Pattern					5 0	
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1						
Track Over 2					2	
Track Over 3					2 5	
Track Over 4	-				7	
Track Over 5					5 0	
Track Over 6						
Track Over 7	-				7	
Track Over 8	-				2	
Track Over 9					1	
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1	1		1		6	
DwellCyc Over 2	2					
DwellCyc Over 3					5 - 0	
DwellCyc Over 4					2 9	6
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7					2 9).
DwellCyc Over 8					> 0	
DwellCyc Over 9						
DwellCyc Over 10						
DwellCyc Over 11	-	-				
DwellCyc Over 12					1	
Ped Clear						
Yellow	4		4.	4	4	
Red	2	14	2	2	2	
Return Max						(

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	clude	l Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 3	0	0	0	0	5	6	0	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 4	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	-0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	- 0 -	0	0	0	0	0	0	0	0	0	0.	0	0	NORMAL	0-	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	.0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5

Approved By: Carmen Li	Date:
Approved by: Califien Li	Date:

5030 : 2272 - Pine Island Rd & Peters Rd (Upload File)

Alternate	Phace Pi	rooram '	1 Interval	Times	11	1	61	1

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3.	3	3	3	3	3	3	3.	3	
6	3.	3	3	3	3	3	3	3.	3	
7	3	3	3	3	3	3	3	3	3	-
8	3	3	3	3	3	3	3	3	3	
9	3.	3	3	3	3	3	3	3	3	
4	3	3	3	3	3	3	3	3	3	
	2	2	2	2	2	2	2	2	2	

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	, I
6	0	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	.0	0	0	
8	0	0	0	0	0	0	0	0.	Q	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	I Max1 I	I Max2 I	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3.	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3.	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
4	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

Dhase	XX alla	Ped	Min	Passage	Marit	342	V all arm	Red	Assign	Bike
rnase	walk	Clear	Green	rassage	MINIXI	Maxz	1 enow	Clear	Ph	Clear

Alternate Phase Program 5, Interval Times [1.1.6.1]

10000	Action to the second					110000000000000000000000000000000000000				
Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear

TB Coor, Day Plan [4.4]

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour													-			
Minute		1						1					1			
Action	1															

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute																
Action			-				-		-	-	-	-	-			-

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute																
Action																

Approved By: Carmen Li	Date:

5030 : 2272 - Pine Island Rd & Peters Rd (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase										1 3						
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				-			-						,		-	
Split Table 9	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
				1	1	1	1				T					
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	17017	NTONT	27027	17017	17017	17017	17017	17017	NTONT	27027	27027	17017	STOST	ATONT	17017	MICH
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-		-	-		-		-		- 10		1.0	10		10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	4ON
Coord Phase	11011	11011	11011	21021	1,011	11011	11011	11011	11011	11011	11011	11011	11011	1,01,	11011	1,01
Split Table 12	1	2	3	4	1 5	6	7	8	9	10	11	12	13	14	15	16
Time	-		3	7	-		- 6-	0	,	10	11	12	13	17	10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	NON	14014	NON	14014	INOIN	NON	INOIN	14014	INOIN	NON	14014	NON	MON	14014	INOIN	NON
Coold Filase	1			2.2	1							1				
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
	-									7.5	1 22		F 52			
Split Table 14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	MONT	MONT	MON	STOST	NON	NICONT	NTONT	MONT	MONT	STOST	NTON	NON	ATOAT	STOST	NTONT	NON
Mode Charles	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				l	_						1					
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time								-								-
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	-	2,527	2.027	233	1	21,027	1.01	2,021	2.52	1,027	2,02,	2,02,	1.027		2,021	2,01
- 2-2020 A 2000g			_		•							_		-		A.
Split Table 16	1	2	3	4	5	6	7	8	9	10	- 11	12	13	14	15	16
	1				1										-	1
Time																
Time Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON

Approved By: Carmen Li	Date:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number	2096	Initial Operation Date	11/75
Controller Type	2070	System Number	2096

Modification Number 35 Modification Date 12/01/2016 DES. GRP. 3 FPL Grid Number 86878247800 Drawing/Project No

Intersection SR 84 and PINEISLAND ROAD

DAVIE Municipality

Controller Phase	1	2	3	4	5	6	7	8
Face Number								
Direction .	SBST	SB	WB	NBST	NB	EB		
Initial Green(MIN)	1	10	6	1	6	6		
Vehicle Ext.(GAP)	0,0	2.5	2.0	0.0	2,5	2.0		
Maximum Green I	- t	45	45	1	45	45		
Maximum Green II								
Yellow Clearance	5.0	5.0	5.0	5.0	5,0	5.0		
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0		
Phase Recall	OFF	MIN	OFF	OFF	OFF	OFF		
Detector Delay								
Walk		7	7		7	7		
Ped estrian Clearance		19	38		19	37		
Permissive		DUAL			DUAL			
Flash Operation		RED	RED		RED	RED		

Attachment

NOTES:

1. DIODE STRAPPING: PHASE 6 ON---|<---PHASE 1 DETECT, PHASE 3 ON---|<---PHASE 4 DETECT.
2. MOD. 35 DELETES MAXIMUM GREEN II VALUES (NOT USED).

Submitted By	Approved By	
m) httica 13	Explored D)	

			Sequence	of Operation	for B-096			
			SR 84 A	ND Pine Islaı	nd Road			
	φ1 SBST	ф2 SB	ф3 WB	φ4 NB ST	φ5 NB	ф6 ЕВ	φ 7 NOT USED	φ8 NOT USED
NORTH SIDE	11	111	11	1	1	11		
SOUTH SIDE	-	116	14	11	11:	-		

Station: 2096 - SR 84 & Pine Island Rd (Standard File)

Phase	1	2 (ST)	3 (WT)	4	5 (NT)	6 (ET)	7	8	9	10	11	12	13	14	15	16
Walk	1	7	7		7	7										
Ped Clearance		19	38		19	37										
Min Green	1	10	6	1	6	6										
Gap Ext		2.5	2		2.5	2							1			
Max1	1	45	45	1	45	45										
Max2																
Yellow Clr	5	5	5	5	5	5			3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2			1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert			1													
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce																
Time To Reduce																
Reduce By								1								
Min Gap																
Dynamic Max Limit																
Dynamic Max Step											1					
Enable	ON	ON	ON	ON	ON	ON										
Auto Flash Entry				26519-1		ON										
Auto Flash Exit	(ON													1 1	
Non-Actuated 1	1				-					-					1	
Non-Actuated 2																
Lock Call	ON	ON	ON	ON	ON	ON			ON	ON	ON	ON	ON	ON	ON	ON
Min Recall	1	ON														
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry															1	
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage													0.70			
Rest In Walk																
Cond Service									1							
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash						
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration					121	
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green						
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4	1 = = 1				1 1	
Dwell Cyc Veh 1	2	3	2	3	5	6
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6					1 1	

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			1		
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table					

Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9					1	
Dwell Cyc Veh 10						
Dwell Cyc Veh 11) =	
Dwell Cyc Veh 12						
Dwell Cyc Ped1						
Dwell Cyc Ped2						
Dwell Cyc Ped3						
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7						
Dwell Cyc Ped8						
Exit 1	3	4	3	4	6	1
Exit 2						
Exit 3	- 15 5					
Exit 4						

Prepared By	Date Implemented

Broward County Timing Sheet

Station: 2096 - SR 84 & Pine Island Rd (Standard File)

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqno	Short	Long Dwel	l Split	Split 2	Split	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan									Eas															
		100	254																						
6		2	2			2	1	5	50	1	31	31	1	31	43										
9	30	3	.3	160	68	3	1	5	50	8	34	40	8	30	40										
15		4	4			4	1	5	50	1	30	37	1	30	39										
20		3	3	160	68	3	1	5	50	8	34	40	8	30	40										
																									1
Day	Plan	2								Eas	y														
		3	3	160	68	3	1	5	50	8	34	40	8	30	40										
1		100	254														7							1	
6	30	3	3	160	68	3	1	5	50	8	34	40	8	30	40										
		-				_	_			\vdash				-							-				
							-																		

4/9/2020 9:56:51 AM

ay	Plan	3								E	isy										Ţ
		3	3	160	68	3	1	5	50	8		40	8	30	40						
1		100	254																		
6	30	3	3	160	68	3	1	5	50	8	34	40	8	30	40						Γ
23		100	254							1											
-																				1	-
																					L
																				-	-
																					H
																				-	
-						-				-	+						-	-		-	-
\dashv			-			_				-	1					_	+		_	+	+

Broward County Timing Sheet 4/9/2020 9:56:51 AM

Station: 2096 - SR 84 & Pine Island Rd (Standard File)

Iour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Sp. 16
	Plan									Eas															
																									_
-		-			-														-				-		-
_					-														_				-		-
											_														_
=																									-
																									_
_											_								_			-			-
									-					/											

Scheduler

	M	on	th									П	7	Di	ıy	of	W	eel	K		D	ay	of	M	on	th				1										2										3		
Plan	J	F	M	A	M	J	J	A	. 5	S	o	N	D	S	M	T	W	T	F	S	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	Day Pla
1	1	1	1	1	1	1	1	1	. 1	ı	1	1	1		1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1						T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	$\overline{}$	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1	1	ı	1	1	1	1	П					T	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1		T				T	T	T	T					1	1	1	1	1		1				T	T			T																							2
5	1							T	T	T	Ī				1				T	T	T	1	Ī																													2
6		Г	Г	Г	1	Г	T	T	T	T				Г	1	Г	Г	Г	T	T	T	Γ	Г	T	T	T	T	T	T	T	Г			Г				Г							1	1	1	1	1	1	1	2
7		Г	T	Γ	T		1	T	T	T	T		П						1	П	Γ	Γ	1		T	Г		Г	T	Γ		П		Г			П	T	Π	Π	П	Г		Г								2
8			Г		Г	T	1	T	T	T	Ī				1	1	1	1	1	Г				1	T	T	Г	T	Г	Г	Г	Г		Г															Г			2
9		Г	Γ	Γ	Π	Г	1	T	T	T	Ī			Г	1	Г			T	T	Ī	T	Ī	Ī	1	T	Γ	T	Γ	Π	Γ	Γ	Γ	Γ		T	T	T	Г	Γ		Г	Г	Г								2
10				I			T	T	1	1				Г	1		Г	Г	T	T	1	1	1	1	1	1	1	T	T	T				Г																		2
11			T	Γ		Г	T	T	T	T	I	1				Г		1		Г			T		Τ	T				Г							T	T		Γ		1	1	1	1	1	1	1				2
12			Г		Г		T	T	T	T		1							1						T				Г					Г									1	1	1	1	1	1	1			2
13								T	T	T	I		1		1				1				T	T	T	T				Г				Г										1								2
14				Γ	T	Γ	T	T	T	T			1		1	1	1	1	1	T	T	Γ	T	T	T	T	T	T	T		Г			Г											1							2
15				Γ			T	T	T	T			1		1															Г				Γ		-										1						2
16								T		T			1		1				1						Т				Г		F			Г																	1	2
17								I		I																																										1
18				I				T	T	T									T			Г	Γ	T	T	T		T	T	T				Г																		1
19										I	T																																									1
20										I																																										1
21							L	I	I	I	I																																									1
22					T			T	T	T									T					T	T																											1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 2303 Initial Operation Date 8/26/83

Controller Type 2070 LN System Number 2303

Modification Number 11 Modification Date 01/28/2015

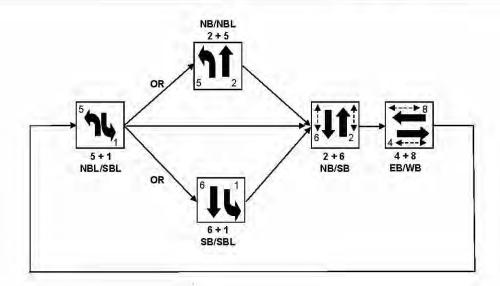
Drawing/Project No B.C. 50513 FPL Grid Number 86879524109

Intersection PINEISLAND ROAD and GATEHOUSE ROAD

Municipality PLANTATION

Controller Phase	1	2	3	4	3	ő	7	8
Face Number	1	2		4	5	6		8
Direction .	SBL	NB		EB	NBL	SB		WB
Initial Green(MIN)	4	12		6.	4	12		6
Vehicle Ext.(GAP)	1.5	3.0		2.0	1,5	3.0		2.0
Maximum Green I	20	50		20	20	50		20
Maximum Green II								
Yellow Clearance	4.0	4.0		4.0	4.0	4.0		4.0
All Red Clearance	2.0	2.0		2.0	2.0	2.0		2.0
Phase Recall	OFF	MIN		OFF	OFF	MIN		OFF
Detector Delay								
Walk		7		7		7		7
Pedestrian Clearance		10		18		10		18
Permissive	NO				NO			
Flash Operation	RED	YELLOW		RED	RED	YELLOW		RED

Attachment


NOTES:

- 1. DUAL ENTRY HARDWIRED EAST/WEST.
- 2. MOD. 11 DEPLOYS SIGNAL ONTO ATMS.NOW.

ub mitted By	Approved By	

Sequence of Operation for Pine Island Road and Gatehouse Road (2303)

Plantation

Station: 2303 - Pine Island Rd & Gatehouse Rd (Standard File)

Phase	(SL)	2 (NT)	3	4 (ET)	5 (NL)	6 (ST)	7	8 (WT)	9	10	11	12	13	14	15	16
Walk		7		7		7		7								
Ped Clearance		10		18		10		18								
Min Green	4	12		6	4	12		6								
Gap Ext	1.5	3		2	1.5	3		2								
Max1	20	50		20	20	50		20								
Max2																
Yellow Clr	4	4	3.5	4	4	4	3.5	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	1	2	2	2		2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert															-	
Added Initial																
Max Initial										1						
Time Before Reduce																
Cars Before Reduce																
Time To Reduce				1												
Reduce By																
Min Gap																
Dynamic Max Limit																
Dynamic Max Step																
Enable	ON	ON		ON	ON	ON		ON								
Auto Flash Entry				ON				ON								
Auto Flash Exit		ON				ON									1 1	
Non-Actuated 1															4	
Non-Actuated 2																
Lock Call	ON				ON				ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON		Î		ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry				ON				ON							1	
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk		ON		Ì		ON									1	
Cond Service				Î				Ì				Ì				
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash				ON		ON
Override Higher Preempt				ON		ON
Flash in Dwell				ON		ON
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6		6	
Min Walk						
Ped Clear						
Track Green					1	12
Min Dwell	8	8	8		8	
Max Presence	180	180	180		180	
Track Veh 1						
Track Veh 2						1
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1	2	4	1		2	
Dwell Cyc Veh 2	6	8	6		-5	
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			1	
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1			1	
Priority P2				
Priority P3				
Priority P4				
Lock			1	
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table	-			

Dwell Cyc Veh 7				
Dwell Cyc Veh 8				
Dwell Cyc Veh 9				
Dwell Cyc Veh 10				
Dwell Cyc Veh 11				
Dwell Cyc Veh 12				
Dwell Cyc Ped1				
Dwell Cyc Ped2				
Dwell Cyc Ped3				
Dwell Cyc Ped4				
Dwell Cyc Ped5				
Dwell Cyc Ped6				
Dwell vPed7				
Dwell Cyc Ped8				
Exit 1	4	1	2	2
Exit 2	8	5	6	6
Exit 3				
Exit 4		1 1		

Prepared By	Date Implemented

Station: 2303 - Pine Island Rd & Gatehouse Rd (Standard File)

Coordination

Broward County

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Sequo	Short	Long Dwel	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan									Eas															
		100	254																						
6		2	2	80	63	2	1	10	50	20	36		24	20	36		24								
9		3	.3	80	63	3	1	10	50	20	36		24	20	36		24								
15		4	4	160	4	4	1	10	50	25	95		40	25	95		40								
19		3	3	80	63	3	1	10	50	20	36		24	20	36		24								
Day	Plan	2								Eas	y			1	1										
		3	3	80	63	3	1	10	50	20	36		24	20	36		24			_					
1		100	254																		,				
6	30	3	3	80	63	3	1	10	50	20	36		24	20	36		24								
							Į.																		L

Timing Sheet

4/9/2020 9:58:54 AM

ay	Plan	3								Eas	y									
		3	3	80	63	3	1	10	50	20	36	24	20	36	24					
1		100	254																	
6	30	3	3	80	63	3	1	10	50	20	36	24	20	36	24					
23		100	254																	
\dashv										-		+		-	+			-		
\dashv										1		+								
\dashv				-		_	_			-							\vdash			
-				-	_	_		_		-		_	-		_	_	-		-	_

Broward County Timing Sheet 4/9/2020 9:58:54 AM

Station: 2303 - Pine Island Rd & Gatehouse Rd (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
Day	Plan	4									Eas															
						-																				-
																								-		
	-																									
																										-
															_				_					-		
																								-		

Scheduler

	M	on	th										7	D	ay	of	W	ee	k		I	ay	y 0	f I	Mo	ont	h				1										2			7							3		
Plan	J	F	M	A	M	J	J	A	1	S	o	Ν	D	S	M	T	W	V J	r	1	3	ı]	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	Day Pla
1	1	1	1	1	1	1	1	1		1	1	1	1		1	1	1	1	1 1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1		1	1	1	1					T		1		ı	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1		1	1	1	1	1			T	T			1	1	1	1	1	1	1	1	1	1	1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1				T	T	T	T	T	Ī					1	1	1	1	1			1																T	T	T													2
5	1				T	T	T	T	T	Ì					1		T	T	T	T	T		1																T														2
6		Г		Г	1	Г	T	T	T						1	Г	T	T	T	T	T	T							T	Γ		Г		Г	Г	T		T	T	T	Г		Г			1	1	1	1	1	1	1	2
7		Г		Γ	T	T	1	T	T					Г	Γ	Γ	Г	T	1	T	T	T		1					Г		П		Г	Г	T			T	T		Т		Г	Г									1
8					Г	Т	1		T						1	1	1	1	1	T		T			1	Г			Г			Г	Г	Г	Г	T	Г	T	T	T	T									Г			1
9		Г	Г	Г	Т	Т	1	T	T	Ī		П	Г	T	1	Г	T	Τ	T	T	T	T	Ĩ	Ī		1			Г	Γ	П		Γ	Г	T			T	T		T	T	Г	Г	Г	Г	Г						2
10							T	T	1	1					1				T	T		1	1	1	1	1	1	1	T							T		T	T														2
11						T	T	T	T			1					T	1											Г														1	1	1	1	1	1	1				2
12		Г			Т	Т	Г	T	T			1			T	Г	T	T	1		T	T																T	T					1	1	1	1	1	1	1			2
13				Г		Т	T	Τ	T	Ī			1	T	T	Т	T	T	1		T	T	Ī						T	Г			Π	Г	T				T						1								2
14					T	Γ	T	T	T				1		1	1	1	1	1 1	T	T	T							I	Г				Г		T		T	T	T	Г					1							2
15						T	T	T	T				1		1	Г	T	T		T		T													I	I											1						2
16					Г	Т	Г	T	T				1		1		T																						T													1	2
17				Г	Γ	Γ	Γ	T	T						T				T	T	T	T	T						Γ	Γ			Γ	Γ	T	T		I	T		Г			Г	Г								1
18						Г		T	T						T				T	T	T	T							Г	Γ					Г	T		T	T	T	Г												1
19					Γ	Γ	T	T	T																													T	T														1
20																																						T	T										1				1
21						Г		T	T													T	T											Г																			1
22			I	Г	T	T	T	T	T						T		T	T		T	T	T	T						Г			Г	Г	Г	T	T	T	T	T		T												1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		\Box	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 2375 Initial Operation Date 9/5/95

Controller Type 2070 LN System Number 2375

Modification Number 7 Modification Date 06/18/2014

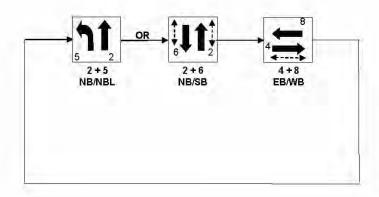
Drawing/Project No 910 FPL Grid Number 86878299501

Intersection PINEISLAND ROAD and SW12 CT NEW RIVER CANAL

Municipality PLANTATION

Controller Phase	1 2	3	4	5	ő	7	8
Face Number	2		4	3	6		8
Direction .	NB		EB	NBL	SB		WB
Initial Green(MIN)	12		5	5	12		5
Vehicle Ext.(GAP)	3,0		2.0	1,5	3.0		2,0
Maximum Green I	50		25	15	50		25
Maximum Green II							
Yellow Clearance	4.0		4.0	4.0	4.0		4.0
All Red Clearance	1.0		2.0	1.0	1.0		2.0
Phase Recall	MIM		OFF	OFF	MIN		OFF
Detector Delay			20-RT				
Walk	7		5.		7		
Pedestrian Clearance	16		19		16		
Permissive				NO			
Flash Operation	YELLO'	W	RED	RED	YELLOW		RED

Attachment


NOTES:

- 1. DUAL ENTRY HARDWIRED EAST/WEST.
- 2. FLASH OPERATION: 0000-0600, 7 DAYS.
- 3. MOD. 7 DEPLOYS SIGNAL ONTO ATMS, NOW.

Sub mitted By	Approved By	
ampituted by	UNDITOR OF TO	

Sequence of Operation for Pine Island Road and SW 12 Ct./New River Canal (2375)

Plantation

Station: 2375 - Pine Island Rd & SW 12 Ct/New River Canal (Standard File)

Phase	1	2 (NR)	3	4 (ET)	5 (NL)	6 (ST)	7	8 (WL)	9	10	11	12	13	14	15	16
Walk		7		5		7										
Ped Clearance		16		19		16										
Min Green		12		5	5	12		5								
Gap Ext		3		2	1.5	3		2								
Max1		50		25	15	50		25								
Max2																
Yellow Clr	3	4	3	4	4	4	3	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	0	1		2	1	1		2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce				1											7	
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit				Î												
Dynamic Max Step																
Enable		ON		ON	ON	ON		ON								
Auto Flash Entry				ON				ON								
Auto Flash Exit		ON				ON									1 1	
Non-Actuated 1		ON				ON										
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON		Î		ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry				ON				ON							1	
Sim Gap Enable		ON		ON		ON		ON	ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk															1	
Cond Service				Î				Ì				Ì				
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON		ON	ON	ON	ON
Override Auto Flash		ON	ON	ON	ON	ON
Override Higher Preempt		ON	ON	ON	ON	ON
Flash in Dwell		ON	ON	ON	ON	ON
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6				
Min Walk						
Ped Clear						
Track Green						
Min Dwell	8	8				
Max Presence	180	180				
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						1
Dwell Cyc Veh 1	2	4				
Dwell Cyc Veh 2	6	8				
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			1		
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table	-				

Dwell Cyc Veh 7				
Dwell Cyc Veh 8				
Dwell Cyc Veh 9				
Dwell Cyc Veh 10				Π
Dwell Cyc Veh 11				
Dwell Cyc Veh 12				
Dwell Cyc Ped1				Ī
Dwell Cyc Ped2				Π
Dwell Cyc Ped3				
Dwell Cyc Ped4				Ī
Dwell Cyc Ped5				
Dwell Cyc Ped6				Ī
Dwell vPed7				
Dwell Cyc Ped8				
Exit 1	4	2		
Exit 2	8	5		
Exit 3				
Exit 4				

Prepared By	Date Implemented

Broward County

Timing Sheet

4/9/2020 9:57:48 AM

Station: 2375 - Pine Island Rd & SW 12 Ct/New River Canal (Standard File)

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seque	Short	Long Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan									Eas	100														
		25	255																						
6		2	2	90	84	2	1		50		60		30	20	40		30								
9	30	3	.3	160	20	3	1	10	50		125		35	25	100		35								
15		4	4	90	89	4	1		50		60		30	20	40		30								
20		5	5	90	84	5	1		50		60		30	20	40		30								
																				_			_		
Day	Plan	2								Eas	у														
		25	255								1		1			_	1								
6		100	254																						
6	30	5	5	90	84	5	1		50		60		30	20	40		30								
	9																								
					_		_	-							-		_	_			_			_	

ay	Plan	3								Eas	sy										
		25	255	الساة		-4															
6		100	254																		
6	30	5	5	90	84	5	1		50	1	60	30	20	40	30						T
								-	_		-	-			-					_	+
								1	1											-	+
																					I
																					+
_									-			-									-
									_											+	t
																					I
									_									_			
_		-	_	_			-	-		-	-					-	_	-		_	+
_	_				_	_	\rightarrow	_	_	+	-	_	-					_	-	_	+

Broward County Timing Sheet 4/9/2020 9:57:48 AM

Station: 2375 - Pine Island Rd & SW 12 Ct/New River Canal (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqno	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	Plan										Eas															
		-													-	-		-								-
											-															
		_				-																				
																					_					-
																				-		-		-		

Scheduler

	M	on	th											I	ay	y o	f	We	ek			D	ay	of	M	lor	ıth	1				1										2										3		
Plan	J	F	M	A	M	J		Ţ,	A	S	o	N	I) (S I	м	T	W	T	F	S	1	2	3	4	1	5	6	7	8	9	0	1	2	3	4	1 5	6	5	7 1	3 9	0	1	2	3	4	5	6	7	8	9	0	1	Day Pla
1	1	1	1	1	1	1	1	i	1	1	1	1	1		1	1	1	1	1	1		1	1	1	1			1	1	1	1	1	1	1	1	1	1	1	ı	1 :	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1								1	1	1	1	1		T	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	ı	1	1	1	1	1		1							1	1	1	1			1	1	1	1	1		1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1		T		T	T	T	T					T			1	1	1	1	1		1	1	T	T	T	T	T								T	T	T	T	T	T	T	T	T		T	T	T						2
5	1				T	T	T	Ť	ĵ			T	T			1					T	T	1	T	T	T	T	T											T	T						T	T							2
6			Т	Г	1	Т	T	1			Г	Γ	T	T		1				Г	T	T	T	T	T	T	T	T							Г	Т	Τ	Τ	T	T		T	T	T	T	Τ	1	1	1	1	1	1	1	2
7	П	Г	T	Γ	T	T	1	ı			Г	Γ	T	T	T					1	Π	Γ		1		T	T	T				П		Г	Г	T	I	T	T	T		T		T	T	T	T	T	T					2
8			T	Г	T	Τ	1	1			Г	T	T	T		1	1	1	1	1	Г			T	1		T	T						Г	Г	T	T	T	T	T		T	T	T		T	T	T						2
9		Г	T	Т	T	Τ	1	ı	Ī		Г	Γ	Τ	T		1					Γ	Τ	Ī	T	T	T	I	T				П			T	T	T	T	T	T		T		Т	T	T	T	Τ	T					2
10			T		T	T	T	1		1		T	T	T		1					T	1	1	1	1			1	1							T	T	T	T	T	1	T	T	T		T								2
11			T	Γ	T	T	T	T			Г	1		T	T				1							T		1									T	T	T					1	1	1	1	1	1	1				2
12		Г	Г	Г	Т	Τ	T	T			Г	1	T	T				m		1		Г				T	T	T							Г	T	T	T	T	T		T		T	1	1	1	1	1	1	1			2
13			T	Γ	T	T	T	T	Ī		Г	Γ	1			1				1				T	T	T	T	T							Π	T	T	T	T	T		T		T	T	1	T	Т						2
14			I	Γ	T	Τ	T	T				T	1			1	1	1	1	1	T	T	T	T	T	T	T	T							Г	T	Τ	Τ	T	T	T	T		Г	T	Τ	1	T	I					2
15				Γ	T	T	T	T				T	1		T	1										T		T								I	I	T	T			T		T	T	T	T	1						2
16					T	Τ	T	T					1			1		T		1						T	T	T								T	T	T	T	T		T				T	T	T					1	2
17				Γ	Γ	Τ	T	T				T	Τ	T							T	T	I	T	T	T	T	T							Π	T	T	T	T	T		T		T	T	Τ	Т	Γ						1
18				Γ	I	T	T	1					I	T	T						T	T	T	T	T	T	T	T								T	Τ	Τ	T	T	T	T		Г	T	Τ	T	I						1
19			T	T	T	T	T	T				T	T																							I	I	T						T	T	T	T	T						1
20							T	1										m																					T							T								1
21					Τ	I	T	T				T	T								T	Π	T	T	T	T	T	1								T	T	T							T	Г	Т	Γ						1
22			T	Г	T	T	T	T			Г	T	T		T						T	T	T	T	T	T	T	T								T	T	T	T	T		T		T	T	T	T	T	T					1

23					<u>.</u>				П								1
24																	1
25										\Box							1
26								П	П	П							1
27								П					П	П			1
28									П	П							1
29								П	П	Π				П			1
30	П							П	П	П	П			П		П	1
31								П	П				П	П			1
32																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number	3327		Initi	al Operation	Date	8/21/84			
Controller Type	2070 TS2-1		Syst	em Number		3327			
Modification Number	7		Mod	lification Da	te	08/14/2018			
Drawing/Project No	BC 5399		FPL	Grid Numb	er	86878205701			
Intersection	PINEISLA	ND ROAD	and ORA	NGE GROVI	EDRIVE				
Municip ality	DAVIE		10.74						
Controller Phase	1	2	3	4	5	6	7	8	T
Face Number	1	2		4	5	6			1
Direction .	SBL	NB		EB	NBL	SB			
Initial Green(MIN)	4	12		6.	4	12			T
Vehicle Ext.(GAP)	1.5	3.0		2.0	1,5	3.0			T
Maximum Green I	12	50		35	12	50			T
Maximum Green II									Ť
Yellow Clearance	4.0	4.0		4.0	4.0	4.0			T
All Red Clearance	2.0	2.0		2.0	2.0	2.0			T
Phase Recall	OFF	MIM		OFF	OFF	MIN			1

7

27

RED

YES

7

25

YELLOW

Attachment

Permissive

Flash Operation

Detector Delay

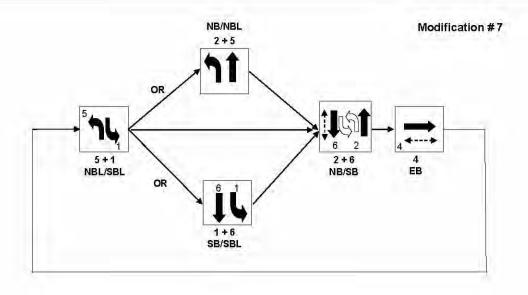
Ped estrian Clearance

Walk

NOTES:

1. ANTI-BACKDOWN NORTH/SOUTH: PHASES 2+6 ON--->OMIT PHASES 1+5

YELLOW


YES

- 2. FLASH OPERATION: 0000-0600, 7 DAYS.
- 3. MOD. 7 REFLECTS INTERSECTION REBUILD.

Submitted By	Approved By	
	77177777	

Sequence of Operation for Pine Island Rd & Orange Grove Drive (3327)

Davie

Station: 3327 - Pine Island Rd & Orange Grove Drive (Standard File)

Phase	1 (SL)	2 (NT)	3	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Walk				7		7										
Ped Clearance				27		25										
Min Green	4	12		6	4	12										
Gap Ext	1.5	3		2	1.5	3							1			
Max1	12	50		35	12	50										
Max2																
Yellow Clr	4	4		4	4	4			3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2		2	2	2			1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce						İ										
Cars Before Reduce									Î d	0 1						
Time To Reduce																
Reduce By																
Min Gap						İ						İ				
Dynamic Max Limit		i		Î												
Dynamic Max Step																
Enable	ON	ON		ON	ON	ON									1	
Auto Flash Entry				ON												
Auto Flash Exit		ON				ON			Î						1 1	
Non-Actuated 1	1														7	
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry				Î					Ì							
Sim Gap Enable				Ĭ .					ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk						ON										
Cond Service				Î					Ì							
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash						
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration					121	
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green					1 1	
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6					1 1	

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			1	
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4				
Lock				
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table				

Dwell Cyc Veh 7			
Dwell Cyc Veh 8			
Dwell Cyc Veh 9		1	
Dwell Cyc Veh 10			
Dwell Cyc Veh 11			
Dwell Cyc Veh 12			
Dwell Cyc Ped1			
Dwell Cyc Ped2			
Dwell Cyc Ped3			
Dwell Cyc Ped4			
Dwell Cyc Ped5			
Dwell Cyc Ped6			
Dwell vPed7			
Dwell Cyc Ped8			
Exit 1			
Exit 2			
Exit 3			
Exit 4			

Prepared By	Date Implemented

Station: 3327 - Pine Island Rd & Orange Grove Drive (Standard File)

Coordination

Broward County

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seque	Short	Long Dwel	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan									Eas															
		25	255																						
6		2	2	90	81	2	1	10	50	15	50		25	15	50										
9	30	13	13	80	4	13	1	10	50	15	45		20	15	45										
15		4	4	90	81	4	1	10	50	15	50		25	15	50				= 4						
20		3	3	160	84	3	1	10	50	25	100		35	25	100										
Day	Plan	2								Eas	у														
		25	255								il ai		5_3				1		<u> </u>		1				
6		100	254														7_ [1	
6.	30	5	5	80	71	5	1	10	50	15	45		20	15	45										
																		_							
	1																								

Timing Sheet

4/9/2020 9:55:49 AM

ay	Plan	3								Eas	y								
		25	255	أست															
6		100	254																
6	30	5	5	80	71	5	1	10	50	15	45	20	15	45	-				L
\exists																			-
																			İ
\Box																			L
-					_										-	_	-		-
_																			-
																			T
																		-	L
-						-									-	-		-	-
\dashv						_	-								-	_	_	1	-

Broward County Timing Sheet 4/9/2020 9:55:49 AM

Station: 3327 - Pine Island Rd & Orange Grove Drive (Standard File)

Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	-											_							_						_
															_										
																								_	
-							-																-		
_								-			_													_	
																								1. 1	
		Minute Action Plan 4																							Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split Sp

Scheduler

	M	on	th											D	ay	of	W	ee	k		D	ay	0	f N	Io.	ntl	h				1										2				T						3		
Plan	J	F	M	A	M	J	J	A		S	o	N	D	S	M	T	W	/ 1	r	1	1	1	2	3	4	5	6	7	8	9	0	1	2	3	4	1 5	6	5	7 1	3 9	0	1	2	3	4	5	6	7	8	9	0	1	Day Pla
1	1	1	1	1	1	1	1	1		1	1	1	1		1	1	1	1	1		1		ı	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ı	1 :	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1		1	1	1	1	Г				T		1	1	1	i	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1		1	1	1	1	1	Г			T			1		1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1						Г	T	T	T					1	1	1	1	1		1	T	1	1											T	T	T	T	T	T	T		T		T	T	T						2
5	1						Г	T	T	Ī					1		T	T	T	T	T		1	1												T		T	T				T	T	T	T							2
6		Г		Г	1	Г	Г	T	T	I				Г	1		T	T	T	T	T	T	T	T	I									Г	Т	Τ	Τ	T	T	T	T	T	T	T	Τ	1	1	1	1	1	1	1	2
7		Г		Г	T		1	T	T	T			Г	П		Г	Γ	I	1	Ţ	T	T		1	╗						П			Г	T	I	T	T	T		T		T	T	T	T	T	T					2
8							1	T	T	T					1	1	1	1	1			T		1	1								Г	Г	T	T	T	T	T	T	T	T	T		T	T	T						2
9		Г	Г	Г	T	Г	1	T	T	I			Г	Г	1	Г	Т	Τ	T	T	T	T	T	Ī	T	1					П			Τ	T	T	T	T	T		T		Т	T	T	T	Τ	T					2
10								1		1					1			T		T	1		1	1	1	1	1	1							T	T	T	T	T	T	T	T	T		T								2
11						Г		T	T	T		1				Г		1																		T	T	T					1	1	1	1	1	1	1				2
12		Г					Г	Т	T	T		1		П		Г	Г	T	1		T	T		T										Г	T	T	T	T	T		T		T	1	1	1	1	1	1	1			2
13				Г				T	T	I			1		1	Г	Т	T	1	T	T	T	T	T	П									Π	T	T	T	T	T		T		T	T	1	T	Т						2
14					T			Γ	T				1	Г	1	1	1	1	1	T	T	T	T	T	T									Г	T	Τ	Τ	T	T	T	T		Г	T	Τ	1	T	I					2
15									T				1		1	Г	Γ	Τ				T		T											I	I	T	T			T		T	T	T	T	1						2
16					Г		Г	T	T				1		1		I	T	1																T	T	T	T	T		T				T	T	T					1	2
17				Г		Г	Γ	Τ	T	I							Т	T	T	T	T	T	T	T										Π	T	T	T	T	T		T		T	T	Τ	Τ	Γ						1
18								I	T	I				Г	Г		Τ	T	T	T	T	T	T	T	T										T	Τ	Τ	T	T	T	T		Г	T	Τ	T	I						1
19							Γ	T	T	Ī																									I	I	T						T	T	T	T	T						1
20									T	Ī																												T							T								1
21								Т	T	Ī										T	T	T	T	T											T	T	T							T	Г	Т	Γ						1
22			I	Г	I		Г	T	T	T							T	T	T	T	T	T	T	T											T	T	T	T	T		T		T	T	T	T	T	T					1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection lyumber	3,300	Initial Operation Date	3/2/88
Controller Type	2070 TS2	System Number	3360
Madden day Noushan	77	WallSanting Park	000010010

 Modification Number
 7
 Modification Date
 09/11/2018

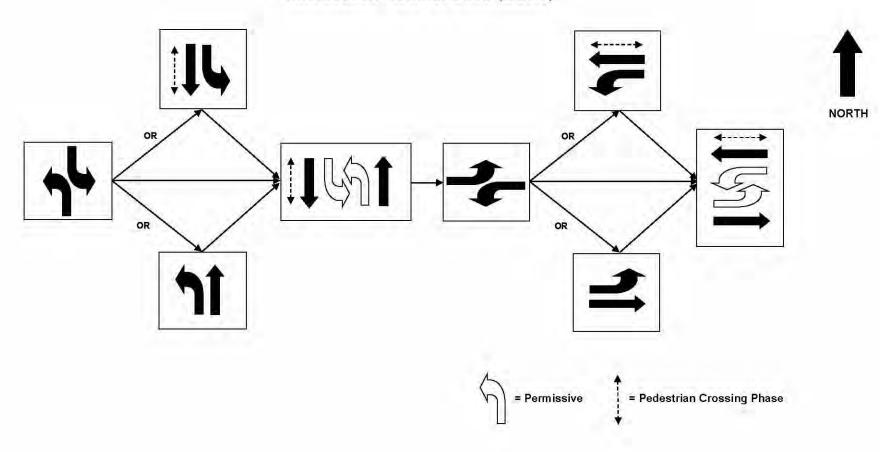
 Drawing/Project No
 BC 5399
 FPL Grid Number
 86877228804

Intersection PINEISLAND ROAD and NOVA DRIVE / EARL MORRALL PASS

Municipality DAVIE

Controller Phase	1	2	3	4	5	6	7	8
Face Number	-1	2	3	4	5	6	7	8
Direction .	SBL	NB	WBL	EB	NBL	SB	EBL	WB
Initial Green(MIN)	4	12	4	7	4	12	4	7
Vehicle Ext.(GAP)	1.5	3.0	1.5	2.0	1,5	3,0	1.5	2,0
Maximum Green I	12	45	12	30	12	45	12	30
Maximum Green II								
Yellow Clearance	5.0	5.0	4.0	4.0	5.0	5.0	4.0	4.0
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Phase Recall	OFF	MIN	OFF	OFF	OFF	MIN	OFF	OFF
Detector Delay								
Walk						.7		7
Pedestrian Clearance	-				-	16		28
Permissive	YES		YES		YES		YES	
Flash Operation		YELLOW		RED		YELLOW		RED

Attachment


NOTES:

- 1. DUAL ENTRY HARDWIRED EAST/WEST:
- 2. ANTI-BACKDOWN NORTH/SOUTH: PHASES 2+6 ON--->OMIT PHASES 1+5
- 3. MOD. 7 REFLECTS INTERSECTION REBUILD.

Submitted By	Approved By	
m) httica 13	Explored D)	

Sequence of Operation

Pine Island Road and Nova Drive Intersection Number 3360 (Davie)

Station: 3360 - Pine Island Rd & Nova Dr/Earl Morrall Pass. (Standard File)

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
200.00	(SL)	(NT)	(WL)	(EI)	(NL)	(ST)	(EL)	(WT)				1				
Walk						7		7								_
Ped Clearance						16		28								
Min Green	4	12	4	7	4	12	4	7								
Gap Ext	1.5	3	1.5	2	1.5	3	1.5	2								
Max1	20	45	12	30	12	45	12	30								
Max2																
Yellow Clr	5	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce								İ								
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit				Î												
Dynamic Max Step																
Enable	ON	ON	ON	ON	ON	ON	ON	ON		11						
Auto Flash Entry				ON				ON								
Auto Flash Exit		ON				ON									1	
Non-Actuated 1					-										1	
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry	1		1	ON				ON	-						1	
Sim Gap Enable		ON		ON		ON		ON	ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage		911		OI,		01,		911	01,	O.T.		011	0.11	011	G.,	01
Rest In Walk		ON				ON										
Cond Service	1	CIT				OIV										
Add Init Calc	1															

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash	ON	ON	ON	ON	ON	ON
Override Higher Preempt	ON	ON	ON	ON	ON	ON
Flash in Dwell	ON	ON	ON	ON	ON	ON
Link to Preempt						
Delay						
Min Duration						
Min Green						
Min Walk						
Ped Clear						
Track Green						
Min Dwell						
Max Presence						
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3]					
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			1		
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table	-				

Dwell Cyc Veh 7		
Dwell Cyc Veh 8		
Dwell Cyc Veh 9		
Dwell Cyc Veh 10		
Dwell Cyc Veh 11		
Dwell Cyc Veh 12		
Dwell Cyc Ped1		
Dwell Cyc Ped2		
Dwell Cyc Ped3		
Dwell Cyc Ped4		
Dwell Cyc Ped5		
Dwell Cyc Ped6		
Dwell vPed7		
Dwell Cyc Ped8		
Exit 1		
Exit 2		
Exit 3		
Exit 4		

Prepared By	Date Implemented

Station: 3360 - Pine Island Rd & Nova Dr/Earl Morrall Pass. (Standard File)

Coordination

Broward County

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seque	Short	Long Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan									Eas															
		100	254																						
6		2	2	160	59	2	1	3	50	25	65	25	45	25	65	25	45								
9		3	3	160	139	3	1	3	50	25	63	27	45	25	63	27	45								
15		4	4	160	148	4	1	3	50	22	65	28	45	22	65	28	45								
20		3	3	160	139	3	1	3	50	25	63	27	45	25	63	27	45								
Day	Plan	2								Eas	У												_		
		100	254									1													
6		100	254																						
6	30	3	3	160	139	3	1	3	50	25	63	27	45	25	63	27	45								
																					-	-			
							1																		

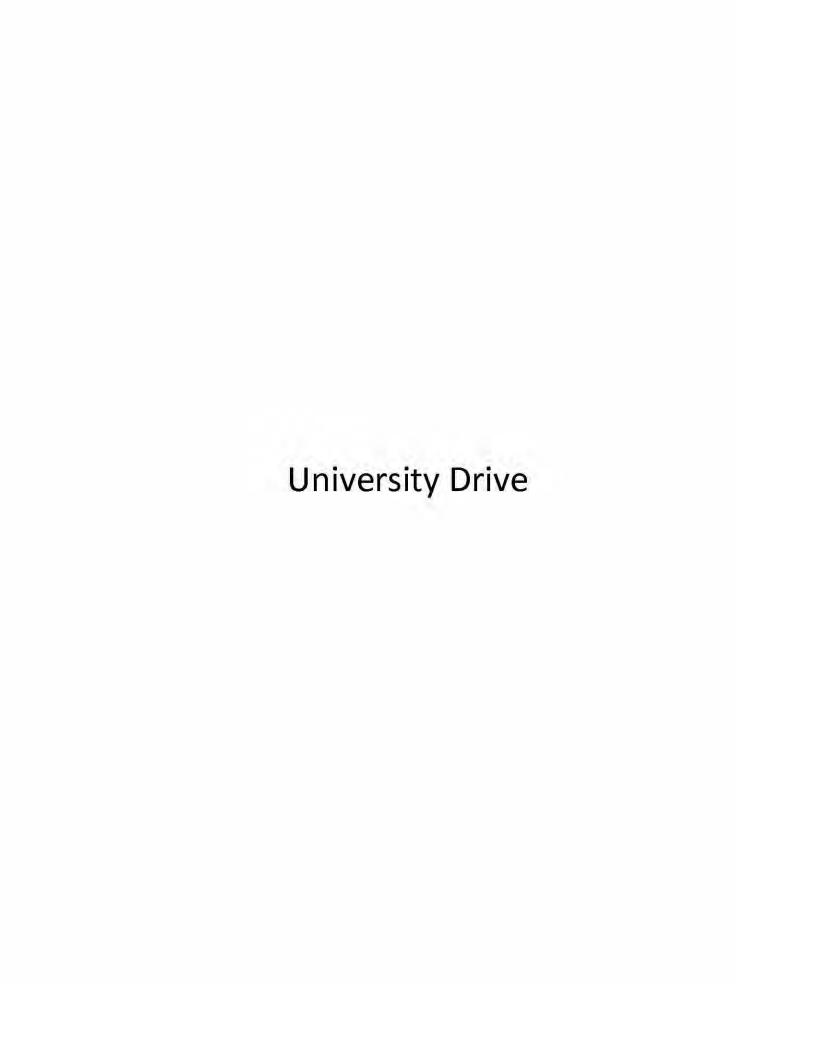
Timing Sheet

4/9/2020 9:54:38 AM

ay	Plan	3								Ea	sy											
		100	254																			
6		100	254																			
6	30	3	3	160	139	3	1	3	50	25	63	27	45	25	63	27	45					
23		100	254							-												
\Box										_								4				
\dashv										+	+							-	+		-	
\dashv							-				-		-	-				_	-	\vdash	-	_

Broward County Timing Sheet 4/9/2020 9:54:38 AM

 $\textbf{Station:}\ 3360$ - Pine Island Rd & Nova Dr/Earl Morrall Pass. (Standard File)


Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
Plan	4																								
	-				_								_		_				_	_					_
															_				_	_					
					-			-																_	
-										-													-		
_																								_	
																								1. 1	
	Plan	Minute Action Plan 4	Minute Action Pattern Plan 4	Minute Action Pattern Cycle Plan 4	Minute Action Pattern Cycle Offset Plan 4	Minute Action Pattern Cycle Offset Split Plan 4	Minute Action Pattern Cycle Offset Split Seque	Minute Action Pattern Cycle Offset Split Seque Short Plan 4	Minute Action Pattern Cycle Offset Split Seque Short Long Plan 4	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Plan 4	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split 1 Plan 4 Eas	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split 2 Plan 4 Easy	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split 1 Split 2 3 Plan 4 Easy	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split 1 2 3 4 4 Plan 4 Easy	Minute Action Pattern Cycle Offset Split Split Seque Short Long Dwell Split Sp	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split 1 2 3 4 5 6 Plan 4 Easy	Minute Action Pattern Cycle Offset Split S	Minute Action Pattern Cycle Offset Split S	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split 1 2 3 4 5 6 7 8 9 9 Plan 4 Easy	Minute Action Pattern Cycle Offset Split S	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split Sp	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split Sp	Minute Action Pattern Cycle Offset Split Split Split Split S	Minute Action Pattern Cycle Offset Split S	Minute Action Pattern Cycle Offset Split Seque Short Long Dwell Split Sp

Scheduler

	M	on	th	3									e i	D	ay	of	W	/ee	k		Ī)a	y (of :	Mo	ont	h				1										2										3	٦	
Plan	J	F	M	I A	N	1 J	J	1	1	S	o	N	D	S	M	T	v	V I	r	F	S	1	2	3	4	5	6	7	8	9	0	1	2	3	4	1 5	6	7	/ 8	9	0	1	2	3	4	5	6	7	8	9	0	1	Day Plai
1	1	1	1	1	1	1	1		ı	1	1	1	1	Т	1	1	1		i i	i		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			1			1		1
2	1	1	1	1	1	1	1		1	1	1	1	1	Г		T	T	T		T	ı	1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1		1	1	1	1	1	1		T	T	T				1	1	1	1	1	1	1	1	1	1	1	1	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1	T	T	T	T	T	T	T	7				T	T	1	1	1		1 :	1		1								Г		Г	T	Г	T		T	T	T	T	T	T	Γ		T								2
5	1	T	T	T	T	T	T	T	T		Г	Γ	Γ	Т	1	T	T	T	T	T	T	Ī	1				Γ	Г	Γ	Г			T	Г	T			T	T			T		Γ	Т							1	2
6		Г	Г	Τ	1	T	T	T	I				T	Т	1	T	T	T	T	T	T				Г		Γ	Γ	T	T		Г	Г	Г	Т	Т	T	T	T	T	T	T	Г	Γ	Γ	1	1	1	1	1	1	1	2
7	П	Т	T	T	T	T	1		T		Г		T	Т	Γ	T	Γ	I		1	Ţ	Ţ		1			Г		Г	Γ	Γ		T	Г	T			T	T		T		Γ	T	T				Г			T	1
8		T	T	T	T	T	1		T			Π	T	T	1	1	1		1	1					1	Г			Г	Г		Г	Г	Г	T	T	T	T	T	T	T	T	T		T								1
9		Γ	Г	Τ	T	T	1	1	I			Γ	Γ	Τ	1	T	Τ	T	T	T	T	Ī				1	Γ	Γ	Γ	Γ	Π	Γ	T	Γ	T	T		T	T	T	T		Γ	Г	Т	T	Г		Г			Ī	2
10		T	T	T	T	T	T	T	1	1			T	Г	1	T	T	T		T	T	1	1	1	1	1	1	1	T	T	T		T	Г	T	T	T	T	T	T	T	T	Г		Γ				-			1	2
11	Г		T	T	T	T	T	Ţ	T			1	T	Г	Т	T	T	1	1	Ţ	T												T		T	T	T	T	T	T	T		1	1	1	1	1	1	1			T	2
12		T	T	T	T	T	T	T	T			1		T	Τ	T	T	T		1										Г								T	T		T	T	T	1	1	1	1	1	1	1			2
13				Τ	T	T		T	I				1	Γ						1																									1								2
14			L	I	I	Ι	1	1	I				1		1	1	1		1	1	I																	I	I						L	1						1	2
15													1		1																																1	-					2
16			L			I		I	I				1		1																	E	L												L							1	2
17				Ι				1																																													1
18		Г	I	Τ	T	T	T	T	I					Г				T	T	T	T	T							Г	T	Г				T	Т	T	T	T	T	T	T	Г		Γ							T	1
19					I	T			T															L																					L							T	1
20																																													I								1
21				Ι					J													J																							I							J	1
22		T	I	T	T	T	T	T	Ī								T	T	T	T	T	T						Г	Г			Г	Г	Г	T	T		T			T	T	Γ	I	T	I			E			1	1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

8351: 2239 - University Dr & Cleary Blvd (Upload File)

Phase [1.1.1]

	1 (SL)	2 (NT)	3 (WT)	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	7-1	0	0	0	0	0	0	0	0_	0	0
Ped Clearance	.0	24	0	35	0	24	0	.0	0	0	0	0	0	0	.0	0
Min Green	5	12	6	6	5	12	0	0	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	2.5	2.5	1.5	3	0	0	0	0	0	0	0	0	0	0
Max1	12	50	15	30	20	50	0	.0	0	0	0	0	0	0	.0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	4.5	4.5	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	0	0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NT)	3 (WT)	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON	ON	ON										
Lock Call	ON				ON				ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall							-									
Ped Recall																
Dual Entry															1 7 1	12
Sim Gap Enable						-			ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	4	-8:	0	2	.0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	2	0	0	18	1.5	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	-0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

Broward County

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	- 0	0	.0.	0	.0	.0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date: **System Timing Sheet**

TB Coor, Day Plan [4.4]

Day Plan Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20			-						-		
Minute		1 7 1														
Action	100	2	3	4	3			-								
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute			30													
Action	3	100	3							1.						
Day Plan Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6	23												
Minute	1		30							1.						
Action	3	100	2	100						1						

Coordination, Pattern 1-16 [2,1]/Coordination, Alt Tables+[2,6]

Pattern	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Cycle Time		160	160	160							-					
Offset Time		129	129	109												
Split Number		2	3	4	-											
Seq Number	1	1	1	1	1	1	1	1	.1	1	1-1-	1	1	1	1	1
Ph Opt Alt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ph Time Alt	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0	0	0

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			-		-			-			1					
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 2	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16
Time	22	86	14	38	22	86										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	22	86	14	38	22	86										
		¥	F 120 012 01		NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Mode	NON	MXP	NON	NON	MON	IVIXP	14014	14 014	14014		TACATA	14 7/14	14014	TACTA	TACTA	TAOL
Mode Coord Phase	NON	ON	NON	NON	NON	MAP	NON	NON	INOIN	11011	11/011	11011	11011	11011	HOH	NON
E. CONTRACTOR	NON	0 - 7 - 1000	NON	NON	NON	MXP	NON	NON	NON	11011	11011	14014	HOH	HOI	NON	NON
Coord Phase		ON					7,5									
Coord Phase Split Table 4	1	ON 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Coord Phase Split Table 4 Time	1 22	ON 2 86	3	4 38	5 22	6	7	8	9	10	11	12	13	14	15	16
Coord Phase Split Table 4 Time Mode	1	ON 2 86 MXP	3	4	5	6	7,5									16
Coord Phase Split Table 4 Time	1 22	ON 2 86	3	4 38	5 22	6	7	8	9	10	11	12	13	14	15	16
Coord Phase Split Table 4 Time Mode	1 22	ON 2 86 MXP	3	4 38	5 22	6	7	8	9	10	11	12	13	14	15	16
Coord Phase Split Table 4 Time Mode	1 22	ON 2 86 MXP	3	4 38	5 22	6	7	8	9	10	11	12	13	14	15	16 NON
Coord Phase Split Table 4 Time Mode Coord Phase	1 22 NON	ON 2 86 MXP ON	3 14 NON	4 38 NON	5 22 NON	6 86 MXP	7 NON	8 NON	9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	16 NON
Coord Phase Split Table 4 Time Mode Coord Phase Split Table 5	1 22 NON	ON 2 86 MXP ON	3 14 NON	4 38 NON	5 22 NON	6 86 MXP	7 NON	8 NON	9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	16 NON
Coord Phase Split Table 4 Time Mode Coord Phase Split Table 5 Time	1 22 NON	ON 2 86 MXP ON 2	3 14 NON	4 38 NON	5 22 NON	6 86 MXP	7 NON	8 NON	9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	
Coord Phase Split Table 4 Time Mode Coord Phase Split Table 5 Time Mode	1 22 NON	ON 2 86 MXP ON 2	3 14 NON	4 38 NON	5 22 NON	6 86 MXP	7 NON	8 NON	9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	16 NON
Coord Phase Split Table 4 Time Mode Coord Phase Split Table 5 Time Mode Coord Phase	1 22 NON	ON 2 86 MXP ON 2	3 14 NON	4 38 NON	5 22 NON	6 86 MXP	7 NON	8 NON	9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	16 NON
Coord Phase Split Table 4 Time Mode Coord Phase Split Table 5 Time Mode	1 22 NON	ON 2 86 MXP ON 2 NON	3 14 NON 3	4 38 NON 4	5 22 NON 5	6 86 MXP	7 NON 7 NON	8 NON	9 NON	10 NON 10 NON	11 NON	12 NON 12 NON	NON 13	14 NON 14 NON	15 NON 15 NON	16 NON
Coord Phase Split Table 4 Time Mode Coord Phase Split Table 5 Time Mode Coord Phase	1 22 NON	ON 2 86 MXP ON 2 NON	3 14 NON 3	4 38 NON 4	5 22 NON 5	6 86 MXP	7 NON 7 NON	8 NON	9 NON	10 NON 10 NON	11 NON	12 NON 12 NON	NON 13	14 NON 14 NON	15 NON 15 NON	16 NON

The land of the State of the St	
Approved By: Carmen Li	Date:
Approved by, Carrier Li	Date.

8351 : 2239 - University Dr & Cleary Blvd (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6	
Lock Input	ON	ON	ON	ON	ON	ON	
Override Auto Flash		ON					1
Override Higher Preempt		ON					1
Flash in Dwell		ON					
Link to Preempt							
Delay							1
Min Duration							
Min Green	6		6	6	6	6	1
Min Walk							1
Ped Clear							1
Track Green		-					1
Min Dwell	8		8	8	8	8	
Max Presence	180		180	180	180	180	
Track Veh 1	1	-					
Track Veh 2							
Track Veh 3							1
Track Veh 4					1	1	1
Dwell Cyc Veh 1	2		1	3	2	4	1
Dwell Cyc Veh 2	6		6		5		
Dwell Cyc Veh 3					-		
Dwell Cyc Veh 4							
Dwell Cyc Veh 5							
Dwell Cyc Veh 6	4						1
Dwell Cyc Veh 7					-		
Dwell Cyc Veh 8							1
Dwell Cyc Veh 9							
Dwell Cyc Veh 10							
Dwell Cyc Veh 11							
Dwell Cyc Veh 12							
Dwell Cyc Ped1							1
Dwell Cyc Ped2							1
Dwell Cyc Ped3							
Dwell Cyc Ped4							
Dwell Cyc Ped5							
Dwell Cyc Ped6							
Dwell vPed7						1	į
Dwell Cyc Ped8							
Exit 1	4		2	1	2	1	
Exit 2	8		6	5	6	5	
Exit 3	1						
Exit4							

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON		ON	ON	ON	ON
Type	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash						
Coord in Preempt	ON		ON	ON	ON	ON
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-			-	-	
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U L	
Track Over 2						
Track Over 3						
Track Over 4						
Track Over 5						
Track Over 6						
Track Over 7						
Track Over 8			1-1			
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3						
DwellCyc Over 4			-		2.0	
DwellCyc Over 5		11				
DwellCyc Over 6						
DwellCyc Over 7					10	
DwellCyc Over 8						
DwellCyc Over 9			4			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					i i	Î
Ped Clear						
Yellow	4					
Red	2					
Return Max						8

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 2	0	0	3	4	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 3	0	0	0	0	5	6	0	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 4	0	0	0	0	0	0	7	8	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1,5

200						-						-	-
A	-	-	ma	874	10	P	¥7 .	. 1	10	TTY	ien	T	1
			ıv		74.				ν α		1011		

Date		

8351: 2239 - University Dr & Cleary Blvd (Upload File)

Alternate	Dhann	Dunman	1 Internal	Timas	11 1 6 11
Alternate	Phase	Program	1. interval	11111165	11.1.0.11

Phase	Walk	Ped Clear	Min Green	Passage	Max 1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
	2	2	2	2	2	2	2	2	2	

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	,
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
4	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

ni.	XX/-11-	Ped	Min	Passage	3.71	35	X7 - 11	Red	Assign	Bike
Phase	waik	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Alternate Phase Program 5, Interval Times [1.1.6.1]

Diversi		Ped	Min	Dassage	Mort	Mana		Red	Assign	Bike
Phase	Walk	Clear	Green	Passage	MIAXI	Maxa	Yellow	Clear	Ph	Clear

TB Coor, Day Plan [4.4]

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute		1				1									11.	
Action	1					1										

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		10 00 00													1	
Minute		1														
Action		10000	-							1				7		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute						-		-			-					
Action																

Approved By: Carmen Li	Date:

8351 : 2239 - University Dr & Cleary Blvd (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time					-			-								
Mode	NON	NON	NON	NON	NON	NON	NON	иои	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1			1		F.				1						
Split Table 8	1 1	1 2	3	1 4	5	6	7	8	9	10	111	12	13	14	15	16
Time	-		3	- 4	3	- 0	-	0	9	10	11	12	13	14	15	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
	NON	INOIN	INOIN	NON	NON	NON	NON	NON	NON	NON	INOIN	14 O14	14014	NON	NON	NON
Coord Phase	1	1							1	1						
Split Table 9	l i	2	3	1 4	5	6	7	8	9	10	111	12	13	14	15	16
Time											-					100
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1,01,	1,01,	11.011	11011	2,021	21021	11011	11011	1,01,	11.021	1,01,	21,021	23.023	11011	11011	1101
C COIG THUS	1				_					-	_					
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time													1-0-1			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Culit Table 11		L	1 2			1 2	-	l o	1 6	1 10		1 40	1 42	1	15	146
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	37037	NTONT	TOTAL	NTONT	NTONT	NTONT	ATONT	NTONT	NTONT	ITOIT	NTONT	NTONT	NTONT	TOTAL	NTONT	MON
Mode Coord Phase	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time						1										
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		1000		1									1200	1000	-	
Split Table 13	1	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1		3	2.9	3	0	1	0	У	10	1.1	12	13	14	15	10
	STOST	NTONT	NONE	STOST	NECONT	NTONT	STOST	STOST	NTONT	NTONT	NEWNT	NEONE	NTONT	STOST	ATOAT	MON
Mode	NON	NON	NON	NON	NON	NON	иои	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase										_						
Split Table 14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	12-5										-		D-100			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				I.]						1
	1			0.00	1 -		1 7	I 0	[a	1 10	1 44	1 12	1 42	Di saran I	1 45	1 10
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	17017	37037	37035	37037	17017	17017	17017	17017	27027	17017	27027	17017	17017	ATOAT	17017	1703
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1									_						
Split Table 16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time											-				-	
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11011	11011	11011	11011	21021	11011	11011	11011	11.011	11011	11011	21021	11011	1,011	11011
COUNT THAT	1		1	1	1	1				1	1			1		1

Date:
D

Phase [1.1.1]

	1 (SL)	2 (NT)	3	4	5	6 (ST)	7	8 (WT)	9	10	11	12	13	14	15	16
Walk	0	7	0	0	0	0 1	0	7	0	0	0	0	0	0	0	0
Ped Clearance	.0	18	0	0	0	0	0	31	0	0	0	0	0	0	.0	0
Min Green	5	12	0	0	0	12	0	6	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	0	0	0	3	0	2	0	0	0	0	0	0	0	0
Max1	20	50	0	0	0	50	0	30	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	0	0	0	5	0	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	0.	0	0	2	0	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NT)	3	4	5	6 (ST)	7	8 (WT)	9	10	11	12	13	14	15	16
Enable	ON	ON				ON		ON							-	
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall							-									
Ped Recall																
Dual Entry															-	
Sim Gap Enable					-				ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	8	4	5	6	7	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Ω

Detector, Vehicle Parameters 49-64 [5.1]

Broward County

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	- 0	0	0	0	0	0	0	0	0	0	0	.0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0

Approved By: Carmen Li

Date:

7890 : 2238 - University Dr & NW 5 St (Upload File)

TR Coor Day Plan (4.4)

Day Plan Table 1	1	2	3	4	.5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20	-			-				-	-		
Minute																
Action	100	2	3	4	3											
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute			30													
Action	3	100	3	J.												
Day Plan Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour	10	_ 1	6	23												
Minute			30													
Action	3	100	3	100												
Cycle Time		160	160	160									20			
Coordination,	Pattern 1	1-16 (2.	11/Coor	dination	n, Alt Ta	bles+12	.6]									
Pattern	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
											-					
Offset Time		49	55	104												
Split Number		2	3	4					-					-	- 4	-
Seq Number	1	1	1.	1	1	1	1	1	1	1	1	1.	1	1	1	1
Ph Opt Alt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ph Opt Alt Ph Time Alt Coordination, S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ph Opt Alt	0 0 plits [2.7	0 0 '.1]	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1	0 0 plits [2.7	0 0 '.1]	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time	0 0 plits [2.7	0 0 '.1] 2	3	0 0	5	6	7	8	9	10	11	0 0	0 0	0 0	0 0	16
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time Mode	0 0 plits [2.7	0 0 '.1] 2	3	0 0	5	6	7	8	9	10	11	0 0	0 0	0 0	0 0	16
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time Mode Coord Phase	0 0 plits [2.7	0 0 '.1] 2	3	0 0	5	6	7	8	9	10	11	0 0	0 0	0 0	0 0	16
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time Mode Coord Phase	o o plits [2.7	0 0 7.1] 2 NON	0 0 3 NON	0 0	0 0 5 NON	0 0 0	0 0	0 0 8	0 0 0 NON	0 0 10 NON	0 0 11 NON	0 0 12 NON	0 0 13 NON	0 0 14 Non	0 0 15	0 0
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time Mode Coord Phase Split Table 2	0 0 plits [2.7	0 0 7.1] 2 NON	0 0 3 NON	0 0	0 0 5 NON	6 NON	0 0	8 NON	0 0 0 NON	0 0 10 NON	0 0 11 NON	0 0 12 NON	0 0 13 NON	0 0 14 Non	0 0 15	0 0 16 NON
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time Mode Coord Phase Split Table 2 Time	0 0 plits [2.7 1 NON	0 0 0 7.1] 2 NON	0 0 0 NON	0 0 0	0 0 0	6 NON	7 NON 7	0 0 8 NON	9 NON	10 NON 10	0 0 11 NON	12 NON	13 NON	0 0 14 NON	0 0 15 NON	0 0 16 NON
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time Mode Coord Phase Split Table 2 Time Mode Coord Phase	0 0 plits [2.7 1 NON	0 0 0 2 1] 2 NON 2 52 MXP	0 0 0 NON	0 0 0	0 0 0	6 NON	7 NON 7	0 0 8 NON	9 NON	0 0 10 NON	0 0 11 NON	12 NON	0 0 13 NON	0 0 14 NON	0 0 15 NON	0 0
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time Mode Coord Phase Split Table 2 Time Mode	0 0 0 plits [2.7 1 NON 1 45 NON	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 NON	0 0 0	0 0 0	6 NON	7 NON 7	8 8 63 NON 8	9 NON	10 NON 10	0 0 11 NON	12 NON	13 NON	0 0 14 NON	0 0 15 NON	0 0 16 NON
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time Mode Coord Phase Split Table 2 Time Mode Coord Phase	0 0 0 1 NON	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 NON	0 0 NON	0 0 0 5 NON	6 NON 6 97 MXP	7 NON 7	0 0 8 NON 8 63 NON	o o non	0 0 10 NON	0 0 11 NON	0 0 0 12 NON	0 0 13 NON	0 0 14 NON	0 0 15 NON	0 0 16 NON
Ph Opt Alt Ph Time Alt Coordination, S Split Table 1 Time Mode Coord Phase Split Table 2 Time Mode Coord Phase Split Table 3	0 0 0 plits [2.7 1 NON 1 45 NON	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 NON	0 0 NON	0 0 0 5 NON	6 NON 6 6 MXP	7 NON 7	8 8 63 NON 8	o o non	0 0 10 NON	0 0 11 NON	0 0 0 12 NON	0 0 13 NON	0 0 14 NON	0 0 15 NON	0 0 16 NO1

Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	36	70				106		54								
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Čulit Tabla S					I #				I 6	I 10				1 **	1 45	1
Split Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 5 Time Mode	1 NON	2 NON	3 NON	4 NON	5 NON	6 NON	7 NON	8 NON	9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	16

Split Table 6	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16
Time														a		
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase															1	

Approved By: Carmen Li	Date:
Approved by, Carmon bi	Date.

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash				ON	ON	ON
Override Higher Preempt				ON	ON	ON
Flash in Dwell				ON	ON	ON
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6			
Min Walk						
Ped Clear	1					
Track Green						
Min Dwell	8	8	8			
Max Presence	180	180	180			
Track Veh 1					-	
Track Veh 2						
Track Veh 3						
Track Veh 4		_			1	1
Dwell Cyc Veh 1	2	8	1			
Dwell Cyc Veh 2	6		6			
Dwell Cyc Veh 3		-				-
Dwell Cyc Veh 4	1					
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						1
Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11						
Dwell Cyc Veh 12						
Dwell Cyc Ped1						
Dwell Cyc Ped2						
Dwell Cyc Ped3						
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6	+					-
Dwell vPed7	1	-				
Dwell Cyc Ped8	1					
Exit 1	8	1	2			
Exit 2	-	6	6			
Exit 3	1	0	0		_	_
Exit 4	1		_	-	-	

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON	ON	ON			-
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash			-			
Coord in Preempt	ON	ON	ON			
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-					
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U.	
Track Over 2						
Track Over 3					11	
Track Over 4						
Track Over 5					0.00	
Track Over 6						
Track Over 7						
Track Over 8			li I			
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3						
DwellCyc Over 4			-		2 0	
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7	1		95			
DwellCyc Over 8		1			()	
DwellCyc Over 9			1-1			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					n i	
Ped Clear						
Yellow	4	4	4	-	1	
Red	2	2	2			
Return Max						8

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phas	es			Type	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5

Assumented Des. Common Li	Data
Approved By: Carmen Li	Date:

Alternate	Dhaca	Dragram	1 Interval	Timos	11	1	2	1	ļ
Alternate	PDASE	Program	1. Interval	111111125	11		n.	ш	ſ

Phase	Walk	Ped Clear	Min Green	Oncean	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
9	3	3	3	2	3	3	3	3	3	

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	,
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	l Max1 l	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3.	3	3	3	3	3	3	3	3	1
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	-3	
3	3	3	3	3	3	3	3	3	3	1
4	3	3	3	3	3	3	3	3	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

n	XX -11-	Ped	Min	Passage	35 1	35	X7 . 11	Red	Assign	Bike
Pnase	wark	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Alternate Phase Program 5, Interval Times [1.1.6.1]

Phase W	Per	d Min	Passage	Max1	May2	Vollow	Red	Assign	Bike
I mase V	Cle	ar Green	Lussinge	1	MAAL	T CITO W	Clear	Ph	Clear

TB Coor, Day Plan [4.4]

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1.1														
Minute		1 4				1							1			
Action		1 = 1														

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		10 0 00										(1	
Minute		1														
Action		10.00	-	1					-					*		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute						-		-			-					
Action																

Approved By: Carmen Li	Date:
Approved by, Calmen Li	Date.

10/15/2019

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase																
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																-
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase				-												
Split Table 9	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-	-	3				-	- 0	,	10	4,4	1.2	1.3		10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase	INOIN	INCIN	NON	INOIN	11011	14014	NON	NON	INOIN	NON	14014	14.014	14014	NON	INOIN	1401
Coord Tilasc	-		_	_	_	_					_					_
N. 124 PD 11 X 40	1-2-1						-		I 6			1 40			r as a	1 42
Split Table 10 Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	NON	ATOAT	MONT	NTONT	TOTAL	NONE	ATOM	STOST	TTOTT	MONT	MONT	37037	NONE	ATOAT	17017	3703
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase						_										
									140				3.51			
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	NTONT	NONE	NONE	NTONT	NTONT	ATONT	NTONT	MONT	TOTAL	TOTAL	MONT	TOTAL	NTONE	STORT	NIONI	3703
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase	-			-												
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase											12.10				-	
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	4.0			
Time										~.0	1.1	14	13	14	15	16
Time											1.1	12	13	14	15	16
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	14 NON	15 NON	
	NON	NON	NON	NON	NON	NON	NON	NON								NON
Mode	NON	NON	NON	NON	NON	NON	NON	NON								
Mode Coord Phase Split Table 14	NON 1	NON 2	NON 3	NON 4	NON 5	NON 6	non 7	NON 8								
Mode Coord Phase Split Table 14 Time	1	2	3	4	5	6	7	8	NON 9	non 10	NON	NON 12	NON	NON 14	NON	NOP
Mode Coord Phase Split Table 14 Time Mode									NON	NON	NON	NON	NON	NON	NON	NO1
Mode Coord Phase Split Table 14 Time	1	2	3	4	5	6	7	8	NON 9	non 10	NON	NON 12	NON	NON 14	NON	NO1
Mode Coord Phase Split Table 14 Time Mode	1	2	3	4	5	6	7	8	NON 9	non 10	NON	NON 12	NON	NON 14	NON	NO1
Mode Coord Phase Split Table 14 Time Mode Coord Phase	1	2	3	4	5	6	7	8	NON 9	non 10	NON	NON 12	NON	NON 14	NON	16
Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time	1 NON	NON 2	3 NON	4 NON	5 NON	6 NON	7 NON	8 NON	NON 9	10 NON	NON 11 NON	NON 12 NON 12	NON 13	NON 14 NON 14	15 NON	16 NOM
Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode	1 NON	2 NON	3 NON	4 NON	5 NON	6 NON	7 NON	NON 8	NON 9	10	NON 11 NON	NON 12 NON	NON 13	NON 14 NON	NON 15 NON	16
Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time	1 NON	NON 2	3 NON	4 NON	5 NON	6 NON	7 NON	8 NON	NON 9	10 NON	NON 11 NON	NON 12 NON 12	NON 13	NON 14 NON 14	15 NON	160 NOI
Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode	1 NON	NON 2	3 NON	4 NON	5 NON	6 NON	7 NON	8 NON	NON 9	10 NON	NON 11 NON	NON 12 NON 12	NON 13	NON 14 NON 14	15 NON	160 NOI
Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	1 NON	NON 2	3 NON	4 NON	5 NON	6 NON	7 NON	8 NON	NON 9	10 NON	NON 11 NON	NON 12 NON 12	NON 13	NON 14 NON 14	15 NON	16 NOI 16
Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	1 NON NON	NON 2	3 NON	4 NON	5 NON	6 NON	7 NON	8 NON	NON 9 NON NON	NON 10 NON NON	NON 11 NON	NON 12 NON 12 NON	NON 13 NON 13 NON	NON 14 NON NON	NON 15 NON 15 NON	160 NOI
Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	1 NON NON	NON 2	3 NON	4 NON	5 NON	6 NON	7 NON	8 NON	NON 9 NON NON	NON 10 NON NON	NON 11 NON	NON 12 NON 12 NON	NON 13 NON 13 NON	NON 14 NON NON	NON 15 NON 15 NON	16 NOI 16

Approved By: Carmen Li

Date:

7740 : 2342 - University Dr & NW 3 St/Fashion Mall (Upload File)

Phase [1.1.1]

	1	2 (NT)	3	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	7	0	0	0	0	0	0	0	.0	0	0
Ped Clearance	.0	0	0	32	0	25	0	.0	0	0	0	0	0	0	.0	0
Min Green	0	12	0	6	4	12	0	0	0	0	0	0	0	0	0	0
Gap Ext	0	3	0	3	1.5	3	0	0	0	0	0	0	0	0	0	0
Max1	0	60	0	30	12	60	0	.0	0	0	0	0	- 0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	4	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	0	2	0.	2	2	2	0	0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1	2 (NT)	3	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Enable		ON		ON	ON	ON								1		1
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Dual Entry		ON			1	ON										12.0
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	8	0	2	.0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	-0	0	.0	0	0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

Broward County

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	- 0	0	0	0	.0	. 0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date: **System Timing Sheet**

7740 : 2342 - University Dr & NW 3 St/Fashion Mall (Upload File)

TB Coor, Day Plan [4.4]

Day Plan Table 1	1	2	3	4	.5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20		-						-			
Minute																
Action	100	2	3	4	3		-	-								
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute			30													
Action	3	100	3													
Day Plan Table 3	1	2	3	23	5	6	7	8	9	10	11	12	13	14	15	10
									_							
Hour	10	1	6	23												
Minute	1		30													
Action	3	100	3	100												
Coordination, Pa	attern 1-1	16 [2.1]	/Coord	ination,	Alt Tab	oles+[2.	5] 1 7	8	1 9	T 10	111	12	13	14	15	16
Cycle Time		160	160	160	-		-		-	10	11	12	1.0	17	1.0	10
Offset Time		51	51	121					+	1			-		-	-
Split Number		2	3	4					-	1						_
Seq Number	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1
Ph Opt Alt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ph Time Alt	0	0				-										U
			0	0	0	0	0	0	0	0	0	0	0	0	0	- 0

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	100		-		100	1		100			100					
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		110		50	25	85										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON									-				19 10 1	
Split Table 3		2	3	4	5	6	7	8	9	10	n	12	13	14	15	16
Time		110		50	25	85				10		12	10		10	10
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	4.09.00	ON	165631	10000	740,445			1		127.53	(4144)	147,443		7,570	4.00	
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		110		50	25	85										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON				1										
	1								- 2							
Split Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time				12222												
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1															
Split Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
THIE																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI

Approved By: Carmen Li	Date:
Approved by, Calmen Er	Date:

7740 : 2342 - University Dr & NW 3 St/Fashion Mall (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6	
Lock Input	ON	ON	ON	ON	ON	ON	
Override Auto Flash		ON	ON	ON			
Override Higher Preempt		ON	ON	ON			
Flash in Dwell		ON	ON	ON			Ī
Link to Preempt							Ī
Delay							
Min Duration							Ī
Min Green	6				6	6	
Min Walk							1
Ped Clear							
Track Green		-			-1-		
Min Dwell	8		1		8	8	Ī
Max Presence	180				180	180	
Track Veh 1	1	-			9	-	1
Track Veh 2							
Track Veh 3							1
Track Veh 4							
Dwell Cyc Veh 1	-2				2	4	1
Dwell Cyc Veh 2	6				5		
Dwell Cyc Veh 3							
Dwell Cyc Veh 4							1
Dwell Cyc Veh 5			-				-
Dwell Cyc Veh 6	1						
Dwell Cyc Veh 7					- 1	1	
Dwell Cyc Veh 8							
Dwell Cyc Veh 9							Ī
Dwell Cyc Veh 10							
Dwell Cyc Veh 11							
Dwell Cyc Veh 12	1						Ī
Dwell Cyc Ped1			-			-	
Dwell Cyc Ped2							
Dwell Cyc Ped3							Ī
Dwell Cyc Ped4							1
Dwell Cyc Ped5							
Dwell Cyc Ped6							Ī
Dwell vPed7							
Dwell Cyc Ped8						11 = 1	
Exit 1	4	1			2	2	
Exit 2		-			6	5	
Exit 3						1	1
Exit 4							1

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON				ON	ON
Type	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash						
Coord in Preempt	ON				ON	ON
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	1		-	-		
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1						
Track Over 2						
Track Over 3					1	
Track Over 4					0	
Track Over 5					0	
Track Over 6						
Track Over 7						
Track Over 8			1-1			
Track Over 9						
Track Over 10		-				
Track Over 11					0	
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3						
DwellCyc Over 4					2 0	
DwellCyc Over 5						
DwellCyc Over 6		-				
DwellCyc Over 7			9			
DwellCyc Over 8						
DwellCyc Over 9			1			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					(iii	
Ped Clear						
Yellow	-	1			1	
Red						
Return Max	1					8

Overlap Program Parameters [1.5.2.1]

Overlap			Ir	clude	l Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5

Approved By: Carmen Li	Date:

7740 : 2342 - University Dr & NW 3 St/Fashion Mall (Upload File)

Alternate Phase	Drogram 1	Intonval	Timos	11161	ĺ
Alternate Phase	Program L	interval	Times	1.1.0.1	

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3.	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
4	2	2	2	2	2	2	2	2	- 2	

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0.	0	0	0	0	0	0	,
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	-
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
3	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

DI.	***	Ped	Min	Passage	35 - 1	35	57 - W	Red	Assign	Bike
Phase	wark	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Alternate Phase Program 5, Interval Times [1.1,6.1]

			-			-		_		_
1		Ped	Min					Red	Assign	Bike
Phase	Walk	Clear	Green	Passage	Maxi	Max2	Yellow	Clear	Ph	Clear

TB Coor, Day Plan [4.4]

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute		1				1							1		11.	
Action																

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		11 0 11													1	
Minute																
Action		-	-							1		-		7	1	+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute																
Action																

*
*

7740 : 2342 - University Dr & NW 3 St/Fashion Mall (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-				-			-	_							-
Mode	NON	NON	NON	NON	NON	NON	NON	ИОИ	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1			1		F.										
Split Table 8	1	1 2	3	1 4	5	· ·	7	8	9	10	1 11	12	13	14	15	16
	1	2	3	4	3	6	1	8	y	10	- 11	12	13	14	15	10
Time Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
	NON	INOIN	NON	NON	NON	NON	NON	NON	INOIN	NON	INOIN	NON	14014	NON	NON	NON
Coord Phase	1								1	1	1	1				
Split Table 9	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time											-					
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1,01,	1,01,	1,01,	1,01,	1,01	11011	1,01	11011	11021	1,01,	1,01,	2,01,	1,013	1,01,	11021	1,01,
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 11	1	1 2	3	1 4	5	6	7	8	9	10	l n	12	13	14	15	16
Time	1.4			70	3		-		-2.	10	-11	1,2	13		10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	NON	NON	NON	14014	NON	NON	INOIN	NON	NON	INON	NON	NON	INOIN	NON	NON	NON
O OOTG THUSC		_					_		_	-						-
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time						1										
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				1					-				100	Trees		1,000
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase										_						
Split Table 14	1	1 2	3	1 4	5	6	7	8	1 9	10	11	12	13	14	15	16
Time	-												100			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		-	-													
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1		-			1			-			-	-			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 16	1	1 2	3	1 4	5	6	7	8	9	10	111	12	13	14	15	16
	A THE PARTY	4	3	4	3	0	1		У	10	11	1.2	13	14	15	10
Time	NON	MONT	MONT	NTONT	MON	MON	NON	NON	MONT	NONT	NION	NON	MONT	NONE	MONT	MONT
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				1		1					1					

Date:

Phase [1.1.1]

	1 (SL)	(NT)	3 (ET)	4 (WT)	5 (ER)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Walk	0	7	7_	0	0	7	0	0	0	0	0	0	0	.0_	0	0
Ped Clearance	.0	21	30	0	0	21	0	.0	0	0	0	0	0	0	.0	0
Min Green	5	12	6	6	5	12	0	0	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	2	2	1.5	3	0	0	0	0	0	0	0	0	0	0
Max1	18	60	35	20	18	60	0	.0	0	0	0	0	- 0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	0	0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NT)	3 (ET)	4 (WT)	5 (ER)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON	ON	ON										1
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Dual Entry																
Sim Gap Enable					-	-			ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	- 8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	3	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	.0	0	0	0	0	0	0	.0	0	0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	0
Delay Time	0	0	D.	0	0	0	0	0	0	0	0	D.	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date:

7730: 2311 - University Dr & NW 2 St (Upload File)

Broward County

TB Coor, Day Plan [4.4]

Minute

Action

Hour 6 Minute Action 100 2	9	15	20		-									
Action 100 2														
Action 100 2	3	4	3			-								
Day Plan Table 2 1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour 1	6													
Minute	30			1										
Action 3 100	3													

Coordination, Pattern 1-16 (2.11/Coordination, Alt Tables+[2.6]

100

6 30 3

100

Pattern	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Cycle Time		160	160	160							-	160				
Offset Time		42	31	27								36				
Split Number		2	3	4								12			,	
Seq Number	1	1	1.	1	1	1	1	1	1	1	1	1.	1	i	1	1
Ph Opt Alt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ph Time Alt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time								-			100					
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 2	1 1	2	3	1 4	5	1 6	7	8	9	10	11	12	13	14	15	16
Time	20	82	34	24	15	87										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 3	T 1	1 2	3	4	1 5	1 6	7	8	9	1 10	111	12	13	14	15	16
Time	20	82	34	24	15	87			- /	10	11	12	13	17	15	10
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	14014	ON	11011	14014	11011	TATAT	14014	14014	14014	14014	14014	11011	14014	11011	14014	11011
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	17	85	34	24	15	87										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
		1	1	Tare 1		6	7	8	9	10	11	12	13	14	15	16
Split Table 6	1	2	3	4	5	0	1	0	,	10	11	14	13	1.4	13	10
Split Table 6 Time	1	2	3	4	3	0		8	9	10	- 11	12	13	- 15	15	10
	1 NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON

Approved By: Carmen Li	Date:
Approved by, Carmen Er	Date.

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash		ON				
Override Higher Preempt		ON				
Flash in Dwell		ON				
Link to Preempt						
Delay						
Min Duration						
Min Green	6		6	6	6	6
Min Walk						
Ped Clear					-	
Track Green		-			-	
Min Dwell	8		8	8	8	8
Max Presence	180		180	180	180	180
Track Veh 1		-				
Track Veh 2						
Track Veh 3						
Track Veh 4					1	
Dwell Cyc Veh 1	2		1	4	2.	3
Dwell Cyc Veh 2	6		6		5	
Dwell Cyc Veh 3						
Dwell Cyc Veh 4	1					
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						
Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11	1					
Dwell Cyc Veh 12	1					
Dwell Cyc Ped1						
Dwell Cyc Ped2						
Dwell Cyc Ped3						
Dwell Cyc Ped4						
Dwell Cyc Ped5	1					
Dwell Cyc Ped6						
Dwell vPed7	1					
Dwell Cyc Ped8	1					
Exit 1	3		2	2	2	4
Exit 2			6	5	6	7
Exit 3	1			-	0	
Exit 4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON		ON	ON	ON	ON
Type	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash			-			
Coord in Preempt	ON		ON	ON	ON	ON
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-				-	
Pattern					5	
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U.	
Track Over 2						
Track Over 3					12 10	
Track Over 4						
Track Over 5					0 10	
Track Over 6						
Track Over 7						
Track Over 8			1-1			
Track Over 9						
Track Over 10					0	
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2					-	
DwellCyc Over 3						
DwellCyc Over 4			-		2 0	9
DwellCyc Over 5		11				
DwellCyc Over 6						
DwellCyc Over 7			1			6
DwellCyc Over 8						
DwellCyc Over 9						
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12						
Ped Clear		Ì				
Yellow	-)
Red						
Return Max						8

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	l Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5

Alternate	Phase	Program	1 Interval	Times	11	1	6	11	
Allemate	rilase	rioulani	I, IIILEIVAI	1111103			v.		

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3.	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
	2	2	2	2	2	2	2	2	2	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
4	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 5, Interval Times [1.1.6.1]

		F R 4 9 150	C. C. M. S. C.		DNA A PAGE	6-150-09	CONTRACTOR OF THE PARTY OF THE			
Dhago	337-11-	Ped	Min	Рассапа	May1	34	k7 11	Red	Assign	Bike
Phase	walk	Clear	Green	Passage	MAA	Maxz	1 enow	Clear	Ph	Clear

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 4, Interval Times [1.1.6.1]

n	XX/-11-	Ped	Min	D	3.5 1	352	\$7 - W	Red	Assign	Bike
Phase	wank	Clear	Green	Passage	Maxi	Maxz	х епоw	Clear	Ph	Clear

TB Coor, Day Plan [4.4]

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute		1				1							1		1	
Action						1										

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		11 0 11													1 - 1	
Minute																
Action		1	-						-	1		1	1	7		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute						-		-			1					
Action	1															

Approved By: Carmen Li	Date:
Approved by, Calmen Li	Date.

Coordination, Splits [2,7,1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase																
			_													_
Lake 200 a M			_	-												
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	ИОИ	NO
Coord Phase																
	_								- 5							
Split Table 9	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO.
Coord Phase																
plit Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																-
Mode	NON	NON	ИОИ	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	ИОИ	ИО
Coord Phase																
plit Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	10
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase															-	
						1 4									2	
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	12	90	34	24	15	87										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO:
Coord Phase		ON		1000				1	1000					1000	-	
10.00	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 13 Time																
Split Table 13	1 NON	2 NON	3 NON	4 NON	5 NON	6 NON	7 NON	NON 8	9 NON	10 NON	NON	NON	13 NON	14 NON	15 NON	
Split Table 13 Time Mode																NOI
Split Table 13 Time Mode Coord Phase																
Split Table 13 Time Mode Coord Phase	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO.
Split Table 13 Time Mode Coord Phase	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO.
Split Table 13 Time Mode Coord Phase Split Table 14 Time	NON 1	NON 2	NON 3	NON 4	non 5	NON 6	non 7	8 NON	NON 9	NON 10	NON 11	NON 12	NON	NON 14	NON 15	NO.
iplit Table 13 Time Mode Coord Phase iplit Table 14 Time Mode	NON 1	NON 2	NON 3	NON 4	non 5	NON 6	non 7	8 NON	NON 9	NON 10	NON 11	NON 12	NON	NON 14	NON 15	NO
Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase	NON 1	NON 2	NON 3	NON 4	non 5	NON 6	non 7	8 NON	NON 9	NON 10	NON 11	NON 12	NON	NON 14	NON 15	NO.
Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase	NON 1	NON 2	NON 3	NON 4	NON 5	NON 6	NON 7 NON	NON 8	NON 9	10	NON 11 NON	NON 12 NON	NON 13	NON 14 NON	NON 15	NO.
Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase	NON 1	NON 2	NON 3	NON 4	NON 5	NON 6	NON 7 NON	NON 8	NON 9	10	NON 11 NON	NON 12 NON	NON 13	NON 14 NON	NON 15	16 NO.
Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time	NON 1	NON 2	NON 3 NON	NON 4	NON 5	NON 6	NON 7	NON 8	NON 9	10 NON	NON 11 NON	NON 12 NON 12	NON 13	NON 14 NON 14	15 NON	10 NO
Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode	NON 1	NON 2	NON 3 NON	NON 4	NON 5	NON 6	NON 7	NON 8	NON 9	10 NON	NON 11 NON 11	NON 12 NON 12	NON 13	NON 14 NON 14	15 NON	10 NO
Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	NON 1	NON 2	NON 3 NON	NON 4	NON 5	NON 6	NON 7	NON 8	NON 9	10 NON	NON 11 NON 11	NON 12 NON 12	NON 13	NON 14 NON 14	15 NON	10 NO
Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	NON 1 NON NON	NON 2 NON NON	NON 3 NON	NON 4 NON	NON 5 NON NON	NON 6 NON	NON 7 NON NON	NON 8	NON 9 NON NON	10 NON NON	NON 11 NON	NON 12 NON 12 NON	NON 13 NON 13	14 NON 14 NON	NON 15 NON NON	NO.
Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	NON 1 NON NON	NON 2 NON NON	NON 3 NON	NON 4 NON	NON 5 NON NON	NON 6 NON	NON 7 NON NON	NON 8	NON 9 NON NON	10 NON NON	NON 11 NON	NON 12 NON 12 NON	NON 13 NON 13	14 NON 14 NON	NON 15 NON NON	10 NO

Approved By: Carmen Li	Date:
Approved By: Cannen Li	Date:

7380 : 2197 - University Dr & Broward Blvd (Upload File)

Phase [1.1.1]

	1 (SL)	(NR)	3 (WL)	4 (ER)	5 (NL)	6 (SR)	7 (EL)	8 (WR)	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	7	0	7	0	0	0	0	0	0	0	0
Ped Clearance	0	34	0	35	0	34	0	35	0	0	0	0	0	0	.0	0
Min Green	5	10	5	6	5	10	5	6	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	1.5	2	1.5	3	25	2	0	0	0	0	0	0	0	0
Max1	20	50	20	40	20	50	20	40	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	5	5	5	5	5	5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NR)	3 (WL)	4 (ER)	5 (NL)	6 (SR)	7 (EL)	8 (WR)	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON	ON	ON	ON	ON		2						
Lock Call	ON		ON		ON		ON		ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON	ON								1	
Max Recall		ON		ON		ON		ON								
Ped Recall																
Dual Entry				ON	T			ON								
Sim Gap Enable					-				ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1 (ER1)	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	.0.	5	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	- 0	8
Switch Phase	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	- 0	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	.0	6	0	- 8	0.	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

Broward County

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	- 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Approved By: Carmen Li

Date: _____

TB Coor, Day Plan [4,4]

Split Table 2

Day Plan Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20	1										
Minute																
Action	100	2	3	4	3					1						
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute		-	30								-				-	
Action	3	100	3													
ay Plan Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	10
Hour		1	6	23												
1.6		7	30													
Minute			20				7	1		1				-	7	
Action Coordination, F			3]/Coord													
Action Coordination, F Pattern		16 [2.1	3]/Coord 3	dination 4	ı, Alt Tab	oles+[2.	6]	8	9	10	11	12	13	14	15	
Action Coordination, F Pattern Cycle Time	attern 1-	16 [2.1	3]/Coord 3 160	dination				8	9	10	11	12	13 160	14 160	15 160	470
Action Coordination, F Pattern Cycle Time Offset Time	attern 1-	16 [2.1 2 160	3]/Coord 3 160 2	dination 4 160 2				8	9	10	11	160	160	160	160	16
Action Coordination, F Pattern Cycle Time Offset Time Split Number	attern 1-	16 [2.1	3]/Coord 3 160	dination				8	9	10	11	1000	160		1 900	16
Action Coordination, F Pattern Cycle Time Offset Time Split Number Seq Number	attern 1-	16 [2.1 2 160 2 1	3 J/Coorc 3 160 2 3 1	dination 4 160 2 4 1	5	1	7	1	1	1	1	160 12 5	160 13 5	160 14 5	160 15 5	16 16 5
Action Coordination, F Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt	1 1 1 1 0	16 [2.1 2 160 2 1	3 J/Coorc 3 160 2 3 1 0	dination 4 160 2 4 1 0	1 0	1 0	7 1 0	1 0	1 0	1 0	1 0	160 12 5 0	160 13 5 0	160 14 5 0	160 15 5 0	16 16 5
Action Coordination, F Pattern Cycle Time Offset Time Split Number Seq Number	attern 1-	16 [2.1 2 160 2 1	3 J/Coorc 3 160 2 3 1	dination 4 160 2 4 1	5	1	7	1	1	1	1	160 12 5	160 13 5	160 14 5	160 15 5	16 16 5
Action Coordination, F Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt	1 1 0 0 0	2 160 2 1 1 0 0	3 J/Coorc 3 160 2 3 1 0	dination 4 160 2 4 1 0	1 0	1 0	7 1 0	1 0	1 0	1 0	1 0	160 12 5 0	160 13 5 0	160 14 5 0	160 15 5 0	16 16 5
Action Coordination, F Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Split Table 1	1 1 0 0 0	2 160 2 1 1 0 0	3 J/Coorc 3 160 2 3 1 0	dination 4 160 2 4 1 0	1 0	1 0	7 1 0	1 0	1 0	1 0	1 0	160 12 5 0	160 13 5 0	160 14 5 0	160 15 5 0	16 16 5 0
Action Coordination, F Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Split Table 1 Time	attern 1- 1 0 0 0	16 [2.1 2 160 2 1 0 0	3 /Coord 3	# 160 2 4 1 0 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0 0	160 12 5 0 0	160 13 5 0 0	160 14 5 0	160 15 5 0 0	166 5 0 0
Action Coordination, F Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Split Table 1	attern 1- 1 0 0 0	16 [2.1 2 160 2 1 0 0	3 1/Coord 3 160 2 3 1 0 0	dination 4 160 2 4 1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	160 12 5 0	160 13 5 0	140 145 0	160 15 5 0	16 160 16 5 0 0

Coord Phase	1	ON													1	
Split Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	25	52	34	49	25	52	34	49	1 -							
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON

Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	25	52	34	49	25	52	34	49	/ L I							/
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	-	ON	-				-				-	-			-	

plit Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																

Split Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase						1 1										

Approved By: Carmen Li	Date:
- I I	

7380 : 2197 - University Dr & Broward Blvd (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6	
Lock Input	ON	ON	ON	ON	ON	ON	
Override Auto Flash							1
Override Higher Preempt							1
Flash in Dwell							
Link to Preempt							
Delay							1
Min Duration							
Min Green	6	6	6	6	6	6	1
Min Walk							1
Ped Clear	1						1
Track Green							1
Min Dwell	8	8	8	8	8	8	1
Max Presence	180	180	180	180	180	180	
Track Veh 1							1
Track Veh 2							
Track Veh 3							1
Track Veh 4							1
Dwell Cyc Veh 1	2	4	1	3	2	4	1
Dwell Cyc Veh 2	6	8	6	8	5	7	
Dwell Cyc Veh 3					1		
Dwell Cyc Veh 4							
Dwell Cyc Veh 5							1
Dwell Cyc Veh 6					-		1
Dwell Cyc Veh 7					-		
Dwell Cyc Veh 8							
Dwell Cyc Veh 9		-					
Dwell Cyc Veh 10							1
Dwell Cyc Veh 11							1
Dwell Cyc Veh 12	1						
Dwell Cyc Ped1							1
Dwell Cyc Ped2							1
Dwell Cyc Ped3				1) 11:	1
Dwell Cyc Ped4							
Dwell Cyc Ped5							1
Dwell Cyc Ped6							
Dwell vPed7						1	
Dwell Cyc Ped8							1
Exit 1	3	1	2	4	2	4	
Exit 2	7	- 5	6	8	6	8	
Exit 3						11 -	į
Exit4							-

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON	ОИ	ON	ON	ON	ON
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash	-					
Coord in Preempt	ON	ON	ON	ON	ON	ON
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-				-	
Pattern					5	
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1						
Track Over 2						
Track Over 3					U	
Track Over 4						
Track Over 5					0	
Track Over 6						
Track Over 7						
Track Over 8			1-1			
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3					5	
DwellCyc Over 4					2 0	6
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7					100	6
DwellCyc Over 8						
DwellCyc Over 9			4			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					n i	
Ped Clear						
Yellow	4	4	4	4	4	4
Red	2	2	2	2	2	2
Return Max						(

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	2	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	4	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	.0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	NORMAL	0	3.5	1.5

7380 : 2197 - University Dr & Broward Blvd (Upload File)

Alternate Phase Program 1, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max 1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3.	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
4	2	3	3	3	3	3	2	2	3	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3.	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
;	3	3	3	3	3	3	3	3	3	

Alternate Phase Program 5, Interval Times [1.1.6.1]

Dhasa	XX2 11	Ped	Min	Passage	Mov1	352		Red	Assign	Bike
Phase	waik	Clear	Green	rassage	WIAAI	Maxz	Y ellow	Clear	Ph	Clear

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0	0	.0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 4, Interval Times [1.1.6.1]

ni	***	Ped	Min	Passage	3.5 1	35	X7 . 11	Red	Assign	Bike
Phase	wark	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20											
Minute																
Action	100	12	13	14	15											

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6												1 - 1	
Minute		1	30													
Action	16	100	16						-	1		7	1	7		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	23													
Minute		30														
Action	100	16	100													

Approved By: Carmen Li	Date:

7380 : 2197 - University Dr & Broward Blvd (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	17017	17017	17517	17017	17077	12012	17017	17.017	17017	17.017		17017	12012	17017	17017	1701
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase												k .				
		1 -	1 3	1	1	D	F -2 -1	IL WATER		1 22	E Say	D	F	D Take /	ti naka di	Der ord
Split Table 9	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	144574		70.000	170700	19000	99719	14212	112212		70000	2000	10.272	20010	11010		
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	-				1											
Calif Table 10		2	1 2	1 2	1 =	1 6	7		9	1 10	l aa	1 12	1 12	1 44	15	1 10
Split Table 10 Time	1	2	3	4	5	6	- 1	8	у .	10	11	12	13	14	15	16
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	NON	INOIN	INOIN	TAOIA	INOIN	INOIN	NON	NON	INOIN	INOIN	TAOIA	TAOIA	TAOIA	NON	TAOIN	NON
Coord Phase						_			1			1				_
Split Table 11	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1000	21311			4.44	-						-			-	
	-			-	_		_		_	_	-					-
and the Control of the Control																
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	25	53	30	52	25	53	25	57								
Mode	NON	MAX	NON	MAX	NON	MAX	NON	MAX	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 13	1	1 2	3	1 4	5	6	7	8	9	10	111	12	13	14	15	1 16
Time	25	53	40	42	25	53	30	52	, y	10	1.1	12	13	14	15	10
Mode	NON	MAX	NON	MAX	NON	MAX	NON	MAX	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	NON	ON	NON	MAA	NON	MAA	NON	MAA	INOIN	NON	INOIN	NON	NON	NON	NON	NON
Coold Filase		OIN														
Split Table 14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	25	53	40	42	25	53	28	54					100			
Mode	NON	MAX	NON	MAX	NON	MAX	NON	MAX	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	-	ON					14.442									
									-							1
Split Table 15	i in	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	25	53	40	42	25	53	30	52					-			
Mode	NON	MAX	NON	MAX	NON	MAX	NON	MAX	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
							-							-		
	F	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 16	1	- 4														
Split Table 16 Time	25	53	34	48	25	53	26	56								
						53 MAX	26 NON	56 MAX	NON	NON	NON	NON	NON	NON	NON	NON

5105: 2266 - University Dr & S 600 Block/Federated (Upload File)

Phase [1.1.1]

	1 (SL)	(NT)	3 (WT)	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	7	0	0	0	0	0	0	0	0	0	0
Ped Clearance	0	21	0	29	0	21	0	.0	0	0	0	0	0	0	.0	0
Min Green	5	10	6	6	5	10	0	0	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	2	2	1.5	3	0	0	0	0	0	0	0	0	0	0
Max1	20	55	20	20	20	55	0	.0	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	4	4	5	5	0	0	3.5	3,5	3.5	3.5	3,5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	0	0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NT)	3 (WT)	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON	ON	ON										1
Lock Call	ON		ON	ON	ON				ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall							-									
Ped Recall																
Dual Entry															1 7 1	
Sim Gap Enable					-	-			ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	4	8	0	2	0	4	0	6	0	- 8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	20	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	-0	0	.0	0	.0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

7-7	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	D.	0	0	0	0	0	0	0	0	D	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date:

5105: 2266 - University Dr & S 600 Block/Federated (Upload File)

TB Coor, Day Plan [4.4]

Day Plan Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		7	9	15	20		-		-				-			
Minute																
Action	100	2	3	4	3											
Day Plan Table 2	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	10
Hour		1 7	23													
Minute																
Action	100	3	100					1	î -	1.				ì		ì
Day Plan Table 3 Hour	1	7	23		3	0	-		9	10		12	13	-14	13	4
Name To be a	D. A.	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Minute	+	1	2.3	+		-				-						
Action	100	3	100	1		-				-						
						-										
Coordination, Pa	attern 1-	16 [2.1 2]/Coord	lination 4	, Alt Tal	oles+[2.	6 <u>]</u> 7	8	9	10	11	12	13	14	15	1
		4 44	1.00	160				1 - /		1	11.					
Cycle Time		160	160	100												
Offset Time	-	160 42	42	41												
		-														
Offset Time Split Number	1	42	42	41	1	1	1	1	1	1	1	1	1	1	1	1
Offset Time	1 0	42	42	41	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			-					-			1					
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 2	1 1	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	12	91	15	42	26	77							- 20			- 10
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON									-					
Split Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	12	91	15	42	26	77	10010	innin	12012	10010				*****	12212	1221
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	_	ON			1						1.					
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	12	102	15	31	21	93										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
data makilar	1						7		I &			12	13		15	1 45
Split Table 5 Time	1	2	3	4	5	6	- 7	8	9	10	11	12	13	14	15	16
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	NON	NON	NON	NON	INOIN	INOIN	14014	NON	NON	INOIN	INOIN	NON	14014	14014	14014	14014
Coold Filase	1															
Split Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time						-								-		
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Mode	14014	14014	14014	14014	14014	11011	23.0.21	1 1101	21,521	1 21 0 21	11011	21.021	21021	+1.0.21	21,021	

Approved By: Carmen Li	Date:
	Date.

5105 : 2266 - University Dr & S 600 Block/Federated (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash		ON				
Override Higher Preempt		ON				
Flash in Dwell		ON				
Link to Preempt						
Delay						
Min Duration						
Min Green	6		6	6	6	6
Min Walk						
Ped Clear	1					
Track Green		-			-	
Min Dwell	8		8	8	8	8
Max Presence	180		180	180	180	180
Track Veh 1		-				
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1	2		1	3	2	4
Dwell Cyc Veh 2	6		6		5	
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5				1		
Dwell Cyc Veh 6					-	
Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11						
Dwell Cyc Veh 12						
Dwell Cyc Ped1						
Dwell Cyc Ped2						
Dwell Cyc Ped3	1			1		
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7	1					
Dwell Cyc Ped8						-
Exit 1	3		2	4	2	1
Exit 2			6		6	5
Exit 3						
Exit 4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON		ON	ON	ON	ON
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash			-			
Coord in Preempt	ON		ON	ON	ON	ON
Return Max/Min	MIN	MAX	MIN	MIN	MIN	MIN
Extend Dwell	1					
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1						
Track Over 2						
Track Over 3						
Track Over 4						
Track Over 5						
Track Over 6						
Track Over 7						
Track Over 8			li I			
Track Over 9						
Track Over 10		-				
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3						
DwellCyc Over 4	1		1		2 0	-
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7			11		10	
DwellCyc Over 8						
DwellCyc Over 9			1			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					i i	
Ped Clear						
Yellow	4		4	4	4	4
Red	1		1_	2	-1-	2
Return Max						1

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	3	4	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 3	0	0	.0	0	5	6	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	4	1.5
Overlap 4	0	0	0	0	0	0	7	8	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5

A second control of the Common T :	D. A.
Approved By: Carmen Li	Date:

5105 : 2266 - University Dr & S 600 Block/Federated (Upload File)

Alternate Phase Program 1, Interval Times [1.1.6.1]

Phase 	Walk	Ped Clear	Min Green	Passage	Max1	l Max2 l	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3.	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3.	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
	3	3	3	3	3	3	3	3	3	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase I	Walk	Ped Clear	Min Green	Passage I	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
1	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 5, Interval Times [1.1.6.1]

Phase Walk Clear Green Passage Max1 Max2 Yellow Clear Ph	Bike Clear	Assign Ph	Red Clear	Yellow	Max2	Max1	Passage	Min Green	Ped Clear	Walk	Phase
--	---------------	--------------	--------------	--------	------	------	---------	--------------	--------------	------	-------

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0	0	.0	0	0	0.	0	
4	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 4, Interval Times [1.1.6.1]

m	***	Ped	Min	Passage	3.5 1	35	\$7 - W	Red	Assign	Bike
Phase	wank	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1 1 1														
Minute		1 4				1							1			
Action		1 = 1														

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		10 0 00										(1	
Minute		1														
Action		10.00	-						-					*		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute								-			-					
Action																

Approved By: Carmen Li	Date:
[Magazina] 1884년 14명 (Magazina) (Magazina) (Magazina)	

10/15/2019

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time							-									
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase									I	1						
Split Table 8	1	1 2	3	4	5	6	7	8	9	10	111	12	13	14	15	16
Time		-							1	4.0					10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase						-										
8 19 T 11 8		F 4			1 2		F 2		F A	1	F as	P 44	1 22	D 300	1 32	li de
Split Table 9	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	17017	NTONT	NTONT	NEONE	17017	ATOAT	NONE	ATOAT	NONE	NEONE	NONE	NEONE	ATOAT	NONE	37037	NTONT
Mode Coord Phase	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Priase	_								_							
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time													-			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		-								-						
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
	1								_	_						
Čulit Table 13							-	0		1 10	1 11	1 12	12	13	15	12
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			1.5			1					15.51					
Time Mode	1 NON	2 NON	3 NON	4 NON	5 NON	6 NON	7 NON	8 NON	9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	
Time			1.5			1					15.51					
Time Mode			1.5			1					15.51					
Time Mode Coord Phase	иои	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Time Mode Coord Phase Split Table 13 Time Mode	иои	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Time Mode Coord Phase Split Table 13 Time	NON 1	NON 2	NON 3	NON 4	non 5	NON 6	non 7	NON 8	NON 9	NON 10	NON 11	NON 12	NON 13	NON	NON	NON
Time Mode Coord Phase Split Table 13 Time Mode	NON 1	NON 2	NON 3	NON 4	non 5	NON 6	non 7	NON 8	NON 9	NON 10	NON 11	NON 12	NON 13	NON	NON	NON
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase	NON 1 NON	NON 2	NON 3	NON 4	NON 5	NON 6 NON	non 7 Non	NON 8	NON 9	10 NON	NON 11	NON 12 NON	NON 13 NON	non	NON 15	non 16 non
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase	NON 1 NON	NON 2	NON 3	NON 4	NON 5	NON 6 NON	non 7 Non	NON 8	NON 9	10 NON	NON 11	NON 12 NON	NON 13 NON	non	NON 15	non 16 non
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase Split Table 14 Time	NON 1	NON 2 NON 2	NON 3 NON	NON 4	NON 5	NON 6	NON 7	8 NON	NON 9	10 NON	NON 11	NON 12 NON 12	NON 13	14 NON	15 NON	non
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase	NON 1 NON	NON 2 NON NON	NON 3 NON	NON 4 NON	NON 5 NON NON	6 NON	NON 7 NON NON	NON 8	NON 9 NON NON	10 NON 10 NON NON	NON 11 NON NON	NON 12 NON NON	13 NON 13 NON	NON 14 NON 14 NON	NON 15 NON 15 NON	non 16 non 16 non
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase	NON 1	NON 2 NON 2	NON 3 NON	NON 4	NON 5	NON 6	NON 7	8 NON	NON 9	10 NON	NON 11	NON 12 NON 12	NON 13	14 NON	15 NON	non 16 non
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time	NON 1 NON 1 NON	NON 2 NON 2 NON 2	NON 3 NON 3	NON 4 NON 4	10 NON 5 NON 5 NON 5	6 NON 6	NON 7 NON 7 NON 7	NON 8	NON 9 NON 9 NON	10 NON 10 NON 10 NON	NON 11 NON 11 NON	12 NON 12 NON 12 12	13 NON 13 NON	14 NON 14 NON	15 NON 15 NON 15	16 NON 16 NON 16
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase	NON 1 NON	NON 2 NON NON	NON 3 NON	NON 4 NON	NON 5 NON NON	6 NON	NON 7 NON NON	NON 8	NON 9 NON NON	10 NON 10 NON NON	NON 11 NON NON	NON 12 NON NON	13 NON 13 NON	NON 14 NON 14 NON	NON 15 NON 15 NON	non 16 non 16 non
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	NON 1 NON 1 NON	NON 2 NON 2 NON	NON 3 NON NON	NON 4 NON 4 NON	NON 5 NON 5 NON	6 NON 6 NON	NON 7 NON 7 NON	8 NON 8	NON 9 NON 9 NON	10 10 NON 10 NON NON	NON 11 NON 11 NON	12 NON 12 NON 12 NON	13 NON 13 NON 13 NON	14 NON 14 NON 14 NON	15 NON 15 NON 15 NON	16 NON 16 NON 16 NON
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	NON 1 NON 1 NON	NON 2 NON 2 NON 2	NON 3 NON 3	NON 4 NON 4	10 NON 5 NON 5 NON 5	6 NON 6	NON 7 NON 7 NON 7	NON 8	NON 9 NON 9 NON	10 NON 10 NON 10 NON	NON 11 NON 11 NON	12 NON 12 NON 12 12	13 NON 13 NON	14 NON 14 NON	15 NON 15 NON 15	16 NON 16 NON 16
Time Mode Coord Phase Split Table 13 Time Mode Coord Phase Split Table 14 Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	NON 1 NON 1 NON	NON 2 NON 2 NON	NON 3 NON NON	NON 4 NON 4 NON	NON 5 NON 5 NON	6 NON 6 NON	NON 7 NON 7 NON	8 NON 8	NON 9 NON 9 NON	10 10 NON 10 NON NON	NON 11 NON 11 NON	12 NON 12 NON 12 NON	13 NON 13 NON 13 NON	14 NON 14 NON 14 NON	15 NON 15 NON 15 NON	16 NON 16 NON 16 NON

Approved By: Carmen Li	Date:

Phase [1.1.1]

	1	2 (NT)	3	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	7	0	0	0	0	0	0	0	.0	0	0
Ped Clearance	.0	0	0	31	0	37	0	.0	0	0	0	0	0	0	.0	0
Min Green	0	12	0	6	5	12	0	0	0	0	0	0	0	0	0	0
Gap Ext	0	3	0	2	2	3	0	0	0	0	0	0	0	0	0	0
Max1	0	55	0	30	20	55	0	.0	0	0	0	0	- 0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	0	5	0	4	5	5	0	0	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	0	2	0.	2	2	2	0	0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1	2 (NT)	3	4 (ET)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Enable		ON		ON	ON	ON				5						
Lock Call				ON					ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Dual Entry																
Sim Gap Enable					-				ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	4	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	3	2	0	17	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.0
Switch Phase	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	.0	0	.0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

Broward County

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date:

5104: 2339 - University Dr & Fountains Ent (Upload File)

Day Plan Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20											
Minute																
Action	100	2	3	4	3			-								
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute			30							1						
Action	3	100	3													
Day Dlaw Table 2		1 4	1 .	1 4	-		7			I 10		10	12	14	15	- 12
Day Plan Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		- 1	6	23												
Minute			30													
Action	3	100	3	100												
Coordination, Pa	ttern 1-1	-	/Coord	ination,	_	oles+[2.										
Pattern	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
			787						-	10	11	1.2	20	10, 71		16
Cycle Time		160	160	160						10	11	12	2.0		1.0	- 10
Cycle Time Offset Time		160 54	160 54					, and		10		12	- 10			- 10
				160						10	11	12				
Offset Time	1	54	54	160 58	1	1	1	1	.1	1	1	1	1	1	1	1
Offset Time Split Number	1 0	54	54	160 58 4	1 0		1 0	1 0		1 0		1 0	1 0			

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			-		-	1					1					
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1															
Split Table 2	1	2	3	1 4	5	1 6	7	8	9	10	11	12	13	14	15	16
Time		116		44	29	87										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
						2111										32
Split Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time Mode	NON	116 MXP	NON	NON	29 NON	87 MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	NON	ON	NON	NON	NON	MIXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coold Fliase	-	OIN		1.	_											
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		116		44	29	87										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 5		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		- 4	-		2				- 2 -	10	11	12	13	17	10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	21021	1,01,	21021	21021	31021	21021	21021	21021	2,02,	21,021	121021	11,021	21021	21021	21021	1,01
00014111400		_														
Split Table 6	1111	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
100000000		-				-							- inches			-
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON

Approved By: Carmen Li	Date:
Approved by, Carmen Er	Date.

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash		ON	ON	ON		
Override Higher Preempt		ON	ON	ON		
Flash in Dwell		ON	ON	ON		
Link to Preempt						
Delay						
Min Duration						
Min Green	6				6	6
Min Walk						
Ped Clear					-	
Track Green		-			-	-
Min Dwell	8				8	8
Max Presence	180				180	180
Track Veh 1		-				
Track Veh 2						
Track Veh 3						-
Track Veh 4					1	
Dwell Cyc Veh 1	2				2	4
Dwell Cyc Veh 2	6				5	
Dwell Cyc Veh 3		-			-	
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						
Dwell Cyc Veh 7			-		-	
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11						
Dwell Cyc Veh 12						
Dwell Cyc Ped1		-				-
Dwell Cyc Ped2						
Dwell Cyc Ped3				1		
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7						
Dwell Cyc Ped8						
Exit 1	4	J			2	2
Exit 2					6	5
Exit 3						
Exit4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON			-	ON	ON
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERO
Skip Track						
Volt Mon Flash						
Coord in Preempt	ON				ON	ON
Return Max/Min	MIN	MAX	MAX	MAX	MIN	MIN
Extend Dwell	-		-	-	-	
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1						
Track Over 2						
Track Over 3					11	
Track Over 4						
Track Over 5					0 - 10	
Track Over 6						
Track Over 7						
Track Over 8			11 1			
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3					5	
DwellCyc Over 4			-		9	6
DwellCyc Over 5					2	
DwellCyc Over 6						
DwellCyc Over 7			11		100	8
DwellCyc Over 8						
DwellCyc Over 9			1			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					i i	
Ped Clear						
Yellow	4				4	4
Red	2				2	2
Return Max						(

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ıclude	d Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	NORMAL	0	3.5	1.5

A second control of the Common T :	D. A.
Approved By: Carmen Li	Date:

Alternate Phase Program 1, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
- 8	3	3	2	3	3	3	3	3	3	

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0	0	.0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
- 8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 4, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3.	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	10.00
4	3	3	3.	3	3	3	3	3.	3	

Alternate Phase Program 5, Interval Times [1.1.6.1]

Dhasa	337-11-	Ped	Min	Passage	Movi	Mars	k7 - 11	Red	Assign	Bike
Phase	walk	Clear	Green	rassage	MAXI	Maxz	Y ellow	Clear	Ph	Clear

Dhasa	Walls	Ped	Min	Damaga	Mart	March	Vallow	Red	Assign	Bike
rnase	wark	Clear	Green	Passage	Maxi	MAX	1 enow	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour				1												
Minute		1				1							1			
Action				1												

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		10 0 00										(1	
Minute		1														
Action		10.00	-						-					*		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute						-		-			-					
Action																

Approved By: Carmen Li	Date:

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time					-			-								
Mode	ИОИ	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				1						1						
Split Table 8		2	3	1 4	5	6	7	8	9	10	111	12	13	14	15	16
	1	- 4	3	4	3	0	-	0	y	10	11	12	13	14	15	10
Time Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
	NON	NON	NON	INON	NON	NON	NON	14.014	NON	NON	INOIN	14 O14	14014	NON	NON	NON
Coord Phase	-								1	1						
Split Table 9	Total I	2	3	1 4	5	6	7	8	9	10	111	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11011	11011	11011	25021	21021	11011	11011	11011	11.021	1,01,	21,021	21021	11011	11011	1101
Coord Titlasc	-				-					-	_					
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		7														
o. 111 m. 11. 44		-		F		To said			T = 140 =			1 24	1	1 - 22 -	T 38	
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	17017	17017	17017	17017	17017	17017	17017	17.017	17017	17017	17017	17017	17017		17017	1701
Mode Coord Phase	NON	ИОИ	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	иои	NON	NON	NON
Split Table 12	1	2	3	4	1 5	6	7	8	9	10	11	12	13	14	15	16
Time	-	-								10	-	12	10	-	10	1.0
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	21021	1,01,	11011	11011	11011	11011	1,01,	21021	1,01,	11021	11011	11,013	1,011	1,01,	11011	1,01,
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase										_						
Split Table 14	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time	100												D-14-2			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1					5	-		-			-				
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Sulit Table 16	1	2	,	1 4			-	o	9	10	144	1 12	12	144	15	10
Split Table 16	1	Z	3	4	5	6	7	8	y	10	1.1	12	13	14	15	16
Time	NTO.17	NEONE	MONT	37037	17017	NON	17017	NONE	NONE	NTON-	37037	37037	NONE	NONE	MONT	37033
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				1								7				1

Date:

5020: 2067 - University Dr & Peters Rd (Upload File)

Phase [1,1,1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(SL)	(NT)	(WL)	(ET)	(NL)	(ST)	(EL)	(WT)								
Walk	0	7	0	7	0	7	0	7	0	0	0	0	0	0	0	0
Ped Clearance	0	30	0	32	0	30	0	32	0	0	0	0	0	0	.0	0
Min Green	5	12	5	6	5	12	5	6	0	0-	0	0	0	0	0	0
Gap Ext	1.5	3	1.5	2	1.5	3	1.5	2	0	0	0	0	0	0	0	0
Max1	20	55	20	30	20	55	20	30	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	4.5	4.5	5	5	4.5	4.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NT)	3 (WL)	4 (ET)	5 (NL)	6 (ST)	7 (EL)	8 (WT)	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON	ON	ON	ON	ON								
Lock Call	ON		ON		ON		ON		ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON									1	
Max Recall																ON
Ped Recall																
Dual Entry				ON				ON							1 7 1	
Sim Gap Enable					-				ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	8:	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	2	0	2	2	2	0	2	2	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	- 0	0	0	0	0	.0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Dolor Timo	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date:

5020: 2067 - University Dr & Peters Rd (Upload File)

Day Plan Table 1	1-1-	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20	-										
Minute																
Action	100	2	3	4	3		1		1							
Day Plan Table 2	l i	1 2	3	1 4	5	6	1 7	8	9	10	11	12	13	14	15	16
Hour	1	4		11.4	3	. 0	- /-	0	9	10	11	12	13	19	15	10
Minute	-	1	30							-						
	2	100	-	1		-	-		-	-	-			_		-
Action	3	100	3	1		_	1		1	1					1	
Hour Minute		1	6	23												
Day Plan Table 3	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16
- Contract of the	2	100		100						-						-
Action	3	100	3	100				1		1						
Action Coordination, Pa	3 attern 1-	100 16 [2,1]	3	100	, Alt Ta	bles+[2	.6]									
Pattern	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	1
Cycle Time		160	160	160						160						
Offset Time	-	45	132	63						137						
Split Number		2	3	4	-					10			1		,	
Seq Number	1	1	1	1	- 1	-1	1	1	.1	1	1	1	1	i	1	1
Ph Ont Alt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			-		-	1		40.74			100	4				
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 2	1 1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time	20	66	36	38	25	61	18	56					- 20			- 10
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 3	T 1			1 4	1 5		7	8	9	10	111	12	13	14	15	1 10
Time	20	78	3	37	26	72	18	44	9	10	- 11	12	13	14	15	16
Mode Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	NON	ON	NON	INOIN	INOIN	IVIAP	NON	INOIN	INOIN	14014	INOIN	INCIN	INOIN	NON	INOIN	NON
Coold Filase		OIN								_	1					
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	20	74	30	36	20	74	20	46								
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 5	T 1	2	3	4	1 5	6	7	8	9	10	11	12	13	14	15	16
Time		4	-	The state of	- 3				- 2 -	10	11	12	13	17	10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	21021	1,01,	21021	21021	21021	21021	21021	21021	2,02,	21,021	21021	21,021	21,021	21021	21021	2,02
Split Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time						1										
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON

Approved By: Carmen Li	Date:
Approved by, Carmen Li	Date.

5020 : 2067 - University Dr & Peters Rd (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash		-				
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear	-					
Track Green						
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1	1					
Track Veh 2						
Track Veh 3	1					-
Track Veh 4						-
Dwell Cyc Veh 1	2	4	1	3	2	4
Dwell Cyc Veh 2	6	8	6	8	5	7
Dwell Cyc Veh 3						
Dwell Cyc Veh 4	1					
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						
Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11						
Dwell Cyc Veh 12						
Dwell Cyc Ped1						
Dwell Cyc Ped2						
Dwell Cyc Ped3						
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7						
Dwell Cyc Ped8						-
Exit 1	3	1	2	4	2	4
Exit 2	7	5	6	8	6	8
Exit 3						
Exit 4		-				

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON	ОИ	ON	ON	ON	ОИ
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERO
Skip Track						
Volt Mon Flash						
Coord in Preempt	ON	ON	ON	ON	ON	ON
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-					
Pattern					5 7	
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U. T.	
Track Over 2						
Track Over 3					U	
Track Over 4						
Track Over 5					0	
Track Over 6						
Track Over 7					-	
Track Over 8			1-1			
Track Over 9						
Track Over 10					b S	
Track Over 11						
Track Over 12						1
DwellCyc Over 1		1				
DwellCyc Over 2						
DwellCyc Over 3					5	
DwellCyc Over 4			-		2 0	6
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7					100	6
DwellCyc Over 8						
DwellCyc Over 9			4			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					n i	
Ped Clear						
Yellow					1	
Red			()			
Return Max					1	(

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phas	es			Type	Green	Yellow	Red
Overlap 1	4	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	4	2
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5

Assumented Des. Common Li	Data
Approved By: Carmen Li	Date:

5020: 2067 - University Dr & Peters Rd (Upload File)

Alternate Phase Program 1, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
4	3	3	3	3	3	3	3	3	3	

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
-1-	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0	0	0	0	0	0.	0	
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
4	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

nı	XX/-11-	Ped	Min	Passage	3.7 1	35	57 - W	Red	Assign	Bike
Phase	waik	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Alternate Phase Program 5, Interval Times [1,1.6.1]

Diversi		Ped	Min	Dassage	Mort	Mana		Red	Assign	Bike
Phase	Walk	Clear	Green	Passage	MIAXI	Maxa	Y ellow	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour				1												
Minute		1				1							1			
Action				1												

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		10 00 00													1	
Minute		1														
Action		100	-										1	7	1	+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute						-		-			-					
Action																

Approved By: Carmen Li	Date:

5020 : 2067 - University Dr & Peters Rd (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase						e i										
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time									1.0							
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				-						1						
	-	-0												_		
Split Table 9	111	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			-													
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
	-								F = 8.8	1	T					
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	20	69	30	41	20	69	20	51		1,,,,,,	1,,,,,,		1222	12000	17	
Mode	NON	MXP	иои	NON	NON	MXP	иои	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1	ON			1					L						
Split Table 11	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-	2	3	-7	3		- 16			10	11	12	13	1.7	15	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11011	HOR	14014	NON	11011	IIOII	II OII	11011	NON	HON	1,01,	11011	IIOII	HON	1101
				_												
Split Table 12	T 1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time		-			-	-		-		- 20						
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11021	1,02		11,021	21021	21020	2/02/	121021	1,027	21021	21021	2,02,		27.027	21021	1
					-			-							,	
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase										1						
Culit Table 14	1	La	1 3	1 4	1 2		-		1 0	1 10	1 44	1 10	12	14	15	1 16
Split Table 14 Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11/01/	14014	11011	13/014	11011	14014	14/014	11/11	11/213	11/11	11/014	44044	14014	11011	14014
Coold Filase				k		L .				1	1					1
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1															
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
			3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 16	1	2	3													
Split Table 16 Time	1	Z	3		-					2.5			-			
	1 NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON

Date:
D

4280 : 2034 - University Dr & SR 84 (Upload File)

Phase [1.1.1]

	1 (SL)	2 (ST)	3 (NL)	4 (ET)	5	6	7	8	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	0	0	0	0	0	0	0	0	0	0	0
Ped Clearance	.0	19	0	36	0	0	0	.0	0	0	0	0	0	0	.0	0
Min Green	15	15	4	8	0	0	0	0	0	0	0	0	0	0	0	0
Gap Ext	2	3	2	3	0	0	0	0	0	0	0	0	0	0	0	0
Max1	25	50	20	45	0	0	0	.0	0	0	0	0	0	0	- 0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	5	5.5	0	0	0	0	0	0	0	0	0	0	0	0
Red Clr	2	2	2	2	0	0	0	0	0	0.	0	0	0	0	0	0

Phase Option [1.1.2]

	1 (SL)	2 (ST)	3 (NL)	4 (ET)	5	6	7	8	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON											4	
Lock Call				ON												
Min Recall		ON													1	
Max Recall					- 1											-
Ped Recall																
Dual Entry																
Sim Gap Enable					-				-			-				
Rest In Walk																

Detector, Vehicle Parameters 1-16 [5.1]

	1 (SL1)	2 (ST1)	3 (NL1)	4 (ET1)	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	-8:	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	0	0	0	-0	0	0	0	0	0	0	.0	0	- 0	- 0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	0.	.0.	0	.0	0	0	0	0.	0	0.	0	0	.0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	. 0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	-0	0	0	0	0
Delay Time	0	0	0	0	Ω	0	0	0	0	0	0	n	0	0	0	0

Approved By: Carmen Li

Date: _____

Broward County

TB Coor, Day Plan [4.4]

Hour	Day Plan Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Action 100 2 3 13 3	Hour		6	9	15	20	1						-				
Pay Plan Table 2	Minute				-												
Hour	Action	100	2	3	13	3	1				-						
Hour																	
Minute	Day Plan Table 2	1	2	- 3	4	5	6	7	8	9	10	11	12	13	14	15	16
Action 3 100 3 3 4 5 6 7 8 9 10 11 12 13 14 15	Hour		1	6													
Day Plan Table 3	Minute		-	30			-					-				-	
Hour 1 6 23	Action	3	100	3													
Hour 1 6 23																	
Minute		1	2	3		5	6	7	8	9	10	11	12	13	14	15	10
Action 3 100 3 100			111		23												
Pattern 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15				-													
Pattern 1	Action	3	100	3	100												
Offset Time																	
Split Number 2 3 4									8	9	10	11	12	13	14	15	10
Seq Number 1	Pattern		2	3	4				8	9	10	11	12		14	15	16
Ph Opt Alt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pattern Cycle Time Offset Time		2 160	3	4				8	9	10	11	12	180	14	15	10
Ph Time Alt 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Pattern Cycle Time Offset Time		2 160 88	3 160 88	4 160 88				8	9	10	11	12	180	14	15	10
Coordination, Splits [2.7.1] Split Table 1	Pattern Cycle Time Offset Time Split Number Seq Number	1	160 88 2	3 160 88 3	160 88 4	5	1	7	1	1	1	1	1	180 13	1	1	10
Time	Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt	1 0	2 160 88 2 1 0	3 160 88 3 1 0	4 160 88 4 1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	13 1 0	1 0	1 0	1 0
Split Table 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time Mode NON n Cycle Time Offset Time Split Number Seq Number Ph Opt Alt	1 0	2 160 88 2 1 0	3 160 88 3 1 0	4 160 88 4 1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	13 1 0	1 0	1 0	1 0	
Split Table 1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time Mode NON n Cycle Time Offset Time Split Number Seq Number Ph Opt Alt	1 0	2 160 88 2 1 0	3 160 88 3 1 0	4 160 88 4 1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	13 1 0	1 0	1 0	1 0	
Time Mode NON NON NON NON NON NON NON NON NON NO	Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt	1 0 0	2 160 88 2 1 0	3 160 88 3 1 0	4 160 88 4 1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	13 1 0	1 0	1 0	1 0
Mode NON NON NON NON NON NON NON NON NON NO	Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt	1 0 0	2 160 88 2 1 0 0	3 160 88 3 1 0	4 160 88 4 1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	13 1 0 0	1 0 0	1 0 0	1 0 0
	Pattern Cycle Time Offset Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt	1 0 0	2 160 88 2 1 0 0	3 160 88 3 1 0	4 160 88 4 1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	13 1 0 0	1 0 0	1 0 0	1 0
	Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt coordination, Sp split Table 1 Time	1 0 0	2 160 88 2 1 0 0	3 160 88 3 1 0 0	4 160 88 4 1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0 0	1 0 0	13 1 1 0 0	1 0 0 0	1 0 0	1 0 0

Split Table 2	1	2	- 3	4	5	- 6	7	8	9	10	11	12	13	14	15	16
Time	24	58	24	54												
Mode	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	24	58	24	54		60 1		1 - 1	1 -							
Mode	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON							1							

Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	24	58	24	54			-	-	- I							/
Mode	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	-	ON	-			-	-				-	-			-	

plit Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time													-			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																

Split Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase						1 1 1			-							

Approved By: Carmen Li	Date:

4280 : 2034 - University Dr & SR 84 (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6	
Lock Input	ON	ON	ON	ON	ON	ON	
Override Auto Flash		-					•
Override Higher Preempt				ON		ON	
Flash in Dwell							1
Link to Preempt							
Delay							
Min Duration							i
Min Green	6	6	6		6		1
Min Walk							1
Ped Clear	1						
Track Green		-					
Min Dwell	8	8	8		8		
Max Presence	180	180	180		180		
Track Veh 1							
Track Veh 2							
Track Veh 3							
Track Veh 4					-		•
Dwell Cyc Veh 1	2	4	1.		3		1
Dwell Cyc Veh 2							
Dwell Cyc Veh 3		-					
Dwell Cyc Veh 4							1
Dwell Cyc Veh 5							
Dwell Cyc Veh 6							1
Dwell Cyc Veh 7					-		
Dwell Cyc Veh 8							
Dwell Cyc Veh 9							1
Dwell Cyc Veh 10					-		
Dwell Cyc Veh 11							
Dwell Cyc Veh 12	1						
Dwell Cyc Ped1							1
Dwell Cyc Ped2							•
Dwell Cyc Ped3							1
Dwell Cyc Ped4							
Dwell Cyc Ped5							
Dwell Cyc Ped6							
Dwell vPed7							
Dwell Cyc Ped8							
Exit 1	3	1	2		4		1
Exit 2		-					
Exit 3	1						
Exit4							

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON	ОИ	ON		ON	
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash						
Coord in Preempt						
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-		-			
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U L	
Track Over 2						
Track Over 3						
Track Over 4						
Track Over 5					0 - 10	
Track Over 6						
Track Over 7						
Track Over 8			1			
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1	2	4	1		2	
DwellCyc Over 2	6	8	6		5	
DwellCyc Over 3	9		9		6	
DwellCyc Over 4	10		10		9	
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7			4			
DwellCyc Over 8				_		
DwellCyc Over 9						
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12				î .		
Ped Clear						
Yellow						
Red						
Return Max						

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	2	3	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	1.	2	3	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	1	2	3	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1,5

Assumented Des. Common Li	Data
Approved By: Carmen Li	Date:

4280 : 2034 - University Dr & SR 84 (Upload File)

Alternate Phase Program 1, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max 1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
	3	3	2	3	3	3	3	3.	3	

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0	0	0	0	0	0	0	
4	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
-------	------	--------------	--------------	---------	------	------	--------	--------------	--------------	---------------

Alternate Phase Program 5, Interval Times [1,1.6.1]

Dhasa		Ped	Min	Рассопо	Movi	Mar2		Red	Assign	Bike
Phase	Walk	Clear	Green	Passage	WIAXI	Maxz	Yellow	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour				1												
Minute		1				1							1			
Action				1												

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		10 0 00										(1	
Minute		1														
Action		10.00	-	1					-					*		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute																
Action																

Approved By: Carmen Li	Date:

4280 : 2034 - University Dr & SR 84 (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																1
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		1		-						1						
Split Table 9	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	21021	27,027	2,10.21	2.02.	23.02.	27.02	2.02	11021	21,021	27.0021	27,027	21.021	27027	27027	2.02.	27,02
0.00134.2111103	-				-						-					_
Split Table 10		2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time										-						1
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase										-			-			
					1				-	_			1			
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase						1										
				_												
Split Table 12	T 1	1 2	3	1 4	5	6	7	8	9	10	111	12	13	14	15	16
Time		-			-					10			10		- 10	1.0
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11011	11011	11011	11015	11011	11011	11011	11011	11011	11011	11013	11011	11011	11011	1,01,
O O O O O O O O O O O O O O O O O O O					1	-			-			-	1			1
Split Table 13	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time	40	62	24	54				-								
Mode	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1		ON		1				-	1	37.00				-	-
Split Table 14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	200												1			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1										-		-			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time									-							
1 IIIIe																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON

Approved By: Carmen Li	Date:

Phase [1.1.1]

	1 (SL)	(NT)	3 (ET)	4 (WT)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Walk	0	0	7	0	0	7	0	0	0	0	0	0	0	0	0	0
Ped Clearance	.0	0	32	0	0	21	0	.0	0	0	0	0	0	0	0	0
Min Green	5	10	6	6	5	10	0	0	3	0	3	0	3	0	3	0
Gap Ext	1.5	3	2	2	1.5	3	0	0	0	0	0	0	0	0	0	0
Max1	25	50	25	25	20	50	0	.0	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	4	4	5	5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	.0	0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NT)	3 (ET)	4 (WT)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON	ON	ON										
Lock Call					ON				ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall		-														
Ped Recall																
Dual Entry																
Sim Gap Enable					-	-			-	ON		ON		ON		ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	0	4	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	3	3	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	-0	0	.0	0	.0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	- 0	0	0	0	.0	. 0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date:

Day Plan Table 1	111	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20	-							-			
Minute																
Action	25	2	3	13	3			-								
Day Plan Table 2	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	6													
Minute			30													
Action	25	100	3													
Hour Minute	25	100	30	23												
Action Coordination, Pa	25	100	1 3	ination	Alt Tak	Nac + (2)	61									
Pattern	1	2	3	a dion,	5	6	1 7	8	9	1 10	1 11	12	13	14	1 45	1 44
										1 10	111	12			13	10
Cycle Time		160	160	160	5			0	,	10	11	14	180	14	15	16
Cycle Time Offset Time		-	70.	160 104				0	,	10	11	12		14	15	16
		160	160					0	,	10	11	12	180	19.	15	16

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			-		-	1										
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	33	64	45	18	22	75										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 3	1	1 2	3	4	5	6	7	8	9	10	n	12	13	14	15	16
Time	33	67	42	18	25	75		0		10	- 11	12	10		10	10
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1	ON			-		-	-				140/4/35		7.37-86		-
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	33	64	45	18	22	75										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 5	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1	- 4	3	1	-	0	- 1	0	- × -	10	- 11	12	15	14	15	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	1,01,	11011	11011	21021	11011	11011	11011	1,01,	21.021	11011	11011	11011	11011	11011	1101
Coold Thase			_							_						
Split Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time													100			
27.4.	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Mode	14014	14014	14014	14014	14014	14014	14014	14 (214	14014	14 014	TAČIA	14/014	14014	14014	14/014	1401

Approved By: Carmen Li	Date:
Approved by, Carmon bi	Date.

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash		ON			-	
Override Higher Preempt		ON				
Flash in Dwell		ON				
Link to Preempt						
Delay						
Min Duration						
Min Green	6		6	6	6	6
Min Walk						
Ped Clear	1					
Track Green		-			-	
Min Dwell	8		8	8	8	8
Max Presence	180		180	180	180	180
Track Veh 1		-				
Track Veh 2						
Track Veh 3						
Track Veh 4					-	
Dwell Cyc Veh 1	2		1	4	2	3
Dwell Cyc Veh 2	6		6		5	
Dwell Cyc Veh 3						
Dwell Cyc Veh 4	1					
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						
Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11						
Dwell Cyc Veh 12						
Dwell Cyc Ped1						
Dwell Cyc Ped2						
Dwell Cyc Ped3						
Dwell Cyc Ped4	1					
Dwell Cyc Ped5	+					
Dwell Cyc Ped6	1					-
Dwell vPed7						
Dwell Cyc Ped8	+					
Exit 1	3		2	1	2	4
Exit 2			6	5	6	
Exit 2				-	0	
Exit 4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON		ON	ON	ON	ON
Type	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash			-			
Coord in Preempt	ON		ON	ON	ON	ON
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-	-	- 1	11	1	1_1_
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U. L	
Track Over 2						
Track Over 3						
Track Over 4						
Track Over 5					0	
Track Over 6						
Track Over 7						
Track Over 8			le transfer de			
Track Over 9						(
Track Over 10		-				
Track Over 11					0	
Track Over 12						1
DwellCyc Over 1				4		3
DwellCyc Over 2						
DwellCyc Over 3					0.00	
DwellCyc Over 4	1		-		10	(
DwellCyc Over 5						
DwellCyc Over 6						-
DwellCyc Over 7	1		95		10	9
DwellCyc Over 8				_		
DwellCyc Over 9			1			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					0.00	
Ped Clear						
Yellow	4		4	4	4	4
Red	2		2	2	2	2
Return Max						(

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	3	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5

Alternate	Dhaca D	rogram '	1 Interval	Times	11	16	11
Allemale	PLIASE P	TOULAID	i. illetval	Times	1.0	1.50.	. 1.1

Phase	Walk	Ped Clear	Min Green	Passage	l Max1 l	l Max2 l	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3-	3.	3	3	3	3	3	3	3	3	
	2	2	2	2	2	2	2	2	2	

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0	0	0	0	0	0.	0	,
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	l Max1 l	l Max2 l	Yellow	Red Clear	Assign Ph	Bike Clear
4	3.	3	3	3	3	3	3	3	3	1
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
4	3	3	3	3	3	3	3	3	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

n	XX/-11-	Ped	Min	Passage	35 1	35	57 - W	Red	Assign	Bike
Pnase	wark	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Alternate Phase Program 5, Interval Times [1.1.6.1]

Dhass	*** **	Ped	Min	Passana	I Mov1	30-3	X7. W	Red	Assign	Bike
rnase	wark	Clear	Green	Passage	l	Maxz	Y enow	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1.1														
Minute		1 4				1							1			
Action		1 = 1														

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		10 0 00										(1	
Minute		1														
Action		10.00	-	1					-					*		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute																
Action																

Approved By: Carmen Li	Date:
Approved by, Calmen Li	Date.

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
	_	- 0														
Split Table 9	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
				F		l sa	-		1	l aa	a a	1 32				1
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	NONE	NON	MON	NIONT	NTONT	NON	NON	NTON	NON	NON	NION	NON	NON	NON	NION	NTO Y
Mode	NON	ИОИ	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1				1				1.			1				
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-		-	- 31	-					10	**	1.2	10		10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11011	11011	11011	11011	11011	11011	11011	11011	11011	11011	11011	11011	11011	11011	1,01
																-
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		11														
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		1	-	1000			1							1000		
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	34	84	42	20	26	92										
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON								1						
Culit Table 14			1 3	1 7		1 6	7		1 6	1 30	1 44	Lin	F 44		45	1 16
Split Table 14 Time	1	2	3	4	5	6	- 1	8	9	10	11	12	13	14	15	16
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	NON	14014	INOIN	INOIN	14014	INOIN	14014	INOIN	14014	14 013	INOIN	14014	14014	NON	NON	1401
Coold Pliase				1	1						1]
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1					9										
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		2.025														
Split Table 16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
		1	1	1	1				1	1	1	1				1
Time	-						-									
	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON

Date:
D

Phase [1.1.1]

	1 (SL)	(NT)	3 (ET)	4 (WT)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Walk	0	7	7	0	0	7	0	0	0	0	0	0	0	0	0	0
Ped Clearance	.0	26	35	0	0	26	0	.0	0	0	0	0	0	0	.0	0
Min Green	5	10	6	6	5	10	0	0	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	2.5	2	1.5	3	0	0	0	0	0	0	0	0	0	0
Max1	25	50	28	35	15	50	0	.0	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	3	3	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NT)	3 (ET)	4 (WT)	5 (NL)	6 (ST)	7	8	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON	ON	ON									-	
Lock Call			ON	ON					ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Dual Entry															7 7 1	
Sim Gap Enable				ON	-	-		ON	ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	- 8	3	4	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	7	7	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	.0
Switch Phase	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	.0	0	.0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	Ω

Detector, Vehicle Parameters 49-64 [5,1]

Broward County

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	- 0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	- 0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0

Approved By: Carmen Li Date:

TB Coor, Day Plan [4,4]

Day Plan Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20								-			
Minute																
Action	100	2	3	13	3			-								
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute			30													
Action	3	100	3	1						L						
Day Plan Table 3	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16
Hour	10	_ [1]	6	23												
Minute			30													
Action	3	100	3	100												
		2.2.1.1						1 8	1 9	T 10	111	12	1 13	14	15	1
C 1' 1' D	4															
		2.2.1.1									1 22		1			
Pattern	attern 1-	2	3	4	, All Tal	6 6	7	8	9	10	11	12	13	14	15	16
Pattern Cycle Time		2 160	3	4				8	9	10	11	12	180	14	15	10
Pattern Cycle Time Offset Time		2 160 120	3 160 118	4 160 120				8	9	10	11	12	180 172	14	15	10
Pattern Cycle Time Offset Time Split Number	1	160 120 2	3 160 118 3	160 120 4	5	6	7						180 172 13			
Pattern Cycle Time Offset Time Split Number Seq Number	1	2 160 120 2 1	3 160 118 3 1	160 120 4 1	5	1	7	1	.1	i	1	1	180 172 13 8	1	1	1
Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt	1 0	2 160 120 2 1 0	3 160 118 3 1 0	4 160 120 4 1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	180 172 13 8 0	1 0	1 0	1 0
Cycle Time Offset Time Split Number Seq Number	1	2 160 120 2 1	3 160 118 3 1	160 120 4 1	5	1	7	1	.1	i	1	1	180 172 13 8	1	1	
Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt	1 0 0	2 160 120 2 1 0 0	3 160 118 3 1 0	4 160 120 4 1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	180 172 13 8 0	1 0 0	1 0 0	1 0 0
Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp	1 0 0	2 160 120 2 1 0	3 160 118 3 1 0	4 160 120 4 1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	1 0	180 172 13 8 0	1 0	1 0	1 0 0
Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time	1 0 0	2 160 120 2 1 0 0	3 160 118 3 1 0 0	4 160 120 4 1 0 0	1 0 0	1 0 0	7	1 0 0	1 0 0 0	1 0 0	1 0 0	1 0 0	180 172 13 8 0 0	1 0 0 0	1 0 0	1 0 0
Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time Mode	1 0 0	2 160 120 2 1 0 0	3 160 118 3 1 0	4 160 120 4 1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	1 0 0	180 172 13 8 0	1 0 0	1 0 0	1 0 0
Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time	1 0 0	2 160 120 2 1 0 0	3 160 118 3 1 0 0	4 160 120 4 1 0 0	1 0 0	1 0 0	7	1 0 0	1 0 0 0	1 0 0	1 0 0	1 0 0	180 172 13 8 0 0	1 0 0 0	1 0 0	1 0 0
Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time Mode Coord Phase	1 0 0 0 lits [2.7.	2 160 120 2 1 0 0	3 160 118 3 1 0 0	4 160 120 4 1 0 0 0	5 1 0 0 0 5 NON	6 1 0 0 0 NON	7 1 0 0 0 7 NON	1 0 0 NON	1 0 0	10 10 10	1 0 0	1 0 0	180 172 13 8 0 0 0	1 0 0 0	1 0 0	1 0 0
Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time Mode Coord Phase	1 0 0 0 lits [2.7. 1 NON 1	2 160 120 2 1 0 0	3 160 118 3 1 0 0 0	4 160 120 4 1 0 0	5 1 0 0 0	6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 1 0 0 0 7 NON 7	1 0 0 0 8 NON	1 0 0 0	1 0 0	1 0 0	1 0 0	180 172 13 8 0 0	1 0 0 0	1 0 0	1 1 0 0 0 0 1 1 1 6 1 1 1 1 6
Pattern Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time Mode Coord Phase	1 0 0 0 lits [2.7.	2 160 120 2 1 0 0	3 160 118 3 1 0 0	4 160 120 4 1 0 0 0	5 1 0 0 0 5 NON	6 1 0 0 0 NON	7 1 0 0 0 7 NON	1 0 0 NON	1 0 0	10 10 10	1 0 0	1 0 0	180 172 13 8 0 0 0	1 0 0 0	1 0 0	1 0 0 0

Split Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	26	75	32	27	22	79	32	27					1			100
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON				1		- 1						-		
			1 2				7		I 0	10	T et	12	12	1 14	15	16
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	1 22		3	4 27	5	6	7 49	8 27	9	10	11	12	13	14	15	16
Split Table 4	1 22 NON	2					7 49 NON		9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	16 NON

Split Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	(Per 2)															
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																

Split Table 6	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16
Time														a		
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase															1-	

Approved By: Carmen Li	Date:
Approved by. Carmen Li	Date.

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash	ON	ON	ON	ON	ON	ON
Override Higher Preempt	ON	ON	ON	ON	ON	ON
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	10		10	10	10	10
Min Walk						
Ped Clear					-	
Track Green		-			-	-
Min Dwell	8		8	8	8	8
Max Presence	180		180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3	100					-
Track Veh 4					1	-
Dwell Cyc Veh 1	2		1	4	2	3
Dwell Cyc Veh 2	6		6		5	
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6					-	
Dwell Cyc Veh 7					-	
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11						
Dwell Cyc Veh 12						
Dwell Cyc Ped1		-				
Dwell Cyc Ped2			= 3			
Dwell Cyc Ped3				1 3		
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7		-				
Dwell Cyc Ped8						-
Exit 1	3	-	2	1	2	4
Exit 2		-	6	5	6	
Exit 3						
Exit 4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable		ОИ	ON	ON	ON	ON
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track		- 1				
Volt Mon Flash						
Coord in Preempt						
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-					
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1						
Track Over 2						
Track Over 3					11	
Track Over 4						
Track Over 5					0.00	
Track Over 6						
Track Over 7						
Track Over 8			1-1			
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2		1				
DwellCyc Over 3					5	
DwellCyc Over 4			-		2 0	9
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7					100	6
DwellCyc Over 8						
DwellCyc Over 9						
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12	Î				n i	
Ped Clear		Ì				
Yellow						
Red						
Return Max						(

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	l Phas	es					N	Iodife	Phas	es			Type	Green	Yellow	Red
Overlap 1	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5

Assumented Des. Common Li	Data
Approved By: Carmen Li	Date:

Alternate Phase Program 1, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max 1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3.	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
9	2	3	3	3	3	3	2	3.	3	

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0	0	0	0	0	0	0	1
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
3	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
-------	------	--------------	--------------	---------	------	------	--------	--------------	--------------	---------------

Alternate Phase Program 5, Interval Times [1.1.6.1]

Dhasa	TT 11	Ped	Min	Daggaga	Movi	352		Red	Assign	Bike
Phase	walk	Clear	Green	Passage	WIAXI	Maxa	Y ellow	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour				1												
Minute		1				1							1			
Action				1												

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		10 00 00													1	
Minute		1														
Action		100	-										1	7	1	+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute								-			-					
Action																

Approved By: Carmen Li	Date:
Approved by, Calmen Li	Date.

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase												(
	_															
Split Table 9	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
									1 2	ri sa sa						I same
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	NTONT	NONE	17017	37037	17017	NIONE	ATOM	ATOM	ATOM	MONT	MONT	STOST	NONE	ATOM	NTONT	MICH
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	ИОИ
Coord Phase	1									_						
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-	-	_	- 3	-		-			10	**	12	10	- 47	10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11011	11011	1,01,	11011	1,01,	1,01,	11011	11011	11011	11011	11011	11011	1,011	1,011	1101
	-			-						-						
Culit Table 13	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 12 Time	-	4	3	4	3	0	1	0	,	10	- 11	12	13	14	15	10
Mode	NON	NON	NON -	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	INOIA	INOIN	14014	TAOIA	14014	NON	NON	INOIN	14014	NON	14014	14 (214	14014	NON	14014	NON
Coold Filase																
Split Table 13	1 1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time	32	91	22	35	25	98	22	35								
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON									5,50					
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time								-								
Mode	1 NON	2 NON	3 NON	4 NON	5 NON	6 NON	7 NON	NON	9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	
Time								-								
Time Mode Coord Phase	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Time Mode Coord Phase Split Table 15								-								
Time Mode Coord Phase Split Table 15 Time	NON 1	NON 2	NON 3	NON 4	non 5	иои	non 7	NON 8	NON 9	10	NON 11	NON 12	NON 13	NON	NON	NON
Time Mode Coord Phase Split Table 15 Time Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Time Mode Coord Phase Split Table 15 Time	NON 1	NON 2	NON 3	NON 4	non 5	иои	non 7	NON 8	NON 9	10	NON 11	NON 12	NON 13	NON	NON	NON 16
Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	non 1	NON 2	NON NON	NON 4	NON 5	NON 6 NON	NON 7 NON	NON 8	NON NON	10 NON	NON 11 NON	NON 12 NON	NON 13	NON	NON 15	NON 16 NON
Time Mode Coord Phase Split Table 15 Time Mode Coord Phase	NON 1	NON 2	NON 3	NON 4	non 5	иои	non 7	NON 8	NON 9	10	NON 11	NON 12	NON 13	NON	NON	NON
Time Mode Coord Phase Split Table 15 Time Mode	non 1	NON 2	NON NON	NON 4	NON 5	NON 6 NON	NON 7 NON	NON 8	NON NON	10 NON	NON 11 NON	NON 12 NON	NON 13	NON	NON 15	non

4145: 2075 - University Dr & Nova Dr (Upload File)

Phase [1.1.1]

	1 (SL)	(NT)	3 (WL)	4 (ET)	5 (NL)	6 (ST)	7 (EL)	8 (WT)	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	7	0	7	0	0	0	0	0	0	0	0
Ped Clearance	.0	30	0	36	0	30	0	36	0	0	0	0	0	0	.0	0
Min Green	5	10	5	6	5	10	5	6	0	0_	0	0	0	0	0	0
Gap Ext	1.5	3	1.5	2	2	3	1.5	2	0	0	0	0	0	0	0	0
Max1	25	50	25	30	20	50	18	30	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	3	3	2	2	3	3	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NT)	3 (WL)	4 (ET)	5 (NL)	6 (ST)	7 (EL)	8 (WT)	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON	ON	ON	ON	ON							1	
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Dual Entry				ON				ON							1 7 1	
Sim Gap Enable					-				ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	8	4	- 8	0	4	0	6	0	-8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	20	20	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	-0	6	0	8	0	2	0	4	0	6	- 0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	.0	0	0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	0	.0.	0	.0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0

Approved By: Carmen Li

Date:

4145 : 2075 - University Dr & Nova Dr (Upload File)

Broward County

Day Plan Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20								-			
Minute																
Action	100	2	3	13	3											
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute			30													
Action	3	100	3													
Hour	1 -	1	6	23	5	6	17.31	8	9	10	- 11	12	13	14	15	10
Day Plan Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Minute	-	1	30	23												-
Action	3	100	30	100		-				-					-	-
Action	1	100	1	100					_						_	
Coordination, Pi				100												
coordination, i	attern 1-	16 [2.1]]/Coord	lination	Alt Tal	oles+[2.	<u>6]</u>									
Pattern	attern 1-	16 [2,1] 2	/Coord	lination, 4	Alt Tal	oles+[2.	6 <u>]</u>	8	9	10	11	12	13	14	15	1
	1						_	8	9	10	11	12	13 180	14	15	1
Pattern	1	2	3	4			_	8	9	10	11	12		14	15	1
Pattern Cycle Time	1	2 160	3	4 160			_	8	9	10	11	12		14	15	1
Pattern Cycle Time Offset Time	attern 1-	2 160 129	3 160 113	160 113			_	8	9	10	11	12	180	14	15	1
Pattern Cycle Time Offset Time Split Number	1 1 0	2 160 129	3 160 113	160 113 4			_	1 0	1 0	10	11 1 0	1 0	180 1 13			

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time								12.74	- 1							
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Call Table 3									T &	1 40	and .		- 40		45	46
Split Table 2	1	2	3	4	- 5	6	7	- 8	9	10	11	12	13	14	15	16
Time	20	78	20	42	20	78	20	42					10.10			
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase		ON														
Split Table 3	T 1	2	3	4	5	6	7	8	9	10	111	12	13	14	15	16
Time	20	78	20	42	20	78	20	42								100
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase		ON	-	202400	110,000		7,37,00	1				140,492		7:37:44		
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	20	78	20	42	20	78	20	42								
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 5	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		-		7					- 2 -	10	11	12	10	17	10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	14014	11011	11011	14014	14014	11011	14014	11011	11011	11011	11011	11011	11011	14014	14014	1101
o cord i masc		_				-	1					_				
Split Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Spin Laute o																
Time	11.					-							100	A. W.		1
	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI

The land of the State of the St	
Approved By: Carmen Li	Date:
Approved by, Carrier Li	Date.

4145 : 2075 - University Dr & Nova Dr (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6	1
Lock Input	ON	ON	ON	ON	ON	ON	
Override Auto Flash							
Override Higher Preempt							
Flash in Dwell							•
Link to Preempt							
Delay							1
Min Duration							
Min Green	6	6	6	6	6	6	
Min Walk							1
Ped Clear	-						
Track Green					-		
Min Dwell	8	8	8	8	8	8	
Max Presence	180	180	180	180	180	180	
Track Veh 1							
Track Veh 2							
Track Veh 3							
Track Veh 4						1	١
Dwell Cyc Veh 1	2	4	1	3	2	4	1
Dwell Cyc Veh 2	6	8	6	8	5	7	
Dwell Cyc Veh 3					-		
Dwell Cyc Veh 4	1						1
Dwell Cyc Veh 5							
Dwell Cyc Veh 6							١
Dwell Cyc Veh 7							
Dwell Cyc Veh 8							
Dwell Cyc Veh 9							
Dwell Cyc Veh 10							
Dwell Cyc Veh 11							1
Dwell Cyc Veh 12							
Dwell Cyc Ped1							
Dwell Cyc Ped2							
Dwell Cyc Ped3							١
Dwell Cyc Ped4							
Dwell Cyc Ped5							
Dwell Cyc Ped6							
Dwell vPed7	1					1	
Dwell Cyc Ped8							
Exit 1	3	1	2	4	2	4	
Exit 2	7	5	6	8	6	8	
Exit 2	1			-	-	0	
Exit 4							

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON	ON	ON	ON	ON	ON
Type	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash						
Coord in Preempt	ON	ON	ON	ON	ON	ON
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-				-	
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U L	
Track Over 2						
Track Over 3						
Track Over 4						
Track Over 5						
Track Over 6						
Track Over 7						
Track Over 8			le to the state of			
Track Over 9						
Track Over 10		-				
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3						
DwellCyc Over 4			-		2 0	
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7	1		91			
DwellCyc Over 8						
DwellCyc Over 9			1			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12						
Ped Clear						
Yellow	4	4	4	4	4	4
Red	1	1-1-	1	1	1_	1
Return Max						8

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phase	es			Туре	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	5	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	1	8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5

Assumented Des. Common Li	Data
Approved By: Carmen Li	Date:

4145: 2075 - University Dr & Nova Dr (Upload File)

Alternate Phase Program 1, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3) I
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	14
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
4	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 5, Interval Times [1.1.6.1]

Dhago	337-11-	Ped	Min	Passage	Mov1	M2	k7 11	Red	Assign	Bike
rnase	walk	Clear	Green	1 assage	MAA	Maxz	Y ellow	Clear	Ph	Clear

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0	0	0.	0	0	0	0	0.	0	
4	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	.0	0	.0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 4, Interval Times [1.1.6.1]

n	337-11-	Ped	Min	D	3.5 1	35	X7 . 11	Red	Assign	Bike
Phase	wank	Clear	Green	Passage	Maxi	Maxz	х епом	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1 1 1														
Minute		1 4				1							1			
Action		1 = 1														

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		11 0 17													1	
Minute																
Action	-	11	-						-			7		*		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute								-			1					
Action														1		

Approved By: Carmen Li	Date:

4145 : 2075 - University Dr & Nova Dr (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase																
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1	_						-	-							
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase																
				-	-										-	
Split Table 9	Total V	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time			3				-		,	10	3,1	1.2	13	1.7	10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11011	1,01,	11011	15014	19/019	HOL	11011	110211	11011	14014	210211	19019	11011	11011	1401
C GOIG I Hase	-	_			_		_	_	_	1	_	_				_
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	4	-	3	-	5		1	0	,	10	1.1	1.2	13	14	1.5	10
1 ime Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase	NON	NON	NON	INOIN	NON	MOM	NON	NON	NON	NON	NON	NON	NON	NON	NON	ION
Coord Filase	1								1	1		1				
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	- 4	2	3	7.	3		- 6		- 2	10	1.1	1.2	13		10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Coord Phase	14014	11011	11011	14014	11011	11011	11011	11011	14014	11011	14014	11011	11011	TION	14014	1401
Coold Filase	_				1				_	-	-				_	_
	1					P = 21 1 4					- 23				1	1 32
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		200000	120010			1000		10000	20000	100000		22000			20020	
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
														· ·		
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	25	91	22	42	25	91	22	42		-	-					-
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
				0 2		0 2						r	F 52	C 22	P 32 3	
Split Table 14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Mode Coord Phase	NON	NON	NON	NON	INOIN	NON	NON	NON	INOIN	INOIN	NON	NON	NON	NON	NON	NOR
				l												
Coord Priase																
				C 25	1 -		-			40	44	42	4.2	7 (mag)	45	1 40
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 15 Time	1					-	-					-	1000		L	
Split Table 15 Time Mode	1 NON	2 NON	3 NON	4 NON	5 NON	6 NON	7 NON	8 NON	9 NON	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	
Split Table 15 Time	1					-	-					-	1000		L	
Split Table 15 Time Mode Coord Phase	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NOI
Split Table 15 Time Mode Coord Phase	1					-	-					-	1000		L	NON
Split Table 15 Time Mode Coord Phase Split Table 16 Time	NON 1	non 2	NON 3	NON 4	NON 5	NON 6	NON 7	NON 8	non 9	NON 10	NON	NON 12	NON 13	NON 14	NON 15	NON 16
Split Table 15 Time Mode Coord Phase	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON 16

4115: 3381 - University Dr & SW 30 St (Upload File)

Phase [1.1.1]

	1 (SL)	(NT)	3 (WL)	4 (ET)	5 (NL)	6 (ST)	7 (EL)	8 (WT)	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	7	0	7	0	0	0	0	0	0	0	0
Ped Clearance	0	22	0	34	0	22	0	36	0	0	0	0	0	0	.0	0
Min Green	5	12	4	6	5	12	4	6	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	1.5	2	1.5	3	1.5	2	0	0	0	0	0	0	0	0
Max1	20	50	12	25	20	50	12	25	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	2.	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (SL)	2 (NT)	3 (WL)	4 (ET)	5 (NL)	6 (ST)	7 (EL)	8 (WT)	9	10	11	12	13	14	15	16
Enable	ON	ON	ON	ON	ON	ON	ON	ON		1					-	111
Lock Call	ON				ON		ON		ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON									1	
Max Recall		-														
Ped Recall																
Dual Entry				ON				ON	1 -						7 7 1	
Sim Gap Enable					-			ON	ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	- 8	0	2	0	4	0	6	0	-8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	1.5	0	1.5	1.5	1.5	0	1.5	1.5	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	.0	0	0	0	0	0	0	.0	0	0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	0
Delay Time	0	0	D.	0	0	0	0	0	0	0	0	D	0	0	0	0

Detector, Vehicle Parameters 49-64 [5,1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	0	.0.	0	.0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date: **System Timing Sheet**

Broward County

Day Plan Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20								-			
Minute																
Action	100	2	3	4	3			-					-			
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute			30													
Action	3	100	3							1.						
Day Plan Table 3 Hour	1	1	6	23	5	6	7	8	9	10	11	12	13	14	15	10
Day Plan Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
20.000	-	1 -		2.5		-			_	-						-
Minute	-	400	30	400		-		-		-					_	-
Action	3	100	3	100						1						
Coordination, Pa	attern 1-	16 [2.1]/Coord	lination,	Alt Tal	oles+[2.	6] I 7	1 8	9	T 10	11	12	13	14	15	
	1	- 23		7.1	3	0	1	0	,	10	11	1.2	1.5		13	10
Cycle Time		160	160	160						-				180		
Offset Time		31	31	27										27		
Split Number		2	3	4										14		
		4	2			_	-			-	_					
Seq Number	1	1	1	1	1	1	1	1	.1	1	1	1	1	1	1	1
Seq Number Ph Opt Alt Ph Time Alt	1 0	1 0	1 0		1	1 0	1 0	1	1 0	1 0	1 0	1	1 0	1 0	1 0	1 0

Split Table 2	Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 2	Time	100				-			7	- 4-							
Split Table 2	Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Time	Coord Phase																
Mode	Split Table 2	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 3	Time	30	69	22	39	30	69	22	39								
Split Table 3	Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Time 30 69 22 39 30 69 22 39	Coord Phase		ON									11					
Time 30 69 22 39 30 69 22 39									-			- 53					32
Mode	A STATE OF THE STA			1000					- 2	9	10	11	12	13	14	15	16
Coord Phase										12012	10010				10000		1221
Split Table 4	A THE YORK	NON	1 2 U + 7 2 U - 1	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Time 28 73 22 37 28 73 22 37	Culit Table 4		2	3	1 4	-	1 6	7		l 0	10	111	12	13	14	15	16
Mode NON MXP NON NON NON MXP NON > <td>100</td> <td></td> <td>4.004</td> <td></td> <td>40</td> <td></td> <td>167</td> <td></td> <td></td> <td>10</td> <td>1.1</td> <td>12</td> <td>13</td> <td>17</td> <td>15</td> <td>10</td>		100		4.004		40		167			10	1.1	12	13	17	15	10
Coord Phase		-						-	-	NON	NON	NON	NON	NON	NON	NON	NON
Split Table 5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time Mode NON		14014		NON	14014	NON	IVIAF	14014	NON	NON	14014	NON	NON	INOIN	NON	14014	NON
Time Mode NON	Coord Dhace	1															
Mode NON d Phase</td> <td></td> <td>ON</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Coord Phase		ON														
Coord Phase 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time 1				3	4	5	6	7	8	9	10	11	12	13	14	15	16
Split Table 6 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Time Image: Control of the con	Split Table 5	1		3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	Split Table 5 Time	100	2														16 NON
Time	Split Table 5 Time Mode	100	2														
	Split Table 5 Time Mode Coord Phase	NON	2 NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Mode NON NON NON NON NON NON NON NON NON NO	Split Table 5 Time Mode Coord Phase	NON	2 NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	
Mode NON NON NON NON NON NON NON NON NON NO	Split Table 5 Time Mode Coord Phase Split Table 6 Time	NON 1	NON 2	иои 3	NON 4	NON 5	NON 6	non 7	NON NON	NON 9	NON 10	NON 11	NON	NON	NON 14	NON 15	NON

Approved By: Carmen Li	Date:
Approved by: Calified L1	Date:

4115 : 3381 - University Dr & SW 30 St (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash						
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear	+				-	
Track Green						-
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1	1					
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1	-2	4	1	3	2	4
Dwell Cyc Veh 2	6	8	6	8	5	7
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						1
Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9		-				
Dwell Cyc Veh 10					-	
Dwell Cyc Veh 11						
Dwell Cyc Veh 12						
Dwell Cyc Ped1						
Dwell Cyc Ped2			= = 3			
Dwell Cyc Ped3				3		
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7						
Dwell Cyc Ped8						
Exit 1	3	11	2	4	2	4
Exit 2	7	5	6	8	6	8
Exit 3						
Exit 4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON	ОИ	ОИ	ON	ON	ON
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERO
Skip Track						
Volt Mon Flash			-			
Coord in Preempt	ON	ON	ON	ON	ON	ON
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-				-	
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U L	
Track Over 2						
Track Over 3						
Track Over 4						
Track Over 5					10	
Track Over 6						
Track Over 7						
Track Over 8			11 1			
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3						
DwellCyc Over 4					2.0	
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7			1		10	
DwellCyc Over 8						
DwellCyc Over 9			-			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					i i	Î
Ped Clear		Ì				
Yellow						
Red						
Return Max						(

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ıclude	d Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5

Approved By: Carmen Li	Date:

4115: 3381 - University Dr & SW 30 St (Upload File)

Alternate Phase Program 1, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max 1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3.	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3.	3	3	3	3	3	3	3	3	
4	3	3	3	3	3	3	3	3	3	

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0.	0	0	0	0	0.	0	
4	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	.0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
3	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

Alternate Phase Program 2, Interval Times [1.1.6.1]

n	XX -11-	Ped	Min	Passage	3.5 1	35	57 . W	Red	Assign	Bike
Pnase	wark	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Alternate Phase Program 5, Interval Times [1,1.6.1]

Dhage		Ped	Min	Россопо	Movi	More		Red	Assign	Bike
rnase	waik	Clear	Green	Passage	Maxi	Maxa	Y ellow	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour				1												
Minute		1				1							1			
Action				1												

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		11 0 17													1 - 1	
Minute																
Action		1	-						-	1		1	1	7		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute																
Action																

Approved By: Carmen Li	Date:

4115 : 3381 - University Dr & SW 30 St (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1		10.000	10000		1 2/2/2000	-	27273.00		1000000					10000000	
Mode	NON	NON	NON	NON	NON	NON	NON	иои	NON	NON	NON	NON	NON	NON	ИОИ	NON
Coord Phase						E										
Split Table 8	1	1 2	3	I 4	5	6	7	8	9	10	1 11	12	13	14	15	16
AND DESCRIPTION OF THE PARTY OF	1	- 2	3	- 4	3	- 0	,	0	9	10	-11	12	13	14	15	10
Time Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
	NON	INOIN	NON	INON	NON	NON	14014	14014	NON	MOM	INOIN	14 014	14014	NON	14014	INOI
Coord Phase	-]]	1	K-				
Split Table 9	1	2	3	4	5	6	7	8	9	10	111	12	13	14	15	16
Time			-		-								10			10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase	11011	1,01	1,01,	11011	110.11	21021	1,011	11011	21021	11.021	11011	21,021	21021	11011	11011	110
O COIG THUS	-				_						-					_
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase																
anan ar ag was																
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time						1				-	-					
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase	1															
Split Table 12	1	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-									- 20					- 20	
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase	11021	2,02	11011	12(02)	1219.21	21.02.	27027	21021	1,02	21021	,21021	21,021	21,021	2,02,	21021	12,00
Occid Thise		1			-											1
Split Table 13	10	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time						Ē										
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase																
				0							r en e	f 50 0		6 22 3		
Split Table 14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	31	83	25	41	31	83	25	41					70070	2222		200
Mode	NON	MXP	NON	NON	иои	MXP	NON	NON	NON	иои	NON	NON	NON	NON	NON	NO
Coord Phase	1	ON			1					_	1	l .				
Split Table 15	1	1 2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			-										2,0			1
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase	14/014	11/014	11/014	11011	210/13	11/011	11011	11011	11/011	13014	19014	11/01/	14014	11011	11011	110.
Coold Filase										-						
Split Table 16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NO
Coord Phase	1	-			1				2,117			1	1		-	
COOLG FILASC	41.00			1												100

Approved By: Carmen Li	Date:

7390: 2267 - Broward Blvd & Mall Entrance (Upload File)

Phase [1.1.1]

	1	(WT)	3	4 (NT)	5 (WL)	6 (ET)	7	8 (ST)	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	0	0	0	0	0	0	0	0	0_	0	0
Ped Clearance	.0	10	0	22	0	0	0	0	0	0	0	0	0	0	.0	0
Min Green	0	7	0	6	4	7	0	6	3	0	3	0	3	0	3	0
Gap Ext	0	3	0	2	1.5	3	0	2	0	0	0	0	0	0	0	0
Max1	- 0	50	0	30	15	50	0	30	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	4	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3,5	3.5	3.5	3.5
Red Clr	0	2	0.	2	2	2	0	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1	(WT)	3	4 (NT)	5 (WL)	6 (ET)	7	8 (ST)	9	10	11	12	13	14	15	16
Enable		ON		ON	ON	ON		ON								
Lock Call								- 1	ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Dual Entry				ON				ON	-						1 7 7 1	
Sim Gap Enable					-				ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	8	0	2	.0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	.0	0	.0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

Broward County

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0	- 0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0

Approved By: Carmen Li

Date:

7390: 2267 - Broward Blvd & Mall Entrance (Upload File)

Day Plan Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		7	9	15	20	23							-			
Minute																
Action	25	2	3	4	3	25		-								
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		7	23													
Minute																
Action	25	3	25													
Hour		7	23					9		10	-1		10	.,	10	-
Day Plan Table 3	T 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Minute		1	-													
Action	25	3	25													
Coordination, Pa	attern 1-	16 [2.1]]/Coord	fination,	Alt Tab	oles+[2,	6] I 7	1 8	9	1 10	11	12	13	14	15	16
		160	160	160	3	0	-	0	,	10	11	14	1.5	14	13	- 10
Cycle Time Offset Time	-	95	95	152						-						_
7771777777777																
Split Number	4	2	3	4	-	-	4	4	-	-		-		- 1	4	-
Seq Number	1	(1)	1	-	1	1	1	1	1	1 1	- 4	1	1	-	1	1
																-
Ph Opt Alt Ph Time Alt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time						1			- 1		100					
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 2	1	2	3	4	5	6	7	8	9	10	111	12	13	14	15	16
Time		121		39	18	103		39								
Mode	NON	MXP	NON	NON	NON	MAX	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON	-									_				
Split Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-	121	E 1 4 1	39	18	103		39					1			100
Mode	NON	MXP	NON	NON	NON	MAX	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON	-				-									
-100																
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		121		39	18	103		39								
Mode	NON	MXP	NON	NON	NON	MAX	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	Pa. 15					1										
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Mode																
Coord Phase									-				1			
10000000																
Coord Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
10000000	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Coord Phase Split Table 6	1 NON	2 NON	3 NON	4 NON	5 NON	6 NON	7 NON	8 Non	9 Non	10 NON	11 NON	12 NON	13 NON	14 NON	15 NON	16 NON

Approved By: Carmen Li	Date:
Approved by: Carmen Li	Date.

7390 : 2267 - Broward Blvd & Mall Entrance (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON		ON
Override Auto Flash					-	
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6		6		
Min Walk						
Ped Clear						
Track Green				1	-	
Min Dwell	8	8		8		
Max Presence	180	180		180		
Track Veh 1	-			9		
Track Veh 2						
Track Veh 3						
Track Veh 4						-
Dwell Cyc Veh 1	4	2		2		
Dwell Cyc Veh 2	8	6		5		
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6					-	
Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10					_	
Dwell Cyc Veh 11						11
Dwell Cyc Veh 12						
Dwell Cyc Ped1						- 0
Dwell Cyc Ped2			3			
Dwell Cyc Ped3						
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7	1					
Dwell Cyc Ped8						
Exit 1	2	4		2		1
Exit 2	5	8		6		
Exit 3	1	-		- V		
Exit 4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON	ОИ	Fig. 1	ON		
Type	EMERG	EMERG	EMERG	EMERG	EMERG	EMERO
Skip Track						
Volt Mon Flash						
Coord in Preempt	ON	ON		ON		
Return Max/Min	MIN	MIN	MAX	MAX	MAX	MAX
Extend Dwell	-		-	-	-	
Pattern					5	
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1						
Track Over 2						
Track Over 3						
Track Over 4						
Track Over 5						
Track Over 6						
Track Over 7						
Track Over 8			li I			
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3						
DwellCyc Over 4						6
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7			11		10	8
DwellCyc Over 8						
DwellCyc Over 9		1	1			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12						
Ped Clear						
Yellow	4	4		4	11	
Red	2	2		2		
Return Max						(

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	NORMAL	0	3.5	1.5

A second control of the Common T :	D. A.
Approved By: Carmen Li	Date:

7390 : 2267 - Broward Blvd & Mall Entrance (Upload File)

Alternate Phase Program 1, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3.	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3.	3	3	3	3	3	3	3	3	
	3	3	2	3	3	3	3	3	3	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	100
4	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 5, Interval Times [1.1,6.1]

	19		-			Service and the service of the servi	CONTRACTOR OF THE PARTY OF THE			
Dhaca	337-H-	Ped	Min	Passage	Mov1	May	k7 - 11	Red	Assign	Bike
rnase	walk	Clear	Green	1 assage	MAXI	Maxz	Y ellow	Clear	Ph	Clear

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0	0	.0	0	0	0.	0	
4	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	0	0	0	0.	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 4, Interval Times [1.1.6.1]

ni.	***	Ped	Min	Passage	3.5 1	35	X7 - 11	Red	Assign	Bike
Pnase	wark	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1.1														
Minute		1 4				1							1			
Action		1 = 1														

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		10 0 00										(1	
Minute		1														
Action		10.00	-	1			-		-					*		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute								-			-					
Action																

Approved By: Carmen Li	Date:
Approved by, Calmen Li	Date.

7390 : 2267 - Broward Blvd & Mall Entrance (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	иои	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
	-															
Split Table 9	1	2	3	4	5	6	7	8	9	10	1.1	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
				F	1	l sa	-	- 6	1	T do	ana -	1 32				1
Split Table 10 Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	17017	TTOTT	MONT	37037	TTOTT	NIONI	ATOAT	NTONT	NTONT	NONE	NTONT	TOTAL	NTONT	ATOAT	17017	2702
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase					1				1.			1.				
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1.4	2	3	7.	3		- 6	0	- 2.	10	11	1.2	13		10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11011	11011	14014	11011	11011	11011	11011	11011	11011	14014	11011	11011	IIOII	11011	INOI
0 0014 111100																
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		1.00	1000	14.			7.70	1					15000	2000	-	
	4															
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	17017	10000	11011	17017	12012		112012	*****	1	12012	17017	17017	17717	12012	12012	
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase					_				1			L				
Split Table 14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	Da. 17												0 - 1		72	
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1				-	1	-					-	The second	-	L	
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 16	1	2	3	4	5	6	7	8	9	10	1.1	12	13	14	15	16
Time																
2011	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Mode	TAOTA	14014	21021	21021	1	21021	21021	21021	21021		21021	21021		21021		

Date:

7370 : 2326 - Broward Blvd & El Dorado Pkwy (Upload File)

Phase [1.1.1]

	1 (EL)	2 (WT)	3	4 (NT)	5 (WL)	6 (ET)	7	8 (ST)	9	10	11	12	13	14	15	16
Walk	0	7	0	0	0	7	0	7	0	0	0	0	0	0	0	0
Ped Clearance	.0	20	0	0	0	20	0	22	0	0	0	0	0	0	.0	0
Min Green	4	15	0	6	4	15	0	6	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	0	2	1.5	3	0	2	0	0	0	0	0	0	0	0
Max1	12	50	0	25	12	50	0	25	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	5	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	0.	2	2	2	0	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (EL)	2 (WT)	3	4 (NT)	5 (WL)	6 (ET)	7	8 (ST)	9	10	11	12	13	14	15	16
Enable	ON	ON		ON	ON	ON		ON								
Lock Call								- 1	ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON		1								
Max Recall							-									
Ped Recall																
Dual Entry				ON				ON							1 7 7	
Sim Gap Enable					-				ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	.0	0	.0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

7-7	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	D.	0	0	0	0	0	0	0	0	D	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	. 0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	1 0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date:

10/15/2019

Broward County System Timing Sheet

Day Plan Table 1	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16
Hour		6	9	15	20		-		-							
Minute																
Action	100	2	3	4	3			-			-					
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		1	6													
Minute			30													
Action	3	100	3	J.					1	1.						
Day Plan Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	10
Hour		_ [1]	6	23												
Minute			30													
Action	3	100	3	100												
Datton				4	3	0	1	0	,	10	11	14	1.3	14	13	1 1
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	10
Pattern				4.49					1							
Cycle Time		160	160	160							9	-				
Cycle Time Offset Time		160 137	160 119	119							4					
Cycle Time Offset Time Split Number		160 137 2	160 119 3	119 4												
Cycle Time Offset Time Split Number Seq Number	1	160 137 2 1	160 119 3 1	119 4 1	1	1	1	1	1	1	1	1	1	1	1	
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt	1 0	160 137 2 1	160 119 3 1 0	119 4 1 0	0	0	0	0	0	0	0	0	0	0	0	0
Cycle Time Offset Time Split Number Seq Number	1	160 137 2 1	160 119 3 1	119 4 1									100			0
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt	1 0 0	160 137 2 1 0 0	160 119 3 1 0	119 4 1 0 0	0	0	0	0	0	0	0	0 0	0	0 0	0	0
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp	1 0 0	160 137 2 1 0	160 119 3 1 0	119 4 1 0	0	0	0	0	0	0	0	0	0	0	0	1 0 0
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time	1 0 0	160 137 2 1 0 0	160 119 3 1 0 0	119 4 1 0 0	0 0	6	0 0	8	9	10	11	0 0	0 0	0 0	0 0	10
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time Mode	1 0 0	160 137 2 1 0 0	160 119 3 1 0	119 4 1 0 0	0	0	0	0	0	0	0	0 0	0	0 0	0	0
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time	1 0 0	160 137 2 1 0 0	160 119 3 1 0 0	119 4 1 0 0	0 0	6	0 0	8	9	10	11	0 0	0 0	0 0	0 0	10
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time Mode Coord Phase	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	160 137 2 1 0 0	160 119 3 1 0 0	119 4 1 0 0	0 0 0	0 0 0	0 0 7 NON	0 0 8	9 NON	0 0 10 NON	0 0 11 NON	0 0 12 NON	0 0 13 NON	0 0 14 NON	0 0 15	10 0
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time Mode Coord Phase Split Table 2	1 0 0 0 Nits [2.7. 1 NON	160 137 2 1 0 0	160 119 3 1 0 0	119 4 1 0 0	0 0 5 NON	6 NON	0 0	0 0 0 8	9	10	11	0 0	0 0	0 0	0 0	10
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time Mode Coord Phase Split Table 2 Time	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	160 137 2 1 0 0 0	150 119 3 1 0 0 0	119 4 1 0 0 0	0 0 0 5 NON	6 NON	7 NON 7	0 0 8 NON	9 NON	10 NON 10	0 0 11 NON	12 NON	13 NON	0 0 14 NON	0 0 15 NON	10 NO
Cycle Time Offset Time Split Number Seq Number Ph Opt Alt Ph Time Alt Coordination, Sp Split Table 1 Time Mode Coord Phase Split Table 2	1 0 0 0 Nits [2.7. 1 NON	160 137 2 1 0 0	160 119 3 1 0 0	119 4 1 0 0	0 0 5 NON	6 NON	0 0 7 NON	0 0 0 8	9 NON	0 0 10 NON	0 0 11 NON	0 0 12 NON	0 0 13 NON	0 0 14 NON	0 0 15	1 NO

0.0010 2.11000			_		_		_		-	-				4	_	
Split Table 3	1	2	3	4	5	6	7	8	9	10	n	12	13	14	15	16
Time	21	99		40	21	99		40					1 - 1			
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
m 1 m1		200	-		1	-		1	1			-	_		1	-

Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	21	99		40	21	99		40								
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														

Split Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	(Per 2)															
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																

plit Table 6	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase										-						

Approved By: Carmen Li	Date:
Approved by. Carmen Li	Date.

7370 : 2326 - Broward Blvd & El Dorado Pkwy (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash						
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear	1					
Track Green				1 -	-	1
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1				9		9
Track Veh 2						
Track Veh 3						
Track Veh 4						-
Dwell Cyc Veh 1	4	2		2		1
Dwell Cyc Veh 2	8	6		5		6
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6					-	
Dwell Cyc Veh 7						
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11						
Dwell Cyc Veh 12	1					
Dwell Cyc Ped1						
Dwell Cyc Ped2						
Dwell Cyc Ped3	1					
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7						
Dwell Cyc Ped8						11 -
Exit 1	1	4		2		2
Exit 2	5	8		6		6
Exit 3						
Exit 4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON	ОИ		ON		ON
Туре	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash						
Coord in Preempt	ON	ON	ON	ON	ON	ON
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-					
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U. T.	
Track Over 2						
Track Over 3						
Track Over 4						
Track Over 5					0	
Track Over 6						
Track Over 7						
Track Over 8			le transfer de			
Track Over 9						
Track Over 10		-				
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3						
DwellCyc Over 4			-		2 0	
DwellCyc Over 5		11				
DwellCyc Over 6						
DwellCyc Over 7			11			
DwellCyc Over 8						
DwellCyc Over 9			1			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12					in i	
Ped Clear						
Yellow	4	4		4		4
Red	2	2		2		2
Return Max						

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ı clu de	d Phas	es					N	Iodife	Phas	es			Type	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	3.5	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	.0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1,5

A series of Date Common T :	D. A.
Approved By: Carmen Li	Date:

7370 : 2326 - Broward Blvd & El Dorado Pkwy (Upload File)

Alternate Phase Program 1, Ir	nterval Times .	1.1.6.11
-------------------------------	-----------------	----------

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3)
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
4	2	2	2	2	2	2	2	2	2	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	4
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	

Alternate Phase Program 5, Interval Times [1.1.6.1]

Dhago	337-11-	Ped	Min	Passage	Mov1	Marco	kr. 11	Red	Assign	Bike
Fnase	walk	Clear	Green	1 assage	MAXI	Maxz	Y ellow	Clear	Ph	Clear

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0	0	0	0	0	0.	0	
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 4, Interval Times [1.1.6.1]

D1	337-11-	Ped	Min	Passage	3.5 1	35	X7 . 11	Red	Assign	Bike
Phase	waik	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		111														
Minute		1				1										
Action		7 - 7														

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		11 0 11													1	
Minute																
Action		-	-										1	7	1	-

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute						-		-			1					
Action	1															

Approved By: Carmen Li	Date:
Approved by, Calmen Li	Date.

7370 : 2326 - Broward Blvd & El Dorado Pkwy (Upload File)

Coordination, Splits [2,7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time		-	10.000	10000	-	1	-	1 27/200 000			-				2003.00	
Mode	NON	NON	NON	NON	NON	NON	NON	ИОИ	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1			L		E .										
Split Table 8	1	1 2	3	T 4	5	6	7	8	1 9	1 10	111	12	13	14	15	16
Time	1	- 4		-			-			10	- 11	12	1.5	1.5	1.0	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11/011	11011	11011	11011	11011	11011	11011	11/011	14014	11011	11011	14014	11011	11011	11011
COOIG Filase	1									-	1					_
Split Table 9	Li	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
State Total State (St.)	-								F 23							T state
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			10000	2222	12222			12			1,,,,,,			12222		-
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	ИОИ
Coord Phase										_						
Split Table 11	1	2	3	1 4	5	6	7	8	9	10	111	12	13	14	15	16
Time													-			
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	2.027	21021	21021	21,521	21021		2.02.	21021	21021	21021	21021	27.027	2,02.	21021	17921	1.02
																-
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				-										1000	-	1.00
COLES TOTAL 10	1	1 2	3	1 2	5	6	7	8	9	1 10	11	12	13	14	15	1 10
Split Table 13 Time	1		3	4	3	0	1	0	у .	10	1.1	12	13	14	15	16
	STOST	MONT	NONE	NON	NECONT	NTONT	ATOM	STOST	NTONT	STOST	NION	NON	NTONT	STOST	ATOAT	MON
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase									1							_
Split Table 14	i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	12-17															
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				I.]						1
Culit Table 15	1	1 2		1 20	1 2		7		9	1 10	1 11	10	12	F an	1 15	1 10
Split Table 15	1	2	3	4	5	6	1	8	У	10	11	12	13	14	15	16
Time	NTON"	MONT	MON	MANT	NONE	37037	NTON	ATON*	37037	MONT	MONT	37037	NEONE	NON	MONT	MON
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1									-		1				1
Split Table 16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time															-	
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11/01/	11/11	11011	14014	11011	11011	11011	11011	14014	11/011	14014	11//11	11/01/	11011	14014	TAOIN
Coold Filase	4			1	1	1			1		1					

Approved By: Carmen Li	Date:

5030 : 2272 - Pine Island Rd & Peters Rd (Upload File)

Phase [1.1.1]

	1 (WR)	2 (ST)	3	4 (WT)	5	6	7	8	9	10	11	12	13	14	15	16
Walk	0	7	- 0	7 7	0	0	0	0	0	0	0	0	0	.0	0	0
Ped Clearance	0	25	0	32	0	0	0	.0	0	0	0	0	0	0	.0	0
Min Green	4	10	0	6	0	0	0	0	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	0	2	0	0	0	0	0	0	0	0	0	0	0	0
Max1	25	50	0	30	0	0	0	0	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	4.5	4.5	0	4.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	0.	2	0	0.	0	0	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	(WR)	2 (ST)	3	4 (WT)	5	6	7	8	9	10	11	12	13	14	15	16
Enable	ON	ON		ON												111
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON													1	
Max Recall		-														
Ped Recall																
Dual Entry																
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON														

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	2	7	-8:	0	2	0	4	0	6	0	- 8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	-0	6	0	8	0	2	0	4	0	6	- 0	8
Switch Phase	0	0	0	0	0	0	0.	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	-0	0	.0	0	.0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	n	D.	0	0	0	0	0	0	0	0	D.	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	0	0	0	.0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	1 0	0	1 0	0	0	0	0	0	0

Approved By: Carmen Li Date:

5030 : 2272 - Pine Island Rd & Peters Rd (Upload File)

Broward County

TB Coor, Day Plan [4.4]

Hour 6 9 15 20																	
Minute Action 100 2 3 4 3 Day Plan Table 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Hour 1 6	Day Plan Table 1	1	2	3	4	.5	6	7	8	9	10	11	12	13	14	15	16
Action 100 2 3 4 3	Hour		6	9	15	20											
Day Plan Table 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1 Hour 1 6 6 7 8 9 10 11 12 13 14 1	Minute		1-1-1														
Hour 1 6	Action	100	2	3	4	3			-								
Hour 1 6																	
	Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	Hour		1	6													
Minute 30	Minute			30							1						
Action 3 100 3	Action	3	100	3							1.						
	Plan Table 3	1	1 2	3	1 4	5	6	7	8	1 9	10	- 11	12	13	14	15	16
Day Plan Table 3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1			1		23						1			- 20			- 10
	Minute	1		30							1						
Hour 1 6 23	Agtion	2	100	2	100				i -	i e	1			1			

Coordination, Pattern 1-16 [2.1]/Coordination, Alt Tables+[2.6]

Pattern	1	2	2	4	5	6	7	0	0	10	11	12	13	14	15	16
rattern	1	4		- 4	3	0	L	0	,	10	11	14	13	14	13	10
Cycle Time		160	160	160							1					
Offset Time	Î	58	45	147												
Split Number		2	3	4	-	1									,	
Seq Number	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Ph Opt Alt	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Ph Time Alt	- 0	0	0	.0.	- 0	0	0	0	0	0	0	0	0	0	- 0	0

Coordination, S	plits [2.7.	1]														
Split Table 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time						1		-								
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 2	1 1	2	3	1 4	5	1 6	1 7	8	1 9	10	11	12	13	14	15	16
Time	41	73	-	46		-				10		12	13		10	10
Mode	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1,011	ON	1,01,	11011	11011	11011	11011	11011	11011	11011	11011	11011	11011	1,01,	11011	11011
Split Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	38	76		46									1			
Mode	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	36	78		46												
Mode	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	Date of the last													1 1 1		
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	11.															
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																

The land of the State of State	
Approved By: Carmen Li	Date:

5030 : 2272 - Pine Island Rd & Peters Rd (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6	
Lock Input	ON	ON	ON	ON	ON	ON	
Override Auto Flash		ON				ON	Ī
Override Higher Preempt		ON				ON	
Flash in Dwell		ON				ON	
Link to Preempt							Ī
Delay							
Min Duration							
Min Green	6		6	6	6		Ī
Min Walk					6		Ī
Ped Clear							Ī
Track Green		-			-		
Min Dwell	8		8	8	6		Ī
Max Presence	180		180	180	180		
Track Veh 1	1						Ī
Track Veh 2							
Track Veh 3							
Track Veh 4							
Dwell Cyc Veh 1	2		1	4	4		
Dwell Cyc Veh 2							
Dwell Cyc Veh 3							
Dwell Cyc Veh 4							Ī
Dwell Cyc Veh 5							Ī
Dwell Cyc Veh 6	-						
Dwell Cyc Veh 7			-		-		1
Dwell Cyc Veh 8							
Dwell Cyc Veh 9		-					Ī
Dwell Cyc Veh 10				-	-		
Dwell Cyc Veh 11							
Dwell Cyc Veh 12							Ī
Dwell Cyc Ped1						-	
Dwell Cyc Ped2							
Dwell Cyc Ped3				1 3			Ī
Dwell Cyc Ped4							1
Dwell Cyc Ped5							1
Dwell Cyc Ped6						1	
Dwell vPed7							
Dwell Cyc Ped8							1
Exit 1	4	-	2	1	2		
Exit 2		-					
Exit 3	1						Ī
Exit 4							f

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable	ON		ОИ	ON	ON	
Type	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash			-			
Coord in Preempt	ON		ON	ON	ON	
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-			-	-	
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1						
Track Over 2						
Track Over 3						
Track Over 4						
Track Over 5						
Track Over 6						
Track Over 7						
Track Over 8			li I			
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1	1		1		6	
DwellCyc Over 2	2					
DwellCyc Over 3					0.00	
DwellCyc Over 4			-		1	5
DwellCyc Over 5						
DwellCyc Over 6						
DwellCyc Over 7			11		10	
DwellCyc Over 8						
DwellCyc Over 9			1			
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12						
Ped Clear						
Yellow	4		4	4	4	
Red	2		2	2	2	
Return Max						(

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ıclude	d Phas	es					N	Iodife	Phas	es			Туре	Green	Yellow	Red
Overlap 1	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 3	0	0	0	0	5	6	0	0	0	0	0	0	0	0	0	-0	NORMAL	0	4	1.5
Overlap 4	0	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	NORMAL	0	4	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	- 0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	- 0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0	0	NORMAL	0	3.5	1.5

A series of Date Common T :	D. A.
Approved By: Carmen Li	Date:

5030 : 2272 - Pine Island Rd & Peters Rd (Upload File)

Alternate Phase	Drogram 1	Intonial	Timore	111511
Alternate Phase	Program I	. interval	Times	1.1.0.11

Phase	Walk	Ped Clear	Min Green	Passage	Max 1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3.	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0.	0	0	0	0	0.	0	
4	0	0	0	0	0	0	0	0	0	
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0	0	.0	0	0	0	.0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	l Max2 l	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	1
4	3	3	3	3	3	3	3	3	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

nı	XX/-11-	Ped	Min	Passage	3.7 1	35	57 - W	Red	Assign	Bike
Phase	waik	Clear	Green	rassage	Maxi	Maxz	х епоw	Clear	Ph	Clear

Alternate Phase Program 5, Interval Times [1,1.6.1]

Dhana		Ped	Min	Dassage	Mort	Mana		Red	Assign	Bike
Phase	Walk	Clear	Green	Passage	MIAXI	Maxa	Yellow	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		111														
Minute		1											1		1	
Action	1	7				1										

Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		11 0 11													1	
Minute																
Action		-	-									-	1	7		+

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute																
Action																

Approved By: Carmen Li	Date:

5030 : 2272 - Pine Island Rd & Peters Rd (Upload File)

Coordination, Splits [2.7.1]

Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time			10.000	10000		1 200000	-	27/27/3-20/3							2003.00	
Mode	NON	NON	NON	NON	NON	NON	NON	ИОИ	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	1			L		E .										1
Split Table 8		1 2	3	I 4	5	6	7	8	9	10	111	12	13	14	15	16
Time		- 4		1			-		,	10	11	12	1,5	1.5	1.0	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	11011	11011	11011	11011	11011	11011	11011	14014	11011	11011	11011	11011	11011	11011	11011	11011
Coold Filase										-	1	0				_
Split Table 9	1	2	3	1 4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
ories announced									T 23							T -
Split Table 10	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	37017	ATOTT	17017	37017	17077	17017	17017	ATOLE	17017	17017	27027	37.037	ATOTT	17017	17017	17707
Mode	NON	NON	ИОИ	NON	NON	NON	иои	NON	NON	NON	NON	NON	NON	NON	NON	ИОИ
Coord Phase																
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase				-		1									-	
Split Table 12	1 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-	4	3		3		- 1	0	,	10	11	12	13	1.4	1.0	10
Mode	NON	ATOAT.	NON	NTONT	NON	NON	NON	STOST	NEONE	STOST	NTONT	NON	NTONT	STOST	NON	NON
Coord Phase	NON	NON	NON	NON	14014	14014	NON	NON	NON	NON	NON	14 (014	NON	NON	14014	NON
Coord Filase																
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase										1						
Split Table 14	1	2	1 4	1 4	5	1 6	7		9	1 30	1 44	Lin	r is	1 44	F 45	1 46
Time	1	4	3	-		6	- 1	8	,	10	11	12	13	14	15	16
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase	HOIN	11011	71/0/11	11011	13/0/19	11011	11011	11011	11/11	11/013	11011	11011	11011	11011	11011	13014
Coold Filase		1		1						-		L.		L.		1
Split Table 15	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1				-	1	-		-			-	10000	-		
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
ountres and				10		(100		13.00				I was	
Split Table 16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-								-							
Mode Coord Phase	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON

Date:
D

5000 : 2294 - Peters Rd & Fig Tree Ln/SW 63 Ave (Upload File)

Phase [1.1.1]

	1 (EL)	(WT)	3	4 (NT)	5 (WL)	6 (ET)	7	8 (ST)	9	10	11	12	13	14	15	16
Walk	0	7	0	7	0	7	0	0	0	0	0	0	0	0	0	0
Ped Clearance	.0	18	0	21	0	18	0	0	0	0	0	0	0	0	.0	0
Min Green	4	12	0	6	4	12	0	6	0	0	0	0	0	0	0	0
Gap Ext	1.5	3	0	2.2	1.5	3	0	2.2	0	0	0	0	0	0	0	0
Max1	12	50	0	25	12	50	0	25	0	0	0	0	0	0	0	0
Max2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Yellow Clr	4	4	4	4	4	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	1.5	2	2	2	1.5	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5

Phase Option [1.1.2]

	1 (EL)	2 (WT)	3	4 (NT)	5 (WL)	6 (ET)	7	8 (ST)	9	10	11	12	13	14	15	16
Enable	ON	ON		ON	ON	ON		ON								
Lock Call								- 1	ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Dual Entry				ON				ON	-						1 7 7 1	
Sim Gap Enable				ON	-	1		ON	ON	ON	ON	ON	ON	ON	ON	ON
Rest In Walk		ON				ON										

Detector, Vehicle Parameters 1-16 [5.1]

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Call Phase	1	2	3	4	5	6	7	-8:	0	2	0	4	0	6	0	-8
Switch Phase	0	0	0	0.	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	3	0	0	0	3	0	0	0	0	0	0	0	0

Detector, Vehicle Parameters 17-32 [5.1]

	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Call Phase	0	2	0	4	0	6	0	8	0	2	0	4	0	6	0	8
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	.0	0	.0	0	0	0

Detector, Vehicle Parameters 33-48 [5.1]

	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48
Call Phase	0	2	0	4	0	6	0	8	0	0	0	0	0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	1 0	0	0	0	D	0	0	0	0

Detector, Vehicle Parameters 49-64 [5.1]

Broward County

	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63	64
Call Phase	0	0	0	0	0	0	0	0	0	0	.0.	0	.0	0	0	0
Switch Phase	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Delay Time	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Approved By: Carmen Li Date:

5000 : 2294 - Peters Rd & Fig Tree Ln/SW 63 Ave (Upload File)

Hour Minute Action	_		3	4	5	6	7	8	9	10	11	12	13	14	15	16
ANGEST CO.		6	8	9	13	15	20	23					-			
Action			10		55	10										
	25	100	2	3	100	4	- 5	100								
Day Plan Table 2	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	10
Hour		6	7	23												
Minute																
Action	25	100	5	100										Ĩ.		
Day Plan Table 3	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	10
Hour		6	7	23												
Minute	1															
Action	25	100	5	100												
		_	_			_										
Coordination, Patt	tern 1-1	6 [2.1],	/Coord	ination,	Alt Tab	les+[2.	6] 7	8	9	10	11	12	13	14	15	10
Pattern Cycle Time		2	3	4	5 120	_		8	9	10	11	12	13	14	15	10
Pattern Cycle Time Offset Time		2 160 77	3 140 44	4 160 62	5 120 84	_		8	9	10	11	12	13	14	15	10
Pattern Cycle Time Offset Time Split Number	1	2 160 77 2	3 140 44 3	4 160 62 4	5 120 84 5	6	7						13			
Pattern Cycle Time Offset Time Split Number Seq Number	1	2 160 77 2 1	3 140 44 3 1	4 160 62 4 1	5 120 84 5	1	7	1	.1	1	1	1	1	1	1	1
Pattern Cycle Time Offset Time Split Number	1	2 160 77 2	3 140 44 3	4 160 62 4	5 120 84 5	6	7									

Split Table 2	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16
Time	21	77		62	21	77		62								
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		ON														
Split Table 3			3	4	5	6	7	8	9	10	11	12	13	14	15	1 16
Time	14	76	3	50	14	76	- 1	50	У	10	- 11	12	13	14	15	16
The state of the s	_		27027			-	NONE		ATOAT	17017	NEGNE	37.037	37037	37037	17017	NYONE
Mode	NON	MXP	NON	NON	NON	MXP	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
	-															
Coord Phase		ON														
Split Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	1 15		3	4 53	5	6	7	8 53	9	10	11	12	13	14	15	16
Split Table 4		2	3 NON	1.0			7 NON		9 NON	10	11 NON	12 NON	13 NON	14 NON	15 NON	16 NON
Split Table 4 Time	15	2 92		53	15	92		53								
Split Table 4 Time Mode	15	2 92 MXP		53	15	92		53								
Split Table 4 Time Mode	15	2 92 MXP		53	15	92		53								
Split Table 4 Time Mode Coord Phase	15	2 92 MXP ON	NON	53 NON	15 NON	92 MXP	NON	53 NON	NON	NON	NON	NON	NON	NON	NON	NON
Split Table 4 Time Mode Coord Phase	15 NON	2 92 MXP ON	NON	53 NON	15 NON	92 MXP	NON	53 NON	NON	NON	NON	NON	NON	NON	NON	NON

plit Table 6	1	2	3	4	- 5	6	7	8	9	10	11	12	13	14	15	16
Time	140													-		
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																

Approved By: Carmen Li	Date:
Approved by, Calmen Er	Date:

5000:2294 - Peters Rd & Fig Tree Ln/SW 63 Ave (Upload File)

Preemption Times[3.1]/Phases[3.2]/Options[3.3]

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash						
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green		-			-	-
Min Dwell	8	8	8	8	8	8
Max Presence						
Track Veh 1					-	
Track Veh 2						
Track Veh 3						
Track Veh 4						1
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						11 - 15
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						
Dwell Cyc Veh 7					-	
Dwell Cyc Veh 8						
Dwell Cyc Veh 9						
Dwell Cyc Veh 10						
Dwell Cyc Veh 11						
Dwell Cyc Veh 12	1					
Dwell Cyc Ped1	1					
Dwell Cyc Ped2						
Dwell Cyc Ped3				1		
Dwell Cyc Ped4						
Dwell Cyc Ped5						
Dwell Cyc Ped6						
Dwell vPed7						1
Dwell Cyc Ped8						1
Exit 1						
Exit 2						
Exit 3						
Exit 4						

Preemption Times+[3.4]/Overlaps+[3.5]/Options+[3.6]

Preempt	1	2	3	4	5	6
Enable						
Type	EMERG	EMERG	EMERG	EMERG	EMERG	EMERG
Skip Track						
Volt Mon Flash						
Coord in Preempt						
Return Max/Min	MAX	MAX	MAX	MAX	MAX	MAX
Extend Dwell	-		-	-		
Pattern						
Output Mode	TS2	TS2	TS2	TS2	TS2	TS2
Track Over 1					U.	
Track Over 2						
Track Over 3					11	
Track Over 4						
Track Over 5						
Track Over 6						
Track Over 7			1			
Track Over 8						
Track Over 9						
Track Over 10						
Track Over 11						
Track Over 12						
DwellCyc Over 1						
DwellCyc Over 2						
DwellCyc Over 3						
DwellCyc Over 4			-		2 0	6
DwellCyc Over 5		11				
DwellCyc Over 6						
DwellCyc Over 7			4		100	
DwellCyc Over 8						
DwellCyc Over 9		1				
DwellCyc Over 10						
DwellCyc Over 11						
DwellCyc Over 12						
Ped Clear						
Yellow						
Red						
Return Max						1

Overlap Program Parameters [1.5.2.1]

Overlap			Iı	ıclude	d Phas	es					N	Iodife	Phas	es			Type	Green	Yellow	Red
Overlap 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 2	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 3	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	.0	NORMAL	0	3.5	1.5
Overlap 4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 6	0	0	.0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 7	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 8	0	0	0	0	0	0	0	0	0	0	0.	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 9	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	- 0	NORMAL	0	3.5	1.5
Overlap 10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	NORMAL	0	3.5	1.5
Overlap 16	0.	0	0	0	0	0	0	0	0	0	0	0	0	0.	0.	0	NORMAL	0	3.5	1.5

Approved By: Carmen Li	Date:
Approved by: Califich Li	Date.

5000 : 2294 - Peters Rd & Fig Tree Ln/SW 63 Ave (Upload File)

and the same of th	the same of the same of the same of the	The second section is a second		The Company of the Company
Alternate Phas	a Program 1	Interval	Times	[1 1 6 1]

Phase	Walk	Ped Clear	Min Green	Passage	Max 1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3.	3	
3	3.	3	3	3	3	3	3	3	3	
	1 2			100		4.00		1		

Alternate Phase Program 2, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red Clear	Assign Ph	Bike Clear
1	0	0	0	0	0	0	0	0	0	
2	0	0	0	0	0	0	0	0	0	
3	0.	0	0	0	0	0	0	0	0	,
4	0	0	0	0	0	0	0	0	0	,
5	0	0	0	0	0	0	0	0	0	
6	0.	0	0.	0	.0	0	0	0	0	
7	0	0	0	0	0	0	0	0	0	
8	0	0	0	0	0	0	.0	0	0	

Alternate Phase Program 3, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	l Max2 l	Yellow	Red Clear	Assign Ph	Bike Clear
4	3	3	3	3	3	3	3	3	3	
5	3	3	3	3	3	3	3	3	3	1
6	3	3	3	3	3	3	3	3	3	
7	3	3	3	3	3	3	3	3	3	
8	3	3	3	3	3	3	3	3	3	
9	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3	3	
3	3	3	3	3	3	3	3	3.	3	

Alternate Phase Program 4, Interval Times [1.1.6.1]

Phase	Walk	Ped Clear	Min Green	Passage	Max1	Max2	Yellow	Red	Assign Ph	Bike Clear
-------	------	--------------	--------------	---------	------	------	--------	-----	--------------	---------------

Alternate Phase Program 5, Interval Times [1,1.6.1]

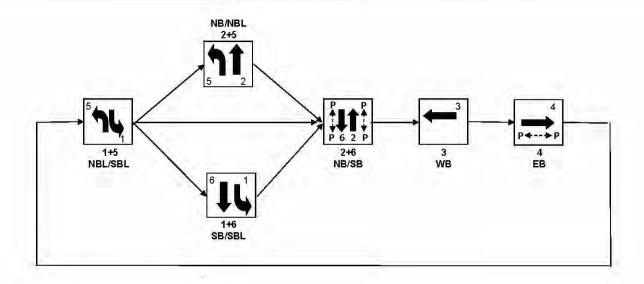
Dhana		Ped	Min	Dassage	Mort	Mana		Red	Assign	Bike
Phase	Walk	Clear	Green	Passage	MIAXI	Maxa	Yellow	Clear	Ph	Clear

Day Plan Table 4	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute		1 4				1									1	
Action						1										

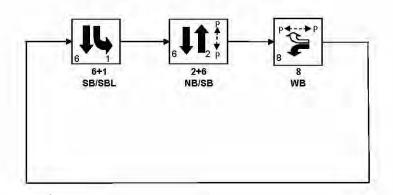
Day Plan Table 5	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour		11 0 11													1	
Minute																
Action		-	-										1	7	1	-

Day Plan Table 6	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Hour																
Minute								-			-					
Action																

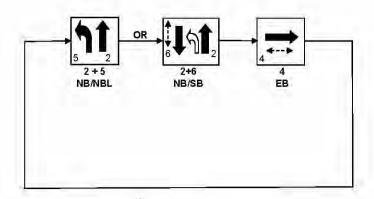
Approved By: Carmen Li	Date:
Approved by, Carmen Li	Date.


5000 : 2294 - Peters Rd & Fig Tree Ln/SW 63 Ave (Upload File)

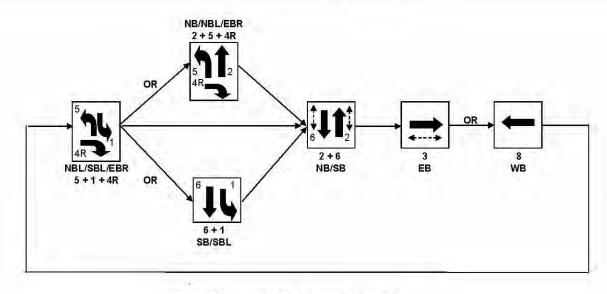
Coordination, Splits [2.7.1]


Split Table 7	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 8	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	иои	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
	-				_											E STATE
Split Table 9	1	2	3	4	5	6	7	8	9	10	1.1	12	13	14	15	16
Time																
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
orange dan sa									1 2	ri se di		1			r ee	
Split Table 10 Time	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	NICHT	NIONE	NTONT	NION	NICAT	NON	NON	NIONE	NICHT	NON	NION	NICHT	NION	MOST	NIONT	NON
Mode	NON	NON	NON	NON	NON	NON	иои	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase					1				1.			1				
Split Table 11	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-	-	-	- 31	-					10	**	1.2	10		10	10
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	ИОИ
Coord Phase	11011	11011	11011	14014	11011	11011	11011	11011	11011	11011	14014	11011	11011	INOIN	11011	INOI
5 5514 111455																
Split Table 12	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time																1
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase		2.7									1200		TESES I	200	-	1
	4															
Split Table 13	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	177017	12012		22012			147017		1	12512	17017	17017		177017	12012	1201
Mode	NON	NON	NON	NON	NON	NON	иои	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase			_						1							
Split Table 14	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	100												100		-	
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 15	111	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	1					-										
Mode	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Coord Phase																
Split Table 16	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Time	-								-							
20.1	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON	NON
Mode Coord Phase	TAOTA	11/01/	11011	14014	11011	11011	11011	14 014	14014	11/01/	TAOTA	14 014	14/014	11011	11011	2102

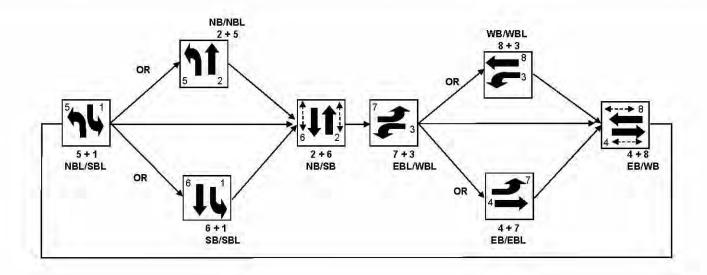
Approved By: Carmen Li	Date:


Sequence of Operation for (2239) University Drive (SR817) and Cleary Blvd

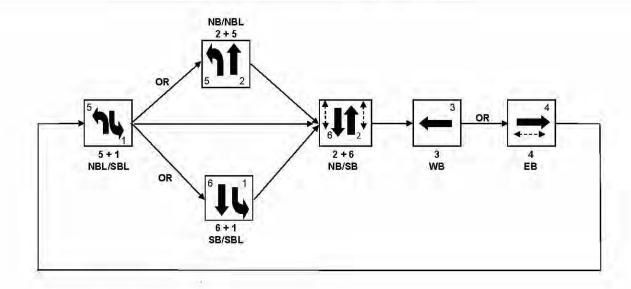
Sequence of Operation for (2238) University Drive (SR 817) and NW 5 Street



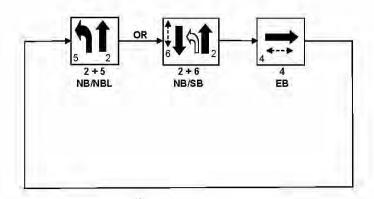
Sequence of Operation for University Drive (SR 817) and NW 3 Street / Fashion Mall (2342)

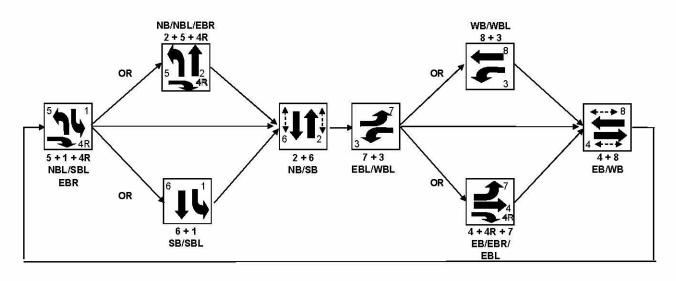

Sequence of Operation for University Drive (SR 817) and NW 2 Street (2311)

Plantation



HEAD 4R HARDWIRED TO PHASE 5 (NBL)

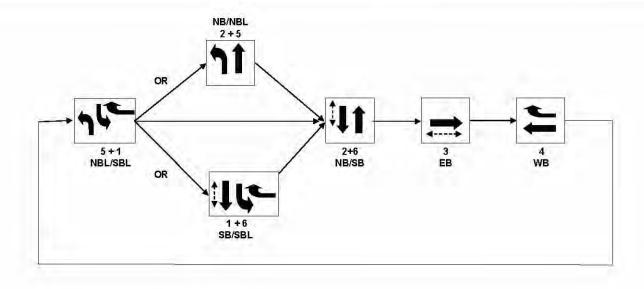

University Drive (SR 817) and Broward Blvd. (SR 842) (2197) Sequence of Operation


Sequence of Operation for University Drive (SR 817) and S. 600 Block / Federated Rd. (2266)

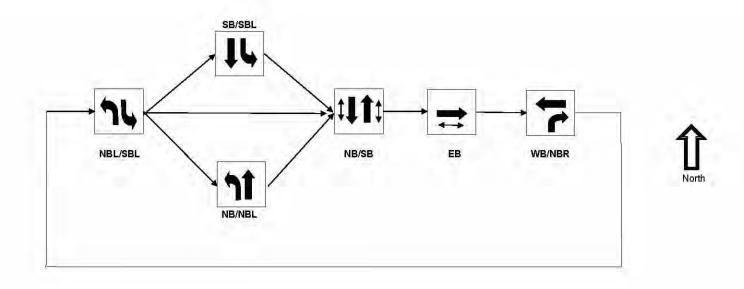
Sequence of Operation for University Drive (SR 817) and Fountains Entrance (2339)

Sequence of Operation for (2067) University Drive (SR 817) and Peters Road Plantation

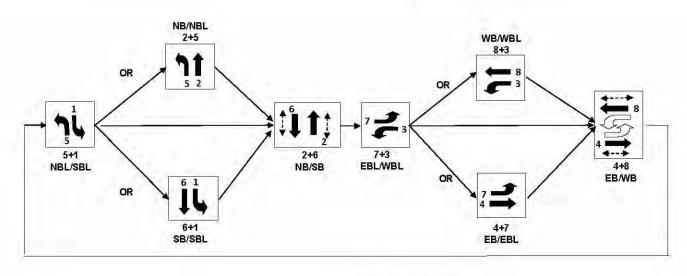
4R (EASTBOUND RIGHT) OVERLAPPED WITH PHASE 4 (EB) AND PHASE 5 (NBL) P4 ON: OMIT 4R


Sequence of Operation
University Drive (SR 817) and SR 84
Intersection Number 2034 (Davie) Mod 20

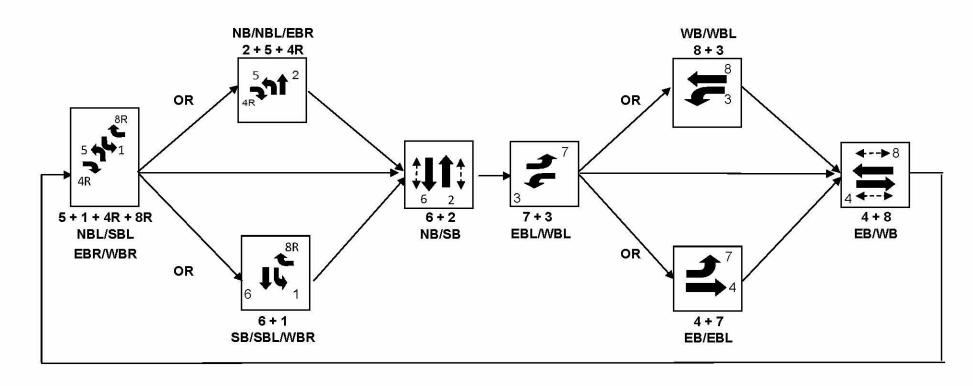
Ø1 SB/SBL	Ø 2 N/S	Ø3 NB/NBL	Ø 4 E/W
11	111	11	7
14	1111	11	4



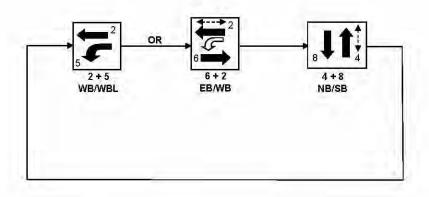
Sequence of Operation: 3384 University Dr (SR 817) and S. 1900 Block


Davie

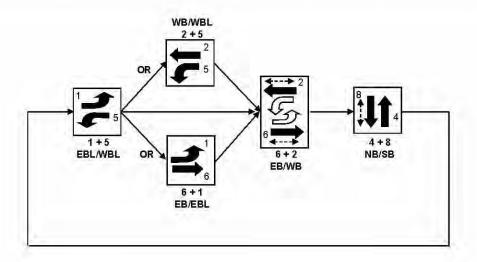
Sequence of Operation for (C-391) University Drive (SR 817) and 2300 Block - Davie - Modification #8

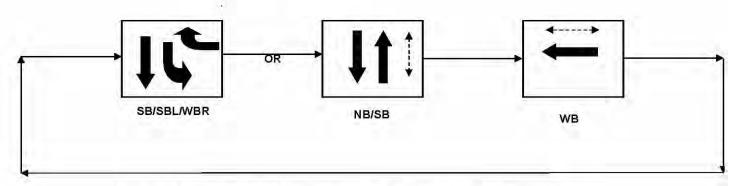


Sequence of Operation for (3381) University (US SR 817) and SW 30 Street

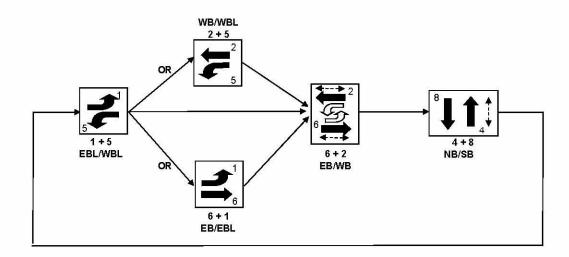


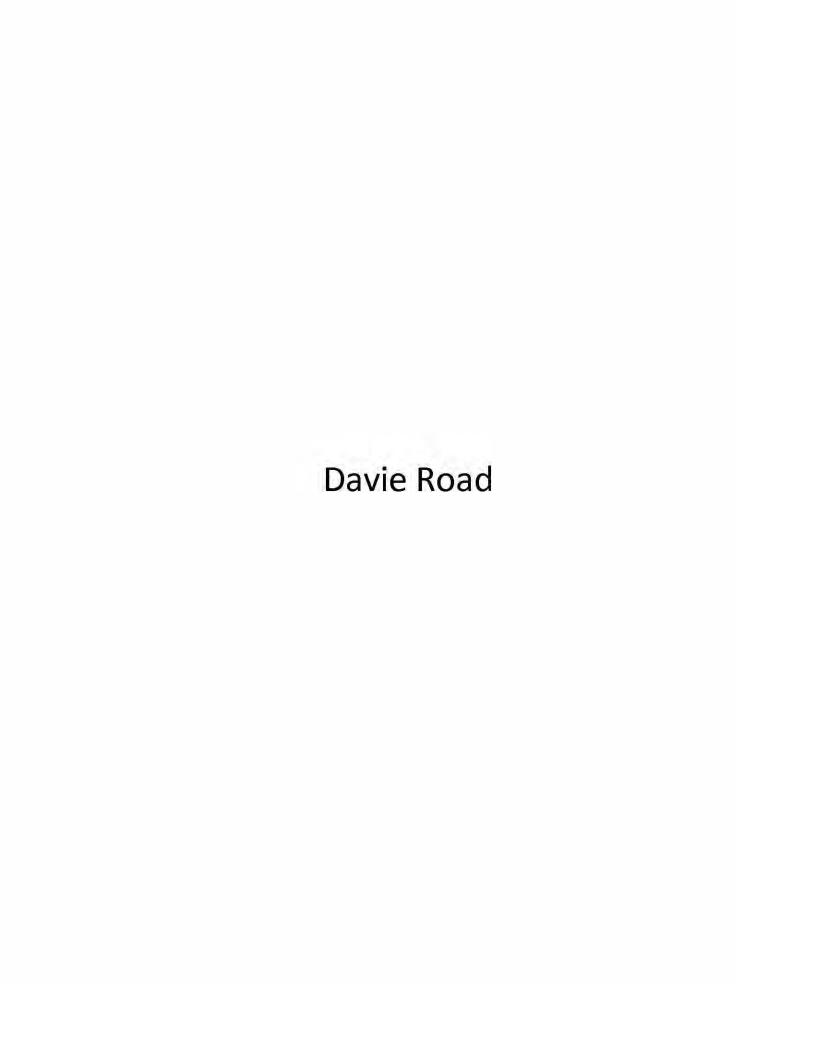
PERMISSIVE TURN
PEDESTRIAN CROSSING


Sequence of Operation for (2075) University Drive (SR 817) and Nova Drive Davie


Sequence of Operation for Broward Boulevard and Mall Entrance (2267) Plantation

Sequence of Operation for Broward Blvd (SR 842) and El Dorado Pkwy (2326)




Sequence of Operation Pine Island Road and Peters Road Intersection Number 2272

WESTBOUND RIGHT IS OVERLAPPED TO SOUTHBOUND LEFT TURN

Sequence of Operation for Peters Road and Fig Tree Lane / SW 63 Avenue (2294) Plantation

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 2029 Initial Operation Date 1963

Controller Type 2070 TS-1 System Number 2029

Modification Number 17 Modification Date 04/09/2019

Drawing/Project No FDOT437941-1-52-01 FPL Grid Number 87078760803

Intersection SR 84 and DAVIE ROAD

Municipality DAVIE

Controller Phase	1	2	3	4	5	6	7	8
Face Number			SEE	SOP				
Direction .	EB	WB	NBST	NB	*PED	**PED		
Initial Green(MIN)	1.5	6	2	6.	6	6		
Vehicle Ext.(GAP)	2,0	3.0	0.0	2.0	2.0	2,0		
Maximum Green I	20	60	2	25	25	25		
Maximum Green II								
Yellow Clearance	5.0	5.0	5.0	5.0	5,0	5.0		
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0		
Phase Recall	OFF***	MIN	OFF	OFF	OFF	OFF		
Detector Delay								
Walk	7	7			7	7		
Pedestrian Clearance	20	21			19	15		
Permissive								
Flash Operation	RED	RED	RED	RED	RED	RED		

Attachment B-029-17 pdf

NOTES:

- 1. PHASE 5 CHECK - PHASE 4 OMIT.
- 2. PHASE 4 CHECK - PHASE 3 CALL.
- 3 PHASE 5 CHECK - PHASE 3 CALL.
- 4. *PHASE 5 ACTIVE ONLY WHEN P4A IS ACTUATED. ACTIVATES ADVANCE WARNING BEACON.
- 5. **PHASE 6 ACTIVE ONLY WHEN P4 IS ACTUATED.
- 6. PHASE 3 IS CALL ONLY (NO EXTENSION).
- 7. ***PHASE 1 (EB) DYNAMIC MAX SETTINGS: STEP 15--->MAX 50.
- 8. MOD. 17 REFLECTS BROWARD COUNTY INSPECTION DATE OF WB TURBO LANE INSTALLATION.

Submitted By	Approved By	
SWITH IEU DY	Under the state of	

SR 84 AND DAVIE ROAD (2029)

SEQUENCE OF OPERATION

Modification 17 and higher

			earneaster in anna	79,102			17.
Phase	ф1 ЕВ	ф2 WB	ф3 NB ST	ф4 NB	φ5 *PED	φ6 **PED	
SR 84 WB	7	2 T	2 7	7	7 P4A	7	1 N
P2 6 SR 84 EB 6R	\$	↓ ↓ ↓ P8	↓ ↑ ↑	11 C	11 C	↓ ↓ ↓ 8 P4	ì
					*PEDESTRIAN (P4A) OMITS 2S (T) AND ACTIVATES ADVANCE WARNING BEACON	** PEDESTRIAN (P4) OMITS 4, 4R	

Station: 2029 - SR 84 & Davie Rd (Standard File)

Phase	1 (ET)	(WT)	3	4 (NT)	5	6	7	8	9	10	11	12	13	14	15	16
Walk	7	7			7	7										
Ped Clearance	20	21			19	15										
Min Green	15	6	2	6	6	6		2								
Gap Ext	2	3		2	2	2		11-1								
Max1	20	60	2	25	25	25		2								
Max2																
Yellow Clr	5	5	5	5	5	5	5	5	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	1.5	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce				Ť Í						0 1					7	
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit	60			1 1												
Dynamic Max Step	10															
Enable	ON	ON	ON	ON	ON	ON		ON								
Auto Flash Entry				ON												
Auto Flash Exit								ON	Ì							
Non-Actuated 1																
Non-Actuated 2									11							
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON		1 1												
Max Recall								1								
Ped Recall																
Soft Recall																
Dual Entry				Î											1	
Sim Gap Enable					-				ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk		ON														
Cond Service				Î					Î							
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash					ON	ON
Override Higher Preempt					ON	ON
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green						
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6					1 1	

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			1	
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4				
Lock				
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table				

Dwell Cyc Veh 7			
Dwell Cyc Veh 8			
Dwell Cyc Veh 9			
Dwell Cyc Veh 10			
Dwell Cyc Veh 11			
Dwell Cyc Veh 12			
Dwell Cyc Ped1			
Dwell Cyc Ped2			
Dwell Cyc Ped3			
Dwell Cyc Ped4	3 (
Dwell Cyc Ped5			
Dwell Cyc Ped6			
Dwell vPed7			
Dwell Cyc Ped8			
Exit 1			
Exit 2			
Exit 3			
Exit 4			

Prepared By	Date Implemented
	·

Station: 2029 - SR 84 & Davie Rd (Standard File)

Broward County Timing Sheet

4/9/2020 10:02:58 AM

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqno	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan										Eas															
7	30	1	20			20	1		17		50	60	2	50	25	25										
9	30	2																								
																					_					
															-						-	-				
												_									_			_		
		10	10			10	1		17		27	67	9	52	32											
																					_				4	
															-			-	-		-	-				
												_									-	_		_	_	
													_										\vdash			
Day	Plan	2									Eas	v														
Day	1 Ian										Las	,														
												-											-		-	
																				_						
					-								_			-				-	-	-				
																							-		-	
	1 1																									

ny Plan 3	Easy		
			+
+ + + + + + + + + + + + + + + + + + + +			

Broward County Timing Sheet 4/9/2020 10:02:58 AM

Station: 2029 - SR 84 & Davie Rd (Standard File)

Iour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long Dwe	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spl 16
	Plan									Eas												H			
		-			-					+									-						-
										-															
	-									-															
		-																							
	1																								
\dashv										1															
	1																								

Scheduler

	M	on	th											D٤	y	of	W	eel	k		D	ay	<i>7</i> 0	f P	νIο	nt	h				1											2										3	1	
Plan	J	F	M	A	M	J	J	A	S	(0 1	N	D	S	М	T	W	T	F	S	1	1	2	3	4	5	6	7	8	9	0	1	1 2	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	ı D	ay Plan
1										Τ	T											1											T	T																				1
2									T	T	T	T					Г		T	1	T	T	1							T	T	T	T	1	1																			2
3									T	T	T	T		1			П					T							Г		T	T	T	1	1	T																T		3
4		Г					П		Г	T	T	T					1		T	T	T	T	1						Г	T	T	T	T	1	T																			1
5									T	T	T	T			Г	Г			T	T	T	T	T							T	T	T	T	T	T																	T		1
6							П		Г	T	T	I				Г	Г	Г	T	T	T	T	T						T	T	T	Τ	T	T	T	T																	T	1
7		Г					П	Г	Τ	Τ	T	T		П	П	Г	Г	Г	T		T	T	T						Г	T	T	T	T	Ţ	I	I				П	П													1
8									T	I	I																			T	T	T	T	T	T																			1
9		Γ	Π					Г	Γ	T	T	T				Г	Г	Г	T	T	T	T	T	Ī			Г	Г	Γ	T	T	T	T	T	T	T																T	T	1
10										I									I		I	T	T							T	T	I	I	T	T																		1	-1
11										T	T																						T	T	T																			1
12										I	I																																							1				1
13										Ι	I	I									I	T											I	I																				1
14									L													1																																1
15																																						(-				1
16									L																																													1
17								L	L	I	1																																											1
18									L																																													1
19																																					-					_		_										1
20	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1																															1				20
21																																																						1
22										T	T	T							T	T	T	T	T	1								T	T	T	I																			1

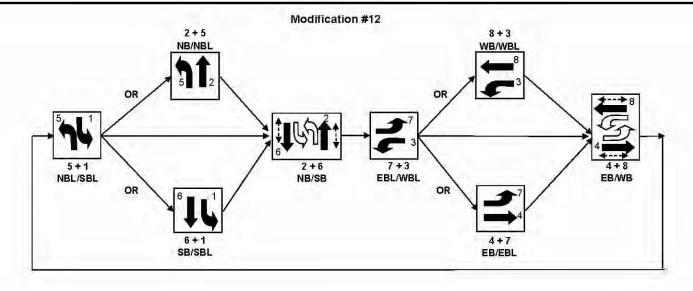
23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		\Box	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number	2072		Initia	1 Operation	Date	6/3/74		
Controller Type	2070 LN2 (BIU)	Syste	m Number		2072		
Modification Number	12		Modi	fication Da	te	04/27/2017		
Drawing/Project No	BCHCED#	130510001	FPL	Grid Numb	er	8707760490	5	
Intersection	DAVIE RO	AD and N	IOV A DRIV	E				
Municip ality	DAVIE		, , ,					
Controller Phase	ı	2	3	4	5	6	7	8
Face Number	-1	2	3	4	5	6	7	8
Direction .	SBL	NB	WBL	EB	MBL	SB	EBL.	WB
Initial Green(MIN)	4	10	4	7	4	10	4	7
Vehicle Ext.(GAP)	1.5	3.0	1.5	2.0	1,5	3,0	1.5	2,0
Maximum Green I	10	45	12	25	12	45	12	25
Maximum Green II								
Yellow Clearance	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Phase Recall	OFF	MIN	OFF	OFF	OFF	MIN	OFF	OFF
Detector Delay								
Walk		7		7		7		7
Pedestrian Clearance		23		23	-	23		25
Permissive	YES		YES		YES		YES	
Flash Operation		YELLOW		RED		YELLOW		RED

Attachment


NOTES:

- 1. DUAL ENTRY HARDWIRED EASTWEST.
- 2. ANTI-BACKDOWN NORTH/SOUTH: PHASES 2+6 ON--->OMIT PHASES 1+5.
- 3. THERMAL DETECTION.
- 4. MOD 12 REFLECTS INSTALLATION OF PHASE 3 (WBL) PER BROWARD COUNTY PROJECT.

Sub mitted By	Approved By	

Sequence of Operation for Davie Road and Nova Drive (2072)

Davie

Station: 2072 - Davie Rd & Nova Dr (Standard File)

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(SL)	(NT)	(WL)	(ET)	(NL)	(ST)	(EL)	(WT)				100	100			
Walk		7		7		7	200	7								
Ped Clearance		23		23		23		25								
Min Green	4	10	4	7	4	10	4	7								
Gap Ext	1.5	3	1.5	2	1.5	3	1.5	2					1			
Max1	10	45	12	25	12	45	12	25								
Max2																
Yellow Clr	4	4	4	4	4	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce																
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit																
Dynamic Max Step																
Enable	ON	ON	ON	ON	ON	ON	ON	ON								
Auto Flash Entry				ON				ON								
Auto Flash Exit	(ON				ON									1 1	
Non-Actuated 1																
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall						1										
Ped Recall																
Soft Recall																
Dual Entry				ON				ON						-	1	
Sim Gap Enable				ON				ON	ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk		ON				ON										
Cond Service																
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash	ON	ON	ON	ON	ON	ON
Override Higher Preempt	ON	ON	ON	ON	ON	ON
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green						
Min Walk						
Ped Clear						
Track Green						
Min Dwell						
Max Presence						
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			1	
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4				
Lock				
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table	-			

Dwell Cyc Veh 7		
Dwell Cyc Veh 8		
Dwell Cyc Veh 9		
Dwell Cyc Veh 10		
Dwell Cyc Veh 11		
Dwell Cyc Veh 12		
Dwell Cyc Ped1		
Dwell Cyc Ped2		
Dwell Cyc Ped3		
Dwell Cyc Ped4		
Dwell Cyc Ped5		
Dwell Cyc Ped6		
Dwell vPed7		
Dwell Cyc Ped8		
Exit 1		
Exit 2		
Exit 3		
Exit 4		

Prepared By	Date Implemented

Station: 2072 - Davie Rd & Nova Dr (Standard File)

Broward County Timing

Timing Sheet 4/9/2020 10:01:01 AM

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
Day	Plan	1								Eas	У				-										
		100	254																						
6		2	2	160	110	2	1	10	50	25	65	30	40	25	65	30	40								
9		3	3	160	106	3	1	10	50	25	65	30	40	25	65	30	40								
15		4	4	160	111	4	1	10	50	25	65	30	40	25	65	30	40								
20		3	3	160	106	3	1	10	50	25	65	30	40	25	65	30	40								
Day	Plan	2								Eas	у														
		3	3	160	106	3	1	10	50	25	65	30	40	25	65	30	40								
1		100	254					1																	
6	30	3	3	160	106	3	1	10	50	25	65	30	40	25	65	30	40								

ay	Plan	3								Eas	y												
		100	254																				
6	30	3	3	160	106	3	1	10	50	25	65	30	40	25	65	30	40						
23		100	254																				
-								-			-	-		_					-	+	\vdash	\dashv	-
-								_						_				-	-	+			_
																			_	-			_
-	-	-				-	-	-			-								-	+		_	_
\exists						_													_	-			

Broward County Timing Sheet 4/9/2020 10:01:01 AM

Station: 2072 - Davie Rd & Nova Dr (Standard File)

Iour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long D	well	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spl 16
	Plan										Eas			Ξ							Ξ					
		-																								
			-																							
_					-							_														
												_														
	-																									

Scheduler

	M	on	th											D	ay	0	f١	Ve	ek			D	ay	of	M	on	th	7				1										2											3	٦	
Plan	J	F	M	A	N	IJ	J	A	1	S	o	Ν	D	S	N	1	ľ	W	T	F	S	1	2	3	4	5	5 6	5	7	8	9	0	1	2	3	4	1 5	6	5	7 8	3 9	0)]	1 2	2	3	4	5	6	7	8	9	0	1	Day Plai
1	1	1	1	1	1	1	1	1		1	1	1	1		1		1	1	1	1		1	1	1	1	1			1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1		1	1				1	1		1		1
2	1	1	1	1	1	1	1	1		1	1	1	1		T	T					1	1	1	1	1	1	T	T	1	1	1	1	1	1	1	1				1 1	1	1	1		1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1	i	1	1	1	1	1		T	T					1	1	1	1	1	T	T	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1	1		1	1	1	1	1	1	1	1	1	1	3
4	1	Г	T	T	T	T	T	T	1				Г	T	1		1	1	1	1		1			T	T	T	T	T							T	T	T	T	T	T	T	T	T	7		T							1	2
5	1	Γ	Г	T	Τ	T	Τ	T	T			Г	Г	T	1		T				Γ		1	T	T	T	T	T	T						Γ	T	T	T	T	T	T	T	T	T	T		T	I			V. 1				2
6				Г	1	T	T	T	Ī						1		T							T	T	T	T	T	T							Г	Τ	T	T	T	T	T	T	T	I		I	1	1	1	1	1	1	1	2
7	Г	Г	T	T	T	T	1	T	T			Г	Γ	T	I	T	T			1	П	П	Γ	1		T	T	T	T						Г	T	I	T	T	T	T	T	T	T	T	T	T							T	2
8					T	T	1	T	T				Γ	T	1		1	1	1	1	Г			T	1		T	T	T			5		Г	Г	Г	T	T	T	T	T	T	T	T	1		T								2
9	Г	Г	Г	Γ	T	Τ	1	T	I			Γ	Γ	T	1		T				Γ	Π	Ī	Ī	Ī	1	T	T	T					Γ	Γ	T	T	T	T	T	T	T	T	T	I	T	T	I	I					Ī	2
10				Γ	T	T	T	T	1	1				T	1				M			1	1	1	1	1	T	T	1							Т	Τ	T	T	T	T	T	T	T	T		T							1	2
11	Г	Γ	T	T	T	T	T	T	T			1	Γ	T	T	T	T		1		П			T		T	T	T	1							T	T	T	T	T	T	T	T		1	1	1	1	1	1	1			T	2
12					T	T	T	T	T			1	Γ	T	T		1			1						T	T	T	T								T	T	T	T	T	T	T	T	T	1	1	1	1	1	1	1			2
13				Γ	T	T		T	T				1		1					1				I	T		T	T																T	I		1								2
14					I	Ι		1	1				1		1		1	1	1	1					I	I	T	T	I								I		I		I	I	I	T	J	I	I	1						1	2
15													1		1																						I		I			I		I					1	-					2
16					Γ			T	T				1		1					1							T	T									T		T				T				1							1	2
17						Τ		T																T	T		T	T											I		1		I	T	I		T								1
18				Γ	I	Τ		1	1															Γ	I	T	T	T	I								T		T	T	T	T	T	T	I	\Box	I				Ĺ			1	1
19									T							I	T																				I								I		T							T	1
20									I																																				T		I							1	1
21					I		I	I	J				Γ																T								I								J		I							J	1
22				T	T	T	T	T	Î						T	T	1							T	T	T	T	T	T							Г	T	T	T		T	T	T	T	T		T	1						1	1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number	2346	Initial Operation Date	8/24/00
All contracts of the contract of	0.000 444	12 0	HO(2) 1.3

Controller Type 2070 LN System Number 2346

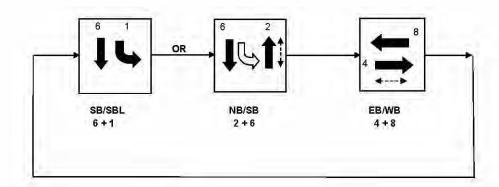
Modification Number 5 Modification Date 11/14/2017

Drawing/Project No BCHCED #13051001 FPL Grid Number 87077729309

Intersection DAVIE ROAD and REESE ROAD

Municipality DAVIE

Controller Phase	1	2	3	4	5	6	7	8
Face Number	1	2		4	5	6		8
Direction .	SBL	NB		EB	NBL	SB		WB
Initial Green(MIN)	5	12		6.	5	12		6
Vehicle Ext.(GAP)	2.0	3.0		2.0	1,5	3.0		2,0
Maximum Green I	18	50		25	12	50		25
Maximum Green II								
Yellow Clearance	4.0	4.0		4.0	4.0	4.0		4.0
All Red Clearance	2.0	2.0		2.0	2.0	2.0		2.0
Phase Recall	OFF	MIN		OFF	OFF	MIN		OFF
Detector Delay				7				8-RT
Walk		7						7
Pedestrian Clearance		20						26
Permissive	DUAL				NO			
Flash Operation	RED	YELLOW		RED	RED	YELLOW		RED


Attachment

NOTES:

- 1. DUAL ENTRY HARDWIRED EAST/WEST.
- 2. THERMAL DETECTION.
- 3. MOD. 5 ADJUSTS MAXIMUM GREEN I AND GAP SETTINGS FOR PHASE I (SBL).

Sub mitted By	Approved By
Storica by	тфрима Бу

Sequence of Operation for Davie Road and Reese Road (2346)

Station: 2346 - Davie Rd & Reese Rd (Standard File)

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(SL)	(NT)		(ET)	(NL)	(ST)		(WT)					1			100
Walk		7						7								
Ped Clearance		20						26								
Min Green	5	12		6	5	12		6								
Gap Ext	2	3		2	1.5	3		2								
Max1	18	50		25	12	50		25								
Max2																
Yellow Clr	4	4	4	4	4	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2		2	2	2		2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce										(ii					7	
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit	34			Î												
Dynamic Max Step	10															
Enable	ON	ON		ON	ON	ON		ON								
Auto Flash Entry				ON				ON								
Auto Flash Exit		ON		Î		ON									1 1	
Non-Actuated 1					-					-						
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry				ON				ON							1	
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk		ON		Ì												
Cond Service				1											1	
Add Init Calc																

Preem ption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash					ON	ON
Override Higher Preempt					ON	ON
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration						
Min Green	6	6	6	6	6	6
Min Walk						
Ped Clear						
Track Green						1
Min Dwell	8	8	8	8	8	8
Max Presence	180	180	180	180	180	180
Track Veh 1						
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						1
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			-		
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4					
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table					

Dwell Cyc Veh 7		
Dwell Cyc Veh 8		
Dwell Cyc Veh 9		Ĭ
Dwell Cyc Veh 10		
Dwell Cyc Veh 11		
Dwell Cyc Veh 12		
Dwell Cyc Ped1		
Dwell Cyc Ped2		
Dwell Cyc Ped3		
Dwell Cyc Ped4		
Dwell Cyc Ped5		
Dwell Cyc Ped6		
Dwell vPed7		
Dwell Cyc Ped8		
Exit 1		
Exit 2		
Exit 3		
Exit 4		

Prepared By	Date Implemented
	-

Broward County Timing Sheet

Station: 2346 - Davie Rd & Reese Rd (Standard File)

4/9/2020 10:02:02 AM

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
Day	Plan	1								Eas	y				-										
		100	254																						
6		2	2	160	124	2	1	10	50	20	100		40	20	100		40								
9		100	254																						
15		4	4	160	145	4	1	10	50	23	97		40	23	97		40								
20		3	3	160	123	3	1	10	50	26	94		40	26	94		40								
Day	Plan	2								Eas	y														
		3	3	160	123	3	1	10	50	26	94		40	26	94		40		ļ.,	_	1				
1		100	254																1					111	
6	30	100	254																						
							ļ																		

ay	Plan	3				Ea	sy							
		100	254											
6	30	100	254											
23		100	254											1
					-			-	_	+			_	-
										1				+
										-				- 1
				+			1	_			-	\vdash	_	+
						1								\top
														_

Broward County Timing Sheet 4/9/2020 10:02:02 AM

Station: 2346 - Davie Rd & Reese Rd (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	Plan										Eas															
		-							-				_						_					-		_
													_						_		_	_				
	. 1																							-		
								_																		
									-													-				

Scheduler

	M	on	th											D	ay	of	W	/ee	k		Į)a	y (of	M	on	th				1											2							Т			3		
Plan	J	F	M	A	M	IJ	J	A		S	o	Ν	D	S	M	r ı	V	V :	r i	F								7	8	1	1	T	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	Day Plan
1	1	1	1	1	1	1	1	1		1	1	1	1		1	1	1		i	1		1	1	1	1	1	1	1	1	1	T	ı	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	20
2	1	1	1	1	1	1	1	1	I	1	1	1	1		T	T	T	T	T	1	1	1	1	1	1	1	1	1	1		T	ıŢ	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1	T	1	1	1	1	1		T	T	T				1	1	1	1	1	1	1	1	T	T		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1	Г			T	T	T	T	T					T	1	1	1		1	1		1				Г	T	T	T	T	T	T	T	T					Г	T	T	Г	T			Γ	T	Г		T	Г			2
5	1		Г		Γ	T	T	Т	T	Ī					1		T	T	T		T	Ī	1				T	T	T	T	T	T	T	T					Г	T						Γ	T				F			2
6		Г	Г		1	Т	T	T	T					T	1		T	T	T	T	T					T	T	T	T	T	T	T	П	T						Г	Г	Г	T	Г		Γ	1	1	1	1	1	1	1	2
7		Г			Γ	T	1	T	T					T	Г	T	Γ	T		1	T			1			Γ	T	T	T	T	T	T	T					Г	T		Γ	T	Γ		Г	T			Г	Γ			2
8					Г	T	1		T				Г	T	1	1	1		1	1					1	Γ	T	Г	T	T	T	T	T	T						T	T	T				Г	Г				Г			2
9				T	T	T	1		Î	Ī			Г		1	T	T	T	1	1						1			T	T	T	T		T						T	T	T				T	T	Г			Ī			2
10							T	T	1	1					1			T	1	1		1	1	1	1	1	1	1		T	T	T	1	1	3					T						Γ								2
11					Г	T	T	T	T			1			Г	T			1								T	T	T	T	1	T	1	T										1	1	1	1	1	1	1				2
12							T	T	T			1					T			1						T		T	T	T	T									T		T			1	1	1	1	1	1	1			2
13						T	T	T	T	٦			1		1				1	1	1							T	T	T	T	T	1							T						1		Г						2
14					Г	T	T	T	T	ı			1	Г	1	1	1		1	1	1							T		T	T	T	T	T						T						Г	1				T			2
15					T	T	Г	T	Ţ				1		1			T										T	T	T	T	T	1	1												Г	T	1						2
16					Γ		Т	T	T				1		1		T			1							T	Т	T	T	T	T	1	T		1				T						Г	Т				Г		1	2
17		Г		Г	Г	T	Т	T	T	T		П			Т	T	T	T	T	T	T					Г	T	T	T	T	T	T	T	T			П			T		Г				Г	Г	Г	Г	Г	Г			1
18		Г				T	T	T	Ť					T	T	T		T	T	T	T					T		T	1	T	T	T	1	1	3					T		Т	T	Т		T								1
19					T		T	T	T						Т	T	T	T	T	T							T	T	T	T	1	1	7	7								Г		Г		Т	T				Г			1
20	1	1	1	1	1	1	1	1		1	1	1	1		1	1	1		1	1	1									T	T	1	1	1						T		T				1								20
21					T	T	T	T	Ť						T	T	T	T	T	T		T					T	T	T	T	T	Ť	1	1						T						T	T							1
22				T	T	T	T	T	Ť	T		Г			T		T	1	T	T	T	T				T	T	T	T	T	T	1	1	1					T	T	T	T	T	T		T	T	T		T	T			1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

SR 7

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 2084 Initial Operation Date 9/19/15

Controller Type 2070 LN System Number 2084

Modification Number 16 Modification Date 11/18/2019

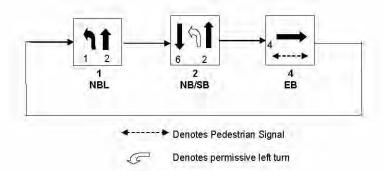
Drawing/Project No 416876-1-52-01 **FPL Grid Number** 87276126607

Intersection SR 7 (US 441) and OAKES ROAD

Municipality DAVIE

Controller Phase	1	2	3	4	5	6	7	8
Face Number	5	2,6		4				
Direction .	NBL	N/S		EB				
Initial Green(MIN)	4	7		6.				
Vehicle Ext.(GAP)	1.5	3.0		2.0				
Maximum Green I	12	45		35				
Maximum Green II								
Yellow Clearance	5.0	5.0		4.0				
All Red Clearance	2.0	2.0		2.0				
Phase Recall	OFF	MIN		OFF				
Detector Delay								
Walk				7				
Pedestrian Clearance				29				
Permissive	5 SECT							
Flash Operation		YELLOW		RED				

Attachment


NOTES:

1. MOD, 16 UPDATES PHASE 4 (EB) TIMING VALUES.

Submitted By	Approved By

Sequence of Operation for (2084) SR 7 (US 441) and Oakes Road

Davie

Station: 2084 - SR 7 & Oakes Rd (Standard File)

Phase	(NL)	2 (ST)	3	4 (ER)	5	6	7	8	9	10	11	12	13	14	15	16
Walk		7		7						6-1						
Ped Clearance				29												
Min Green	4	7		6												
Gap Ext	1.5	3		2									1			
Max1	12	45		35				11								
Max2							1	1 - 1								
Yellow Clr	5	5		4	4	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2		2			7		1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce				1 1					Ì							
Cars Before Reduce																
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit																
Dynamic Max Step																
Enable	ON	ON		ON	-											
Auto Flash Entry				ON												
Auto Flash Exit		ON				1			Ì							
Non-Actuated 1																
Non-Actuated 2																
Lock Call				ON					ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON														
Max Recall																
Ped Recall										7						
Soft Recall																
Dual Entry															1	
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage																
Rest In Walk		ON														
Cond Service									1							
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash						
Override Higher Preempt						
Flash in Dwell						
Link to Preempt						
Delay						
Min Duration			1			
Min Green	6				6	6
Min Walk						
Ped Clear						
Track Green					1	
Min Dwell	8				8	8
Max Presence	180				180	180
Track Veh 1					9	
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1	2				1	4
Dwell Cyc Veh 2			/			
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			-	-
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4			1	
Lock			7 11	
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table				

Dwell Cyc Veh 7				
Dwell Cyc Veh 8				
Dwell Cyc Veh 9				
Dwell Cyc Veh 10	1			
Dwell Cyc Veh 11				
Dwell Cyc Veh 12	1			
Dwell Cyc Ped1				
Dwell Cyc Ped2				
Dwell Cyc Ped3				
Dwell Cyc Ped4				
Dwell Cyc Ped5				
Dwell Cyc Ped6				
Dwell vPed7				
Dwell Cyc Ped8				
Exit 1	4		2	1
Exit 2				
Exit 3				
Exit 4	1	1001		

Prepared By	Date Implemented

Broward County Timing Sheet

Station: 2084 - SR 7 & Oakes Rd (Standard File)

Coordination

			Pattern	Cycle	Offset	Split	Seqno	Short	Long Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
Day	Plan	1								Eas	y														
		100	254																					i i	
7		2	2	160	84	2	1		50	34	71		55	34	71		55								
9		3	3	160	155	3	1	10	50	30	75		55	30	75		55							1	
15		4	4	160	150	4	1		50	21	89		50	21	89		50								
20		3	3	160	155	3	1	10	50	30	75		55	30	75		55								
22		100	254										_												
														-											
Day	Plan	2								Eas	y														
100		3	3	160	155	3	1	10	50	30	75		55	30	75		55				1				
1		100	254																					111	
8		3	3	160	155	3	1	10	50	30	75		55	30	75		55								
							_			-										_					
	-	-																		_		-			
	1																								

4/9/2020 10:04:25 AM

ay Pla	an 3								Eas	y								
	3	3	160	155	3	1	10	50	30	75	55	30	75	55				
1	100	254	1 - 1															
8	3	3	160	155	3	1	10	50	30	75	55	30	75	55				
22	100	254																
															\vdash			
_										-	-			-	\vdash	_	+	
_											-					_		
					-						+			_		_	+	

Broward County Timing Sheet 4/9/2020 10:04:25 AM

Station: 2084 - SR 7 & Oakes Rd (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long Dwel	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 5	Split 15	Spli 16
	Plan									Eas			Ξ									Ξ		97	
																									_
		-																							
										-		-	-							_				_	
										-															

Scheduler

Month Day of										W	Ve	ek			Da	ıy	of	M	on	th				1											2										3	7								
Plan	J	F	M	A	M	J	J	1	1	S	o	N	D	S	M	1 7	ľ	N	Т	F	S	1	2	3	4	5	6	T	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	Day Plan
1	1	1	1	1	1	1	1		1	1	1	1	1		1	1	i	i	1	1		1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1			T					1	1	1	1	1	1	1		1	1	1	1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1		T	T	T				1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1						T	T							1	1		1	1	1		1			T		T	T		T		1																						2
5	1						T	T	Ť			Г	T		1	T			I				1				T	T		1		T																						2
6					1		T	T	Î			Г	T		1			T								T	T	T	T	1		T	T														1	1	1	1	1	1	1	2
7							1	T	1	Ĭ				T	T	T	T			1			Г	1			T	T				1	1								П													2
8							1								1	1		1	1	1					1		T	T		1		1				1																		2
9						Г	1	1	Î	Ì		Г	Γ		1	T	T	T	Ī				Г			1	T	T	T	T	T	T																						2
10							T	T	1	1					1		T					1	1	1	1	1	1	T	1	T		T																		-				2
11							T	T				1	T			T	T		1							T	T	T		T		T	T											1	1	1	1	1	1	1				2
12							T	T	1			1	T			T				1						T	T	T	1	1						ľ									1	1	1	1	1	1	1			2
13						Ì	Ì	Ť	Ť	Ī			1	T	1	T		1	1	1				İ	T	T	T	Ť	1	1	T	Ť	T													1								2
14							T	T	Ì			Г	1		1	1		1	1	1			Г		T	T	T	T		T		T	٦														1							2
15							Г	T	1				1		1	T	T	T								T	T	T		T		T	٦															1	-					2
16					Г		Г	T	7				1		1					1						T	T	T	T	T		T				1																	1	2
17						Г	T	T	T			Г	Г	T	T	T		T						Г	T	T	T	T	T	T	T	T	T					Г								Г	Г	Г		Г				1
18							T	T	T				Г			T		T					Г	Г	T	T	T	T	T	T		T	T																					1
19							T	T	1			Г	T			T		T		I	Ţ	Ţ,			T	T	T	T		1		7	T															Г			Г			1
20							T	T	1				Г													T	T	T		T		1			7															1				1
21						Г	T	T	Ť	Ī			Г			T								Ī	T	T	T	T	1			Ť	T																					1
22							Г	T	1			Г	T		T		T	1							T	T	T	T	T	T		1	T																					1

23					<u>.</u>				П								1
24																	1
25										\Box							1
26								П	П	П							1
27								П						П			1
28								П	П	П							1
29								П	П	Π				П			1
30	П							П	П	П	П			П		П	1
31								П	П				П	П			1
32																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 2258 Initial Operation Date 7/21/77

Controller Type 2070 LN System Number 2258

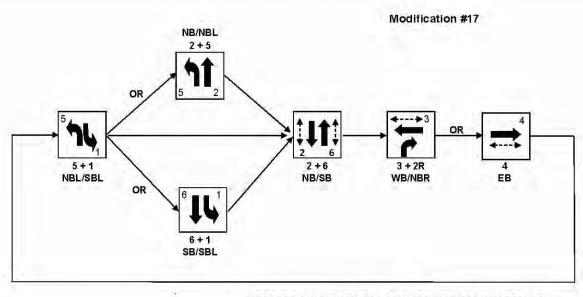
Modification Number 18 Modification Date 02/15/2017

Drawing/Project No 426853-1-52-01 **FPL Grid Number** 87278441607

Intersection SR 7 (US 441) and SW 20 ST./RIVERLAND RD.

Municipality FORT LAUDERDALE

Controller Phase	1	2	3	4	5	6	7	8
Face Number	-1	2	3	4	5	6		
Direction .	SBL	NB	WB	EB	NBL	SB		
Initial Green(MIN)	5	10	6	6.	5	10		
Vehicle Ext.(GAP)	1.5	3.0	2.0	2.0	1,5	3,0		
Maximum Green I	18	55	30	25	25	55		
Maximum Green II								
Yellow Clearance	5.0	5.0	4.0	4.0	5,0	5,0		
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0		
Phase Recall	OFF	MIN	OFF	OFF	OFF	MIN		
Detector Delay				3-LT				
Walk		7	7	7		7		
Pedestrian Clearance		25	34	29		25		
Permissive	NO				NO			
Flash Operation	RED	RED	RED	RED	RED	RED		


Attachment

NOTES:

- 1. NBR (HEAD 2R) HARDWIRED TO WB.
- 2. MOD. 18 UPDATES PEDESTRIAN TIMING PER FDOT REQUEST

Submitted By	Approved By	
July Hit Hate 131	imployed D;	

Sequence of Operation for SR 7 (US 441) and SW 20 St / Riverland Rd (2258) Fort Lauderdale

NORTHBOUND RIGHT (HEAD 2R) HARDWIRED TO WESTBOUND

Station: 2258 - SR 7 & Riverland Rd / SW 20 St (Standard File)

Phase	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
	(SL)	(NT)	(WT)	(ET)	(NL)	(ST)			-			, Kal	14.4			
Walk		7	7	7	40	7										
Ped Clearance		25	34	29		25										
Min Green	5	10	6	6	5	10										
Gap Ext	1.5	3	2	2	2	3				1	-		7			
Max1	18	55	30	25	25	55										
Max2																
Yellow Clr	5	5	4	4	5	5	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce																
Time To Reduce																
Reduce By								11 14	-							
Min Gap																
Dynamic Max Limit																
Dynamic Max Step																
Enable	ON	ON	ON	ON	ON	ON				1						
Auto Flash Entry				ON												
Auto Flash Exit	(ON	1												1 1	
Non-Actuated 1				Ì											1	
Non-Actuated 2																
Lock Call	ON				ON				ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON		Î		ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry			Ì												1	
Sim Gap Enable									ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage													0.70			
Rest In Walk		ON				ON										
Cond Service				Ì												
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash		ON				
Override Higher Preempt		ON				
Flash in Dwell		ON				
Link to Preempt						
Delay						
Min Duration						
Min Green	6		6	6	6	6
Min Walk						
Ped Clear						
Track Green			1		1	
Min Dwell	8		8	8	8	8
Max Presence	180		180	180	180	180
Track Veh 1					9	
Track Veh 2						
Track Veh 3						
Track Veh 4						
Dwell Cyc Veh 1	2		6	3	2	4
Dwell Cyc Veh 2	6		1		5	
Dwell Cyc Veh 3						
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4	
Min					
Max					
Enable			-		
Lock Mode	MAX	MAX	MAX	MAX	
Coord in Preempt					
No Skip					
Priority P1					
Priority P2					
Priority P3					
Priority P4				1	
Lock					
Headway					
Group Lock					
Queue Jump					
Free Mode					
Alt Table					

Dwell Cyc Veh 7					
Dwell Cyc Veh 8					
Dwell Cyc Veh 9					
Dwell Cyc Veh 10					
Dwell Cyc Veh 11					
Dwell Cyc Veh 12					
Dwell Cyc Ped1					
Dwell Cyc Ped2					
Dwell Cyc Ped3					
Dwell Cyc Ped4					
Dwell Cyc Ped5					
Dwell Cyc Ped6					
Dwell vPed7					
Dwell Cyc Ped8					
Exit 1	3	2	4	2	1
Exit 2		6		6	5
Exit 3		- 1			
Exit 4					

Prepared By	Date Implemented

Broward County Timing Sheet

Station: 2258 - SR 7 & Riverland Rd / SW 20 St (Standard File)

Coordination

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seque	Short	Long Dwel	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
	Plan									Eas															
		100	254																						
6		12	12	200	107	12	9	10	50	21	90	52	37	32	79		89								
9		13	13	160	77	13	1	10	50	21	67	36	36	28	60		72								
15		14	14	200	169	14	9	10	50	23	90	52	35	36	77		87								
20		13	13	160	77	13	1	10	50	21	67	36	36	28	60		72								
Dov	Plan	2								Eas	**														
Day	1 Iaii		2	160	121	1 2	1100	10	50	_		42	40	22	5.0		00								
1		3 100	3 254	100	121	3	1	10	50	14	64	42	40	22	56		82			-		-		-	
6	30	13	13	160	77	13	1	10	50	21	67	36	36	28	60		72								
		,													- 3										
													H												

4/9/2020 10:05:45 AM

ay .	Plan	3								Eas	y									
		3	3	160	121	3	1	10	50	14	64	42	40	22	56	82				
1		100	254									19.1								
6	30	13	13	160	77	13	1	10	50	21	67	36	36	28	60	72				I
23		100	254																	F
																				İ
\dashv																	-	-		-
																				T
\dashv																	-	-	-	-
\dashv																				t
\exists																				L
\dashv	_	-					-					-				-	-	_	+	+

Broward County Timing Sheet 4/9/2020 10:05:45 AM

Station: 2258 - SR 7 & Riverland Rd / SW 20 St (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spl 16
	Plan										Eas												Y			
																				-						-
																										-
		-																						-		
															-	-								-		

Scheduler

	M	on	ith	3										T	Da	y (of	W	eel	K		D	ay	of	M	or	th					1										2										3		
Plan	J	F	M	I A	I	1 .	Ţ,	J	A	S	o	N	1	D	S	М	T	W	T	F	S	1	2	3	14	1 3	5 6	5	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	Day Plai
1	1	1	1	1	1		i i	1	1	1	1	1	1	1		1	1	1	1	1		1	1	1	1	. 1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			1		1		1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	1						T	1	1	1	1	1	1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	ı i	1	1	1	1	1	i i	1	1			П				1	1	1	1	1			1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1	T	T	T	T	T	T									1	1	1	1	1		1			T		T	T	T									T	T	T	T	T	T	T	1				T	T				2
5	1		T	T	T	T	T	Î				T	T			1				T	T	T	1	T	T		T	T	1										T	T	T		T		T	T	T				F			2
6		Г	T	T	1	T	T	٦			Г	T	T			1	П	П		T	T	T	Γ	T	T	T	T	T	T							Г	Т	Τ	T	T	T	T	T	T	T	T	1	1	1	1	1	1	1	2
7	П	Т	T	T	T	T		1		П	Г	T	T							1	T	Γ	Γ	1	T	T	T	T	T							Г		T	T	T	I	T	T	T	T	T	T	T	T	Γ	T	Г		2
8		T	T	T	T	T		1			Γ	T				1	1	1	1	1	T			T	1		T	T	T			5				Г	T	T	T	T	T	T	T	T		T	T			T	Г	Г		2
9	Г	Γ	T	T	T	T		1			Γ	T	T			1				T	T	Τ	Ī	Ī	T	1	I	T	T				П		Π	T	T	T	T	T	T	T	T	T	T	T	T	Т	Γ	T	Γ	Γ	Г	2
10		T	T	T	T	T	T			1	Γ	T	T			1				T	T	1	1	1	1	Ţi	T	T	1							Γ	T	T	T	T	T	T	T	T	T	T	I	T	T			Γ		2
11			T	T	T	T	T	1				1	1				П		1	T						T	1	T					П											1	1	1	1	1	1	1		Г		2
12		Г	T	T	T	T	T	1			Г	1	1					T		1		Г		T	T	T	T	T	T										T	T	T	T		T	1	1	1	1	1	1	1			2
13			T	T	T	T	T	1			Γ	T	T	1		1				1	I			T	T	T	T	T	T							T	I	T		T				T	T	1		T		T				2
14			T	T	T	T	T				Г	T		1		1	1	1	1	1	T	T	Γ	T	T	T	T	T	T								T	T		T	T	T	T	T	T	T	1	T	T	T	T	Г		2
15		T	T	T	T	T	T				Г	T		1		1				T					T	T	T	T	T														T	T	T		T	1		I		F		2
16			T	T	T	T	T					I		1		1		T		1							T	T	T									T	T							T					Г		1	2
17		Γ	T	T	T	T	T	I			Γ	T	T							T	T	Π	Ī	T	T	T	T	T	T							Γ		T	T	T	T	T	T	T	T	T	T	Г	T	Γ				1
18		Г	T	T	T	T	T					T	T							T	T	T	Γ	T	T	T	T	T	T							Г	T		T	T	T	T	T	T	T	Т	1	T						1
19			T	T	T	T	T					T	T							T				T	T			T											T	T	T				T	T	T	T		Г				1
20				T											T	T		1																					T					T										1
21			T	T	T			Ī			Г	T	T							T	T	Π		T	T		T	T	1															T	T	T		Т		Г				1
22		T	T	T	T	T	1	Ī			Г	T	T							T	T	T	T	T	T	T	T	T	T							Г	T	T	T	T	T	T	T	T	T	1	T	T	T	T	Г	Г		1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		T	1
31											П						T					1
32					1																	1

User Comments:

BROWARD COUNTY TRAFFIC ENGINEERING ACTUATED TRAFFIC SIGNAL TIMING SHEET

Intersection Number 2442 Initial Operation Date 5/14/2019

Controller Type 2070 TS2 (BIU) System Number 2442

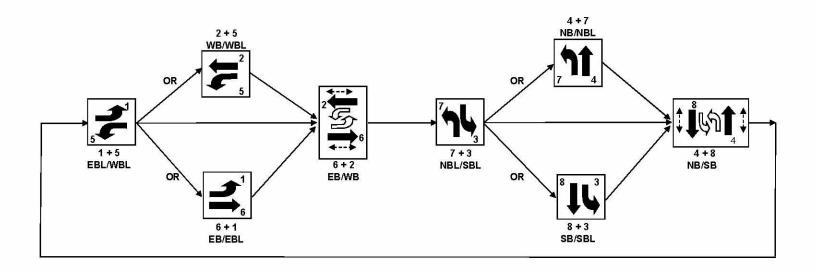
Modification Number 0 Modification Date

Drawing/Project No BC 160229001 FPL Grid Number

Intersection PETERS RD and SW 80 TERRACE / SHELDON J HARR PARKWAY

Municipality PLANTATION

Controller Phase	1	2	3	4	5	6	7	8
Face Number	-1	2	3	4	3	6	7	8
Direction .	EBL	WB	SBL	NB	WBL.	EB	NBL.	SB
Initial Green(MIN)	5	18	5	6.	3	18	5	6
Vehicle Ext.(GAP)	1.5	3.0	1.5	2,5	1,5	3,0	1.5	2,5
Maximum Green I	15	45	12	25	15	45	12	25
Maximum Green II								
Yellow Clearance	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All Red Clearance	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Phase Recall	OFF	MIN	OFF	OFF	OFF	MIN	OFF	OFF
Detector Delay								
Walk		7		7		7		7
Pedestrian Clearance		21		28		21		29
Permissive	YES		YES		YES		YES	
Flash Operation		YELLOW		RED		YELLOW		RED


Attachment

NOTES:

- 1. ANTI-BACKDOWN EAST/WEST: PHASES 2+6 ON --->OMIT PHASES 1+5.
- 2. DUAL ENTRY NORTH/SOUTH.
- 3. INITIAL OPERATION DATE REFLECTS DATE OF SIGNAL TIMING REINSPECTION.

Sub mitted By	Approved By	
	741177777	

Sequence of Operation for Peters Rd and SW 80 Ter/Sheldon J Harr Pkwy (2442) Plantation

Station: 2442 - Peters Rd & SW 80 Ter/Sheldon J Harr Pwy (Standard File)

Phase	1 (EL)	2 (WT)	3 (SL)	4 (NT)	5 (WL)	6 (ET)	7 (NL)	8 (ST)	9	10	11	12	13	14	15	16
Walk		7		7		7		7								
Ped Clearance		21		28		21		29								
Min Green	5	18	5	6	5	18	5	6								
Gap Ext	1.5	3	1.5	2.5	1.5	3	1.5	2.5								
Max1	15	45	12	25	15	45	12	25								
Max2																
Yellow Clr	4	4	4	4	4	4	4	4	3.5	3.5	3.5	3.5	3.5	3.5	3.5	3.5
Red Clr	2	2	2	2	2	2	2	2	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Red Revert																
Added Initial																
Max Initial																
Time Before Reduce																
Cars Before Reduce																
Time To Reduce																
Reduce By																
Min Gap																
Dynamic Max Limit																
Dynamic Max Step																
Enable	ON	ON	ON	ON	ON	ON	ON	ON		1						
Auto Flash Entry				ON				ON								
Auto Flash Exit		ON				ON									1 1	
Non-Actuated 1															1	
Non-Actuated 2																
Lock Call									ON	ON	ON	ON	ON	ON	ON	ON
Min Recall		ON				ON										
Max Recall																
Ped Recall																
Soft Recall																
Dual Entry		ON		ON		ON		ON							1	
Sim Gap Enable	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON	ON
Guar Passage									-							
Rest In Walk		ON				ON										
Cond Service																
Add Init Calc																

Preemption

Channel	1	2	3	4	5	6
Lock Input	ON	ON	ON	ON	ON	ON
Override Auto Flash	ON	ON	ON	ON	ON	ON
Override Higher Preempt	ON	ON	ON	ON	ON	ON
Flash in Dwell	ON	ON	ON	ON	ON	ON
Link to Preempt						
Delay						
Min Duration						
Min Green						
Min Walk						
Ped Clear						
Track Green						1000
Min Dwell						
Max Presence						-
Track Veh 1						
Track Veh 2						1 -
Track Veh 3						
Track Veh 4						1
Dwell Cyc Veh 1						
Dwell Cyc Veh 2						11
Dwell Cyc Veh 3]					
Dwell Cyc Veh 4						
Dwell Cyc Veh 5						
Dwell Cyc Veh 6						

Preempt LP

Channel	1	2	3	4
Min				
Max				
Enable			1	
Lock Mode	MAX	MAX	MAX	MAX
Coord in Preempt				
No Skip				
Priority P1				
Priority P2				
Priority P3				
Priority P4				
Lock				
Headway				
Group Lock				
Queue Jump				
Free Mode				
Alt Table				

Dwell Cyc Veh 7		
Dwell Cyc Veh 8		
Dwell Cyc Veh 9		
Dwell Cyc Veh 10		
Dwell Cyc Veh 11		
Dwell Cyc Veh 12		
Dwell Cyc Ped1		
Dwell Cyc Ped2		
Dwell Cyc Ped3		
Dwell Cyc Ped4		
Dwell Cyc Ped5		
Dwell Cyc Ped6		
Dwell vPed7		
Dwell Cyc Ped8		
Exit 1		
Exit 2		
Exit 3		
Exit 4		

Prepared By	Date Implemented
Reviewed By	Traffic Engineer

Timing Sheet

Station: 2442 - Peters Rd & SW 80 Ter/Sheldon J Harr Pwy (Standard File)

Coordination

Broward County

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seque	Short	Long Dwel	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Split 16
Day	Plan	1								Eas	y														
		100	254																						
6		2	2	160	56	2	1	2	50	21	68	28	43	21	68	28	43								
9		3	.3	160	159	3	4.	2	50	21	68	28	43	21	68	28	43							1	
15		4	4	160	88	4	1	2	50	21	68	28	43	21	68	28	43								
20		3	3	160	159	3	1	2	50	21	68	28	43	21	68	28	43								
Day	Plan	2								Eas	V														
		3	3	160	159	3	1	2	50	21	68	28	43	21	68	28	43								
1		100	254																					1	
6	30	3	3	160	159	3	1	2	50	21	68	28	43	21	68	28	43								
							1																		

4/9/2020 9:59:57 AM

ay	Plan	3								Eas	у											
		3	3	160	159	3	1	2	50	21	68	28	43	21	68	28	43					
1		100	254																			
6	30	3	3	160	159	3	1	2	50	21	68	28	43	21	68	28	43					
23		100	254															-				F
_																		1	+			t
																		1				I
\dashv																			\vdash		+	H
\dashv														_				-		_		1
																				_	+	t

Broward County Timing Sheet 4/9/2020 9:59:57 AM

Station: 2442 - Peters Rd & SW 80 Ter/Sheldon J Harr Pwy (Standard File)

Hour	Minute	Action	Pattern	Cycle	Offset	Split	Seqnc	Short	Long	Dwell	Split 1	Split 2	Split 3	Split 4	Split 5	Split 6	Split 7	Split 8	Split 9	Split 10	Split 11	Split 12	Split 13	Split 14	Split 15	Spli 16
	Plan										Eas															
		-				_							_							-						

Scheduler

	M	on	th											D	ıy	of	W	ee	k		I	ay	0	fl	Mo	nt	h				1										2										3		
Plan	J	F	M	A	M	J	J	A	1	S	0	N	D	S	М	T	W	1	F	. 8	; :	Π.	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	Day Pla
1	1	1	1	1	1	1	1	1	ı i	1	1	1	1		1	1	1	1	1		1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	1	1	1	1	1	1	1	Г						1	1	1	ı	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2
3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	Г						1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	3
4	1		T				T	T							1	1	1	1	1				1																														2
5	1						Ī	T	T	Ī					1				T	T	T		1																														2
6		Г	Г	Г	1	Г	Г	T	T	I				Г	1		Г		T	T	T	T	T						Γ	Γ															Γ	1	1	1	1	1	1	1	2
7		Г	T	Γ	T		1	T	T	T				П			Г		1		T	T	T	1																Π	Π	Π	Γ	Г	Г								1
8			Г		Г		1	T	T	T					1	1	1	1	1			T			1								П																				1
9		Г	Γ	Γ	Π	Г	1	T	T	I				Г	1	Г	Г	T	T	T	T	T	T	Ī		1			Γ	Γ	П	Г	Γ	Π	Π	П		Г		Π	Γ		Γ	Γ	Г		Γ						2
10				I			T	T		1				Г	1		Г	T	T	T	T	II:	1	1	1	1	1	1	T	T																			4				2
11			T	T	T		T	T	T	T		1	Г					1																									1	1	1	1	1	1	1				2
12			Г		T		Т	T	T	T		1					Г	T	1		T	T	1												T									1	1	1	1	1	1	1			2
13								T	T	I			1				Г		1	I	T	T	T						Γ																1								2
14				Γ	T		T	T	T				1	Г	1	1	1	1	1	T	T	T	T							Г																1							2
15				Γ			T	T	T				1		1			Γ			T	T	1																								1	-					2
16			Г		Г		Г	Τ					1		1																																					1	2
17			Π	Γ	Π	Г	Γ	Τ	T	I									T	T	T	T	T						Γ	Γ														Г									1
18				I			T	T	T					Г			Г		T	T	T	T	T							Г																							1
19				T		Г	T	T	T	\Box											T	T	T																														1
20			T		T			T																																									1				1
21								T	T	Ī									T	T	T	T	T																														1
22			T	Г	T		T	T	1	T							Г	T	T	T	T	T	T																														1

23											П											1
24																						1
25													\Box					П				1
26		\Box									П		П				T	П	T			1
27																						1
28											П	1	П	T								1
29											П	Т	П								\Box	1
30	\Box	\Box	П			П					П		П	T	П			П	1		\Box	1
31											П						T					1
32					1																	1

User Comments:

Appendix C - HCM2000 Intersection Operational Analysis Reports & Summary Tables

NW/SW 136th Avenue AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
		EB	EBL EBT	347 (218) 23 (6)	85 (44.9) 24 (33.5)	F (D) C (C)	73.5 (43.7)	E (D)
		EB					73.3 (43.7)	E (D)
			EBR WBL	57 (21) 9 (8)	24 (33.5) 44.5 (54.6)	C (C)		
		WB					47.0 (54.7)	D (D)
		VVD	WBT	39 (7)	48.2 (54.7)	D (D)	47.9 (54.7)	D (D)
			WBR	87 (65)	- (-)	- (-)		
	NIM/SIM/126th Avenue		NBU	1 (0)	- (-)	- (-)	-	
1	NW/SW 136th Avenue	NB	NBL	82 (44)	13.3 (8.5)	B (A)	14.3 (9.4)	B (A)
	at Shenandoah Pkwy/SW 5th St		NBT	685 (560)	14.4 (9.5)	B (A)		
			NBR	9 (19)	- (-)	- (-)		
			SBU	12 (35)	- (-)	- (-)	1	
		SB	SBL	24 (78)	12.4 (10.4)	B (B)	12.4 (10.3)	B (B)
			SBT	479 (589)	12.6 (9.4)	B (A)	` ′	, ,
			SBR	275 (567)	12.1 (11.1)	B (B)		
				Intersection			27.5 (15.7)	Int. LOS C (B)
		Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBL	425 (431)	30.5 (39.4)	C (D)		
		EB	EBT	627 (624)	41.3 (68.6)	D (E)	36.2 (54.1)	D (D)
			EBR	73 (122)	25.6 (31.9)	C (C)		
			WBL	0 (0)	- (-)	- (-)		
	NIMI CIMI 40C+h A	WB	WBT	0 (0)	- (-)	- (-)	0 (0)	A (A)
2	NW/SW 136th Avenue		WBR	0 (0)	- (-)	- (-)	1	
	at EB SR-84		NBL	0 (0)	- (-)	- (-)		
		NB	NBT	452 (372)	43 (28.9)	D (C)	352.9 (42.6)	F (D)
			NBR	679 (506)	559.2 (52.7)	F (D)	1	
			SBU	0 (1)	- (-)	- (-)		
			SBL	303 (575)	22.8 (36.9)	C (D)	1	
		SB	SBT	717 (1147)	6.8 (11.4)	A (B)	11.5 (19.9)	B (B)
			SBR	0 (0)	- (-)	- (-)	1	
			אמכ			(-)	Int. Delay (s/Veh)	Int. LOS
				Intersection			147.4 (36)	F (D)
		Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBL	0 (0)	- (-)	- (-)		
		EB	EBT	0 (0)	- (-)	- (-)	0 (0)	A (A)
			EBR	0 (0)	- (-)	- (-)	1	
			WBL	386 (820)	111.1 (239.3)	F (F)		
		I					-	I
_		WB	WBT	355 (160)	150.6 (165.4)	F (F)	123.6 (158)	F (F)
3	NW/SW 136th Avenue	WB	WBT WBR				123.6 (158)	F (F)
	NW/SW 136th Avenue at WB SR-84	WB		889 (454)	82.4 (36.6)	F (D)	123.6 (158)	F (F)
			WBR	889 (454) 1 (0)	82.4 (36.6) - (-)	F (D) - (-)		
		WB NB	WBR NBU NBL	889 (454) 1 (0) 76 (68)	82.4 (36.6) - (-) 37.9 (50.3)	F (D) - (-) D (D)	123.6 (158)	F (F) A (B)
			WBR NBU NBL NBT	889 (454) 1 (0) 76 (68) 800 (736)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7)	F (D) - (-) D (D) A (A)		
			WBR NBU NBL NBT NBR	889 (454) 1 (0) 76 (68) 800 (736) 0 (0)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-)	F (D) - (-) D (D) A (A) - (-)		
		NB	WBR NBU NBL NBT NBR SBL	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-)	F (D) - (-) D (D) A (A) - (-) - (-)	10 (12.2)	A (B)
			WBR NBU NBL NBT NBR SBL SBT	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8)	F (D) - (-) D (D) A (A) - (-) - (-) C (B)		
		NB	WBR NBU NBL NBT NBR SBL	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-)	F (D) - (-) D (D) A (A) - (-) - (-)	10 (12.2)	A (B)
		NB	WBR NBU NBL NBT NBR SBL SBT	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B)	20.1 (19.8)	A (B)
		NB	WBR NBU NBL NBT NBR SBL SBT SBR	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh)	A (B) C (B) Int. LOS
		NB SB	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay	A (B) C (B) Int. LOS E (E) Approach
		NB SB Approach	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh)	A (B) C (B) Int. LOS E (E) Approach LOS
		NB SB	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay	A (B) C (B) Int. LOS E (E) Approach
		NB SB Approach	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh)	A (B) C (B) Int. LOS E (E) Approach LOS
		NB SB Approach	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8)	A (B) C (B) Int. LOS E (E) Approach LOS D (D)
	at WB SR-84	NB SB Approach	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh)	A (B) C (B) Int. LOS E (E) Approach LOS
4	at WB SR-84 NW/SW 136th Avenue	NB SB Approach	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8)	A (B) C (B) Int. LOS E (E) Approach LOS D (D)
4	at WB SR-84	NB SB Approach	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8)	A (B) C (B) Int. LOS E (E) Approach LOS D (D)
4	at WB SR-84 NW/SW 136th Avenue	NB SB Approach EB	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT WBR	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-) - (-)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-) - (-) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8) - (-)	A (B) C (B) Int. LOS E (E) Approach LOS D (D)
4	at WB SR-84 NW/SW 136th Avenue	NB SB Approach	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT WBR NBU	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-) 14 (5)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-) - (-) - (-) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-) - (-) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8)	A (B) C (B) Int. LOS E (E) Approach LOS D (D)
4	at WB SR-84 NW/SW 136th Avenue	NB SB Approach EB	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT WBR NBU NBL	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-) 14 (5) 121 (98)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-) - (-) - (-) - (-) 2.4 (3.6)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-) - (-) - (-) A (A)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8) - (-)	A (B) C (B) Int. LOS E (E) Approach LOS D (D)
4	at WB SR-84 NW/SW 136th Avenue	NB SB Approach EB	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT WBR NBU NBL NBT	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-) 14 (5) 121 (98) 1503 (1087)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-) - (-) - (-) 2.4 (3.6) 3.1 (4)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-) - (-) - (-) - (-) A (A) A (A)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8) - (-)	A (B) C (B) Int. LOS E (E) Approach LOS D (D)
4	at WB SR-84 NW/SW 136th Avenue	NB SB Approach EB	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-) 14 (5) 121 (98) 1503 (1087) - (-)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) - (-) - (-) - (-) - (-) 2.4 (3.6) 3.1 (4) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) - (-) - (-) - (-) A (A) A (A) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8) - (-)	A (B) C (B) Int. LOS E (E) Approach LOS D (D)
4	at WB SR-84 NW/SW 136th Avenue	NB SB Approach EB NB	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBL	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-) 14 (5) 121 (98) 1503 (1087) - (-) - (-)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-) - (-) - (-) 2.4 (3.6) 3.1 (4) - (-) - (-)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-) - (-) - (-) A (A) A (A) - (-) - (-) A (A)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8) - (-) 3.1 (4)	A (B) C (B) Int. LOS E (E) Approach LOS D (D) - (-)
4	at WB SR-84 NW/SW 136th Avenue	NB SB Approach EB NB	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBL SBT	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-) 14 (5) 121 (98) 1503 (1087) - (-) - (-) 636 (831) 125 (281)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-) - (-) - (-) 2.4 (3.6) 3.1 (4) - (-) - (-) 5.4 (7.4) 5 (7.2)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8) - (-) 3.1 (4)	A (B) C (B) Int. LOS E (E) Approach LOS D (D) - (-)
4	at WB SR-84 NW/SW 136th Avenue	NB SB Approach EB NB	WBR NBU NBL NBT NBR SBL SBT SBR Movement EBU EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBL SBT	889 (454) 1 (0) 76 (68) 800 (736) 0 (0) 0 (0) 633 (903) 132 (78) Intersection Volume (vph) 1 (0) 132 (263) - (-) 78 (145) - (-) - (-) 14 (5) 121 (98) 1503 (1087) - (-) - (-) 636 (831)	82.4 (36.6) - (-) 37.9 (50.3) 7.3 (8.7) - (-) - (-) 20.1 (19.8) - (-) Delay (s/veh) - (-) 54.5 (54.6) - (-) 50.6 (46.6) - (-) - (-) - (-) 2.4 (3.6) 3.1 (4) - (-) - (-) 5.4 (7.4) 5 (7.2)	F (D) - (-) D (D) A (A) - (-) - (-) C (B) - (-) LOS - (-) D (D) - (-) D (D) - (-) - (-) - (-) A (A) A (A) - (-) - (-) A (A)	10 (12.2) 20.1 (19.8) Int. Delay (s/Veh) 70.3 (78.5) Approach Delay (s/Veh) 53 (51.8) - (-) 3.1 (4)	A (B) C (B) Int. LOS E (E) Approach LOS D (D) - (-) A (A)

WB SR-84 at Commodore Drive AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBL	0 (0)	- (-)	- (-)		
		EB	EBT	0 (0)	- (-)	- (-)	- (-)	- (-)
			EBR	- (-)	- (-)	- (-)		
			WBL	- (-)	- (-)	- (-)		
		WB	WBT	1624 (1198)	- (-)	- (-)	- (-)	- (-)
			WBR	162 (339)	- (-)	- (-)		
5	WB SR-84 at		NBL	- (-)	- (-)	- (-)		
	Commodore Drive	NB	NBT	- (-)	- (-)	- (-)	- (-)	- (-)
			NBR	- (-)	- (-)	- (-)		
			SBL	0 (0)	- (-)	- (-)		
		SB	SBT	- (-)	- (-)	- (-)	46.5 (104.1)	E (F)
			SBR	162 (302)	46.5 (104.1)	- (F)		
				Intersection			Int. Delay (s/Veh)	Int. LOS
				intersection			46.5 (104.1)	E (F)

WB SR-84 at SW 125th Avenue AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBL	0 (0)	- (-)	- (-)		
		EB	EBT	0 (0)	- (-)	- (-)	- (-)	- (-)
			EBR	- (-)	- (-)	- (-)		
			WBL	- (-)	- (-)	- (-)		
		WB	WBT	1498 (1241)	- (-)	- (-)	- (-)	- (-)
			WBR	10 (43)	- (-)	- (-)		
6	WB SR-84 at		NBL	- (-)	- (-)	- (-)		
	SW 125th Ave	NB	NBT	- (-)	- (-)	- (-)	- (-)	- (-)
			NBR	- (-)	- (-)	- (-)		
			SBL	0 (0)	- (-)	- (-)		
		SB	SBT	- (-)	- (-)	- (-)	17.1 (17.2)	C (C)
			SBR	18 (81)	17.1 (17.2)	C (C)		
				Intersection			Int. Delay (s/Veh)	Int. LOS
				intersection			17.1 (17.2)	C (C)

Flamingo Road AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
		- FD	EBL	135 (90)	83.1 (80.6)	F (F)	74.0 (76.5)	E (E)
		EB	EBT	- (-)	- (-)	- (-)	74.9 (76.5)	E (E)
			EBR WBL	79 (38) - (-)	60.9 (66.5) - (-)	E (E) - (-)		
		WB	WBT	- (-)	- (-)	- (-) - (-)	- (-)	- (-)
			WBR	- (-)	- (-)	- (-)	- ' '	()
_	Flamingo Road at		NBU	2 (1)	- (-)	- (-)		
7	SW 8th St	NB	NBL	72 (115)	7.2 (10)	A (B)	10.2 (6.9)	B (A)
			NBT	1714 (1424)	10.3 (6.7)	B (A)	1	
			SBU	25 (12)	7.5 (5.5)	A (A)		
		SB	SBT	1493 (1581)	11 (9.3)	B (A)	10.6 (9.1)	B (A)
			SBR	246 (435)	8.5 (8.4)	A (A)		
				Intersection			15 (10.7)	Int. LOS B (B)
			EBL	371 (505)	208.5 (214.5)	F (F)	13 (10.7)	Б (Б)
		EB	EBT	518 (423)	191.1 (199.6)	F (F)	187.4 (219)	F (F)
			EBR	401 (464)	166.6 (248.2)	F (F)	1	. ,
			WBL	0 (0)	- (-)	- (-)		
		WB	WBT	0 (0)	- (-)	- (-)	0 (0)	A (A)
			WBR	0 (0)	- (-)	- (-)		
8	Flamingo Road at		NBL	0 (0)	- (-)	- (-)		
١	EB SR-84	NB	NBT	1116 (918)	56.8 (53.1)	E (D)	257.7 (78.6)	F (E)
			NBR	809 (532)	534.9 (122.6)	F (F)		
			SBL	395 (710)	9.3 (11.4)	A (B)	,_ ,	
		SB	SBT	1363 (1691)	4.4 (7.7)	A (A)	5.5 (8.8)	A (A)
			SBR	0 (0)	- (-)	- (-)	Int Delay (a/Yah)	lmt 1.00
				Intersection			154.8 (84)	Int. LOS F (F)
			EBL	0 (0)	- (-)	- (-)	20 110 (0 1)	- (-)
		EB	EBT	0 (0)	- (-)	- (-)	0 (0)	A (A)
			EBR	0 (0)	- (-)	- (-)		
			WBL	602 (651)	101 (134.1)	F (F)		
		WB	WBT	102 (150)	59.6 (64.9)	E (E)	87.4 (143.3)	F (F)
			WBR	439 (524)	103.7 (220.1)	F (F)		
9	Flamingo Road at		NBL	516 (258)	12 (15.2)	B (B)		
_	WB SR-84	NB	NBT	971 (1165)	3.7 (5.9)	A (A)	6.6 (7.6)	A (A)
			NBR	0 (0)	- (-)	- (-)		
			SBL	0 (0)	- (-)	- (-)		- (-)
		SB	SBT	1156 (1750)		E (F)	79 (94)	E (F)
			SBR	494 (473)	120.8 (58.7)	F (E)	Int. Delay (s/Veh)	Int. LOS
				Intersection			57.6 (84.3)	E (F)
			EBU	0 (2)	- (-)	- (-)		
		EB	EBL	30 (29)	81.2 (77.5)	F (E)	73.7 (71.3)	E (E)
			EBT	115 (99)	62.9 (71.8)	E (E)		- (-)
			EBR	237 (179)	77.9 (69.9)	E (E)		
			WBU	2 (1)	- (-)	- (-)	4	
		WB	WBL	375 (413)	93.5 (135.9)	F (F)	73.8 (97)	E (F)
			WBT	93 (157)	50 (59.1)	D (E)	-	
	Flamingo Road at		WBR NBU	222 (258) 12 (23)	50.3 (57.9) - (-)	D (E) - (-)	+	
10	Broward Blvd		NBL	56 (71)	- (-) 80.7 (83.9)	- (-) F (F)	1	
	Diomaia biva	NB	NBT	866 (1171)	26.3 (26.9)	C (C)	28.9 (29.4)	C (C)
			NBR	476 (490)	26.2 (24.9)	C (C)	1	
			SBU	2 (1)	- (-)	- (-)	1	
			SBL	149 (317)	77.6 (78.9)	E (E)	1 22 4 (2.5.5)	0.40
		SB	SBT	1113 (1724)	27.7 (27.3)	C (C)	33.4 (34.8)	C (C)
			SBR	32 (57)	20.8 (17.3)	C (B)	1	
							1.1. 5.1. 1.1.1.1.1	1.1.106
				Intersection			1nt. Delay (s/Veh) 44.1 (46.6)	Int. LOS D (D)

Hiatus Road AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBL	542 (621)	124.5 (135.7)	F (F)		
		EB	EBT	454 (423)	107.3 (119.5)	F (F)	107.1 (113.9)	F (F)
			EBR	117 (218)	56.7 (61.7)	E (E)	1 ` '	, ,
			WBL	0 (0)	- (-)	- (-)		
		WB	WBT	0 (0)	- (-)	- (-)	0 (0)	A (A)
			WBR	0 (0)	- (-)	- (-)	1 ` ´	, ,
44	Hiatus Road at		NBL	0 (0)	- (-)	- (-)		
11	EB SR-84	NB	NBT	490 (347)	67.2 (63.7)	E (E)	59.4 (53.4)	E (D)
			NBR	440 (244)	50.7 (38.8)	D (D)	1	
			SBL	837 (525)	233.5 (68.8)	F (E)		
		SB	SBT	547 (917)	1.1 (5.9)	A (A)	141.6 (28.8)	F (C)
			SBR	0 (0)	- (-)	- (-)	1	
							Int. Delay (s/Veh)	Int. LOS
				Intersection	1		108.6 (63.9)	F (E)
			EBL	0 (0)	- (-)	- (-)		
		EB	EBT	0 (0)	- (-)	- (-)	0 (0)	A (A)
			EBR	0 (0)	- (-)	- (-)		
			WBL	244 (536)	56.4 (71.6)	E (E)		
		WB	WBT	61 (90)	53.6 (58.4)	D (E)	71.4 (256.3)	E (F)
			WBR	418 (753)	83.6 (416.2)	F (F)	1	
			NBU	2 (5)	- (-)	- (-)		
12	Hiatus Road at		NBL	195 (120)	15.4 (44.7)	B (D)	C C (0.7)	0 (0)
	WB SR-84	NB	NBT	835 (843)	4.6 (3.4)	A (A)	6.6 (8.7)	A (A)
			NBR	0 (0)	- (-)	- (-)	1	
			SBL	0 (0)	- (-)	- (-)		
		SB	SBT	1138 (901)	68.2 (61.5)	E (E)	175.6 (187)	F (F)
			SBR	775 (731)	333.3 (341.7)	F (F)	1	
				Intersection	1		Int. Delay (s/Veh) 108.2 (167.5)	Int. LOS F (F)
			EBU	5 (1)	- (-)	- (-)	100.2 (107.3)	. (. /
			EBL	129 (165)	46.9 (46.2)	D (D)	1	
		EB	EBT	448 (646)	59.3 (74)	E (E)	66.9 (64.2)	E (E)
			EBR	433 (273)	80.8 (52)	F (D)	1	
			WBU	1 (0)	- (-)	- (-)		
			WBL	443 (486)	241.3 (296.2)	F (F)	1	
		WB	WBT	468 (615)	43.9 (45.2)	D (D)	125.5 (142.5)	F (F)
			WBR	151 (140)	38.1 (36.8)	D (D)	1	
	Hiatus Road at		NBU	0 (1)	- (-)	- (-)		
13	Broward Blvd		NBL	241 (235)	72.1 (65.9)	E (E)	10.4/54.63	D (E)
		NB	NBT	644 (1072)	42.7 (51.7)	D (D)	48.4 (51.8)	D (D)
			NBR	368 (288)	42.9 (40.5)	D (D)	1	
			SBU	1 (0)	- (-)	- (-)		
			SBL	213 (135)	39 (56.1)	D (E)	1	D (E)
		SB	SBT	1037 (872)	57.5 (56.1)	E (E)	53.1 (54.9)	D (D)
			SBR	136 (110)	42.5 (44)	D (D)	1	
						. ,	Int. Delay (s/Veh)	Int. LOS
				Intersection	1		72 (77.9)	E (E)

Nob Hill Road AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBL	45 (14)	287.5 (69.8)	F (E)		
		EB	EBT	7 (0)	49.5 (66.8)	D (E)	245.3 (68.9)	F (E)
			EBR	3 (6)	- (-)	- (-)		
			WBL	85 (18)	54.7 (68.9)	D (E)		
		WB	WBT	0 (0)	53.9 (66.9)	D (E)	54.1 (67.5)	D (E)
			WBR	234 (47)	- (-)	- (-)		
			NBU	1 (0)	- (-)	- (-)		
14	Nob Hill Road at	NB	NBL	19 (7)	10.4 (3.9)	B (A)	15.9 (5.8)	B (A)
	SW 13th St		NBT	932 (895)	16.5 (5.8)	B (A)		_ (, ,
			NBR	109 (9)	12 (4)	B (A)		
			SBU	44 (134)	- (-)	- (-)		
		SB	SBL	175 (40)	10.9 (2.5)	B (A)	11.6 (4.6)	B (A)
			SBT	943 (1317)	12 (4.9)	B (A)		_ (, ,
			SBR	75 (3)	8.6 (2.6)	A (A)		
				Intersection	ı		26 (7.6)	Int. LOS
			EBL	114 (143)	71.2 (47.3)	E (D)	, ,	, ,
		EB	EBT	64 (1)	34.7 (34.1)	C (C)	50.4 (41.3)	D (D)
			EBR	87 (117)	- (-)	- (-)	1	
			WBU	20 (0)	- (-)	- (-)		
		1445	WBL	13 (9)	32.8 (31.1)	C (C)	24.7.(24)	0 (0)
		WB	WBT	12 (2)	35.1 (31)	D (C)	34.7 (31)	C (C)
			WBR	132 (41)	- (-)	- (-)		
	Nah IIII Daadas		NBU	0 (14)	- (-)	- (-)		
15	Nob Hill Road at SW 101 Rd		NBL	94 (58)	14.6 (16.8)	B (B)	0.5 (0.4)	۵ (۵)
		NB	NBT	1142 (1016)		A (A)	9.5 (9.1)	A (A)
			NBR	18 (2)	5.4 (5.4)	A (A)		
			SBU	0 (45)	- (-)	- (-)		
			SBL	110 (15)	17.5 (8.4)	B (A)	1	>
		SB	SBT	1136 (1354)	9.2 (10.4)	A (B)	9.9 (10.2)	A (B)
			SBR	3 (17)	5.4 (5.5)	A (A)		
			-	Intersection	•		Int. Delay (s/Veh)	Int. LOS
			EDI	262 (254)	104 9 (05)	E /E\	16.1 (14)	B (B)
		EB	EBL	362 (254)	104.8 (95)	F (F)	05 0 (03 5)	E (E)
		_ EB	EBT	422 (482)	97.4 (93.7)	F (F)	95.9 (92.5)	F (F)
			EBR	279 (273)	85 (88.2)	F (F)		
		WB	WBL	0 (0)	- (-)	- (-)	0 (0)	۸ (۸)
		WB	WBT	0 (0)	- (-)	- (-)	0 (0)	A (A)
	Nob Hill Road at		WBR	0 (0)	- (-)	- (-)		
16	EB SR-84	ND	NBL	0 (0)	- (-)	- (-)	252 1 /140 2\	E (E)
	ED 3K-84	NB	NBT	687 (696)	78.2 (78.9)	E (E)	252.1 (148.3)	F (F)
			NBR	703 (549)	422.1 (236.4)	F (F)	+	
		SB	SBL	726 (638)	6.5 (12)	A (B)	C (0.7)	۸ (۸)
		ЭБ	SBT	972 (1158)	5.6 (8.4)	A (A)	6 (9.7)	A (A)
			SBR	0 (0)	- (-)	- (-)	Int. Delay (s/Veh)	Int. LOS
				Intersection			113.5 (74.1)	F (E)
			EBL	0 (0)	- (-)	- (-)	_	
		EB	EBT	0 (0)	- (-)	- (-)	0 (0)	A (A)
			EBR	0 (0)	- (-)	- (-)		
			WBL	460 (588)	92.4 (177.2)	F (F)		
		WB	WBT	45 (100)	85.2 (127.9)	F (F)	84.5 (132.4)	F (F)
			WBR	475 (877)	74.4 (99.6)	E (F)		
	Nob Hill Road at		NBU	2 (2)	- (-)	- (-)		
17	WB SR-84	NB	NBL	315 (274)	8.2 (7.2)	A (A)	5.9 (6.1)	A (A)
	WD 3U-04	IND	NBT	733 (674)	4.9 (5.7)	A (A)	J.9 (0.1)	A (A)
		<u></u>	NBR	0 (0)	- (-)	- (-)		
			SBL	0 (0)	- (-)	- (-)		
		SB	SBT	1237 (1206)	97 (96.1)	F (F)	94.6 (94.4)	F (F)
			SBR	231 (308)	81.6 (87.5)	F (F)]	
				Intersection			Int. Delay (s/Veh)	Int. LOS
				mensection	Ì		63.9 (86.8)	E (F)

Nob Hill Road AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS	
			EBU	1 (3)	- (-)	- (-)			
		EB	EBL	97 (73)	51.1 (48.6)	D (D)	45.0 (46.2)	D (D)	
		ED	EBT	- (-)	- (-)	- (-)	45.8 (46.2)	D (D)	
			EBR	156 (99)	42.4 (44.3)	D (D)			
			WBL	- (-)	- (-)	- (-)			
		WB	WBT	- (-)	- (-)	- (-)	- (-)	- (-)	
	Nob Hill Road at		WBR	- (-)	- (-)	- (-)			
18	Hawks View Blvd		NBL	95 (101)	11.6 (8.3)	B (A)			
	Hawks view blvd	NB	NBT	1113 (1446)	5.5 (5.2)	A (A)	6 (5.4)	A (A)	
			NBR	- (-)	- (-)	- (-)			
			SBU	3 (1)	7.6 (6.3)	A (A)			
		SB	SBT	1312 (1411)	15 (11.9)	B (B)	14.6 (11.4)	B (B)	
			SBR	79 (135)	7.9 (6.8)	A (A)			
				Intersection			Int. Delay (s/Veh)	Int. LOS	
				intersection			15.1 (10.7)	B (B)	
			EBU	0 (1)	- (-)	- (-)			
		EB	EBL	62 (131)	35.2 (54.2)	D (D)	45.6 (53.7)	D (D)	
			EBT	782 (800)	47.4 (54.9)	D (D)	45.0 (55.7)		
			EBR	124 (100)	39.9 (44)	D (D)			
			WBL	272 (506)	94.1 (154.7)	F (F)			
		WB	WBT	697 (1006)	44.3 (70.2)	D (E)	56 (90.7)	E (F)	
			WBR	101 (232)	34.2 (39.8)	C (D)			
	Nob Hill Road at		NBU	0 (2)	- (-)	- (-)			
19	Broward Blvd	NB	NBL	140 (118)	55.5 (47.1)	E (D)	38.9 (69.5)	D (E)	
	Diottala Dita		NBT	621 (1134)	44.8 (83.3)	D (F)	30.3 (03.3)	J (-)	
			NBR	452 (266)	25.7 (20.8)	C (C)			
			SBU	0 (21)	- (-)	- (-)			
		SB	SBL	183 (165)	76.3 (76.3)	E (E)	61.4 (58.3)	E (E)	
		SB	SBT	998 (939)	61 (57.2)	E (E)	02 (00.0)	- (L)	
			SBR	95 (101)	35.8 (34.9)	D (C)			
				Int. Delay (s/Veh)	Int. LOS				
				50.7 (70.3)	D (E)				

Pine Island Road AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBU	0 (1)	- (-)	- (-)		
		EB	EBL	262 (123)	69.1 (57)	E (E)	75.3 (64.2)	E (E)
			EBT	113 (77)	82.5 (68.9)	F (E)	75.5 (04.2)	L (L)
			EBR	114 (109)	- (-)	- (-)		
			WBL	110 (225)	57.9 (55.8)	E (E)		- (-)
		WB	WBT	20 (125)	62.1 (82.1)	E (F)	59.8 (70.6)	E (E)
			WBR	67 (163)	- (-)	- (-)		
20	Pine Island Road at		NBU	2 (1)	- (-)	- (-)	-	
20	Nova Drive	NB	NBL NBT	25 (138) 1280 (1000)	22.9 (44) 49.6 (48.9)	C (D) D (D)	46.5 (46)	D (D)
			NBR	163 (196)	26.6 (32.3)	C (C)	-	
			SBU	3 (4)	- (-)	- (-)		
			SBL	213 (228)	64.6 (45.9)	E (D)	╡	
		SB	SBT	1109 (1286)		C (D)	30.4 (39.4)	C (D)
			SBR	59 (165)	15.7 (24.2)	B (C)	1	
			3511		<u> </u>	<i>B</i> (<i>c</i>)	Int. Delay (s/Veh)	Int. LOS
				Intersection			45.3 (48)	D (D)
			EBU	1 (0)	- (-)	- (-)		(' '
			EBL	214 (107)	48.2 (40.6)	D (D)	45 4 (20.0)	D (D)
		EB	EBT	- (-)	- (-)	- (-)	45.4 (38.9)	D (D)
			EBR	42 (45)	30.5 (35)	C (D)	1	
			WBL	- (-)	- (-)	- (-)		
		WB	WBT	- (-)	- (-)	- (-)	- (-)	- (-)
			WBR	- (-)	- (-)	- (-)		
21	Pine Island Road at Orange Grove Dr		NBU	0 (4)	- (-)	- (-)		
21		NB	NBL	19 (64)	7.8 (6.4)	A (A)	13 (8.9)	B (A)
			NBT	1596 (1282)	13.1 (9.1)	B (A)	15 (8.5)	D (A)
			NBR	- (-)	- (-)	- (-)		
			SBU	52 (88)	8.1 (5.6)	A (A)		
		SB	SBT	1342 (1664)		B (A)	10.3 (9.3)	B (A)
			SBR 90 (198) 7.6 (6.9) A (A)					
				Intersection			Int. Delay (s/Veh)	Int. LOS
				750 (650)	444 5 (400 6)	E (E)	14.5 (10.6)	B (B)
			EBL	750 (652)	141.5 (123.6)	F (F)	120 7 (126 7)	E (E)
		EB	EBT	409 (438)	123.6 (106.6) 126.5 (188.3)	F (F)	128.7 (136.7)	F (F)
			EBR WBL	458 (516) 0 (0)	` ′	F (F)		
		WB	WBT	0 (0)	- (-) - (-)	- (-) - (-)	0 (0)	A (A)
		""	WBR	0 (0)	- (-)	- (-)	-	7 (7 (7 (7
			NBL	0 (0)	- (-)	- (-)		
22	Pine Island Road at	NB	NBT	1375 (1185)		F (F)	145.9 (84.1)	F (F)
	EB SR-84		NBR	487 (278)	217.7 (72.5)	F (E)		- 4-7
			SBU	0 (2)	- (-)	- (-)		
		65	SBL	713 (402)	2.3 (5.2)	A (A)	40/64	A / c \
		SB	SBT	1026 (1344)		A (A)	4.9 (6.1)	A (A)
			SBR	0 (0)	- (-)	- (-)		
				Intersection			Int. Delay (s/Veh)	Int. LOS
			Ī				94.4 (73.8)	F (E)
			EBL	0 (0)	- (-)	- (-)		
		EB	EBT	0 (0)	- (-)	- (-)	0 (0)	A (A)
			EBR	0 (0)	- (-)	- (-)		
			WBL	228 (601)	89 (422.8)	F (F)	444.0 (004.7)	w (e)
		WB	WBT	309 (582)	126.7 (327.7)	F (F)	111.3 (321.5)	F (F)
			WBR	669 (715)	94.3 (194.6)	F (F)		
33	Pine Island Road at		NBU	0 (4)	- (-)	- (-)	4	
23	WB SR-84	NB	NBL	491 (376)	8.6 (8.2)	A (A)	12.1 (9.6)	B (A)
			NBT	1634 (1459)		B (A)	4	
			NBR SBL	0 (0)	- (-)	- (-)		
		1	I SRF	0 (0)	- (-)	- (-)		
		CD			122 0 /02 51	C /C\	1/12 7 /02 7\	E /E\
		SB	SBT	1511 (1143)		F (F)	143.7 (93.7)	F (F)
		SB			192.9 (112.2)	F (F) F (F)	143.7 (93.7) Int. Delay (s/Veh)	F (F)

Pine Island Road AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBL	67 (29)	42.7 (25.5)	D (C)		
		EB	EBT	1 (1)	36.6 (25.1)	D (C)	39.5 (25.2)	D (C)
			EBR	71 (47)	- (-)	- (-)		
			WBL	49 (272)	45.8 (65)	D (E)		
		WB	WBT	2 (24)	37.2 (25.6)	D (C)	43.1 (59.2)	D (E)
			WBR	20 (23)	- (-)	- (-)		
			NBU	0 (3)	- (-)	- (-)		
	Pine Island Road at		NBL	24 (57)	6.4 (10.9)	A (B)	4.7.(42.4)	A (D)
24	New River Canal Rd	NB	NBT	2138 (2062)	4.8 (12.6)	A (B)	4.7 (12.4)	A (B)
			NBR	142 (52)	2.6 (6.7)	A (A)		
			SBU	0 (1)	- (-)	- (-)		
		65	SBL	13 (8)	5.8 (12)	A (B)	0 (4.6.2)	A (D)
		SB	SBT	2033 (1448)	8 (16.3)	A (B)	8 (16.3)	A (B)
			SBR	23 (30)	- (-)	- (-)		
								Int. LOS
				Intersection			8.2 (18.1)	A (B)
			EBL	- (-)	- (-)	- (-)	, ,	
		EB	EBT	- (-)	- (-)	- (-)	- (-)	- (-)
			EBR	- (-)	- (-)	- (-)		
			WBU	0 (1)	- (-)	- (-)		
			WBL	379 (355)	70.5 (54.9)	E (D)	54.4.44.5\	D (D)
		WB	WBT	- (-)	- (-)	- (-)	51.1 (44.5)	D (D)
	Piccial and Piccial		WBR	285 (401)	25.3 (35.3)	C (D)		
25	Pine Island Road at		NBL	- (-)	- (-)	- (-)		
	Peters Rd	NB	NBT	1676 (1778)	46.9 (41.9)	D (D)	45 (39.9)	D (D)
			NBR	549 (448)	39.1 (32)	D (C)		
			SBL	520 (543)	49.4 (84.8)	D (F)		
		SB	SBT	1690 (1139)	10.9 (6.8)	B (A)	19.9 (32)	B (C)
			SBR	- (-)	- (-)	- (-)		
				Int. Delay (s/Veh)	Int. LOS			
				Intersection			35.1 (37.9)	D (D)
			EBL	55 (33)	32.2 (101.6)	C (F)		
		EB	EBT	29 (23)	31.3 (51.1)	C (D)	31.6 (66.1)	C (E)
			EBR	123 (55)	- (-)	- (-)		
			WBL	62 (237)	40.8 (178.1)	D (F)		
		WB	WBT	11 (37)	30.6 (60.2)	C (E)	35.8 (114.8)	D (F)
			WBR	49 (238)	- (-)	- (-)		
			NBU	18 (22)	- (-)	- (-)		
26	Pine Island Road at	NB	NBL	64 (102)	45.5 (83.3)	D (F)	19 (33.7)	B (C)
20	SW 6th Ct		NBT	1620 (2018)	18.4 (31.3)	B (C)	15 (55.7)	D (C)
			NBR	260 (150)	14.1 (25.1)	B (C)		
		1	SBU	6 (8)	- (-)	- (-)	_	
		SB	SBL	159 (111)	38.4 (90.5)	D (F)	17.4 (26.7)	B (C)
			SBT	2008 (1286)	15.7 (21)	B (C)	17.4 (20.7)	B (C)
			SBR	24 (50)	- (-)	- (-)		
				Intersection			Int. Delay (s/Veh)	Int. LOS
					19.4 (42.9)	B (D)		

Peters Road AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBU	4 (6)	- (-)	- (-)		
		EB	EBL	75 (44)	6.5 (21.3)	A (C)	10.1 (32.4)	B (C)
		LD	EBT	848 (947)	10.7 (33.4)	B (C)	10.1 (32.4)	B (C)
			EBR	97 (47)	8 (23.3)	A (C)		
		WB	WBU	1 (40)	- (-)	- (-)		B (C)
			WBL	19 (24)	8.2 (23.6)	A (C)	10.9 (26.7)	
		\ \vec{vv}	WBT	627 (572)	11.2 (27.7)	B (C)	10.5 (20.7)	
27	Peters Road at		WBR	276 (109)	10.4 (23)	B (C)		
27	SW 80th Terrance		NBL	0 (88)	- (-)	- (-)		D (E)
		NB	NBT	1 (17)	54.5 (73)	D (E)	54.6 (56.8)	
			NBR	11 (69)	54.6 (32)	D (C)		
			SBL	127 (318)	- (-)	- (-)		
		SB	SBT	6 (9)	84.7 (125.2)	F (F)	78.8 (99.3)	E (F)
			SBR	33 (128)	54.8 (33.1)	D (C)		
					Int. Delay (s/Veh)	Int. LOS		
				Intersection		17.5 (47)	B (D)	

EB SR-84 AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS	
			EBL	- (-)	- (-)	- (-)			
		EB	EBT	1113 (1289)	- (-)	- (-)	- (-)	- (-)	
			EBR	59 (173)	- (-)	- (-)			
			WBL	0 (0)	- (-)	- (-)			
		WB	WBT	0 (0)	- (-)	- (-)	- (-)	- (-)	
			WBR	- (-)	- (-)	- (-)			
28	EB SR-84 at		NBL	0 (0)	- (-)	- (-)		D (C)	
28	SW 81st Avenue	NB	NBT	- (-)	- (-)	- (-)	31.1 (22.4)		
			NBR	270 (116)	31.1 (22.4)	D (C)			
			SBL	- (-)	- (-)	- (-)			
		SB	SBT	- (-)	- (-)	- (-)	- (-)	- (-)	
			SBR	- (-)	- (-)	- (-)			
					Int. Delay (s/Veh)	Int. LOS			
					31.1 (22.4)	D (C)			

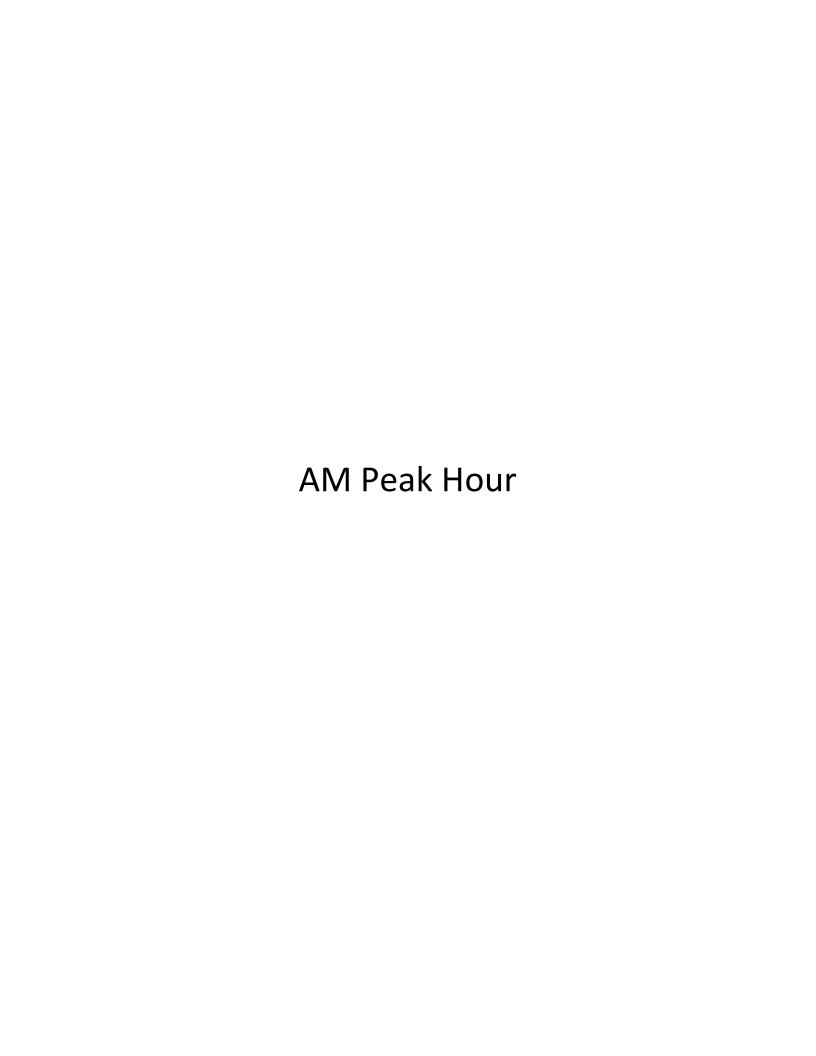
University Drive AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
		- FD	EBL	115 (144)	45.6 (42.9)	D (D)	72.2 (40.2)	E (D)
		EB	EBT	341 (132)	84.8 (53.2)	F (D)	72.2 (48.2)	E (D)
			EBR	62 (63)	51.8 (49.8)	D (D)		
			WBL	111 (141)	54.4 (44.4)	D (D)	-	
		WB	WBT	43 (151)	52.8 (54.7)	D (D)	53.5 (93.4)	D (F)
	University Drive at		WBR	245 (569)	53.2 (115.8)	D (F)		
29	SW 30 th St		NBL	32 (127)	77.5 (85.1)	E (F)	42.4 (42.7)	D (D)
		NB	NBT	1600 (2017)	43.2 (42.1)	D (D)	42.1 (43.7)	D (D)
			NBR SBL	268 (105) 496 (209)	31.6 (24.2) 64.5 (77.1)	C (C) E (E)		
		SB	SBT	1735 (1665)	25.4 (33)	C (C)	34.4 (37.3)	C (D)
			SBR	89 (145)	42.4 (29.9)	D (C)	31.1 (37.3)	C (D)
			JUIN	•		<i>D</i> (<i>C</i>)	Int. Delay (s/Veh)	Int. LOS
			7	Intersection			42.6 (49.4)	D (D)
			EBL	205 (200)	85.7 (83.9)	F (F)		- (-)
		EB	EBT	130 (192)	74.1 (67.9)	E (E)	75.9 (71.2)	E (E)
			EBR	154 (109)	64.3 (53.5)	E (D)		
			WBU WBL	9 (40)	- (-) 122 (415 4)	- (-) E (E)	-	
		WB	WBT	118 (213) 65 (157)	123 (415.4) 72.8 (79.3)	F (F) E (E)	77.7 (154.5)	E (F)
			WBR	328 (585)	61.2 (62.2)	E (E)	1	
			NBU	9 (12)	- (-)	- (-)		
30	University Drive at		NBL	49 (95)	92.7 (81.9)	F (F)	1	
	Nova Dr	NB	NBT	1773 (2389)	21.2 (26.5)	C (C)	24.1 (29)	C (C)
			NBR	129 (202)	32.7 (30.6)	C (C)		
			SBU	7 (3)	- (-)	- (-)		
		SB	SBL	220 (215)	104.6 (76.2)	F (E)	12 4 (22 2)	D (C)
) 3B	SBT	2101 (1714)	4.1 (18.1)	A (B)	13.4 (23.2)	B (C)
			SBR	83 (261)	0.5 (12.4)	A (B)		
				Intersection			Int. Delay (s/Veh)	
			EBL			- (-)	Int. Delay (s/Veh) 29.2 (49.9)	C (D)
		EB		Intersection				
		EB	EBL EBT EBR	87 (62) 9 (17) 21 (21)	- (-) 74.1 (74.5) - (-)	- (-) E (E) - (-)	29.2 (49.9)	C (D)
			EBL EBT EBR WBL	87 (62) 9 (17) 21 (21) 57 (309)	- (-) 74.1 (74.5) - (-) 74.7 (55.4)	- (-) E (E) - (-) E (E)	29.2 (49.9) 74.1 (74.5)	C (D)
		EB WB	EBL EBT EBR WBL WBT	87 (62) 9 (17) 21 (21) 57 (309) 3 (11)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1)	- (-) E (E) - (-) E (E) E (D)	29.2 (49.9)	C (D)
			EBL EBT EBR WBL WBT WBR	87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9)	- (-) E (E) - (-) E (E) E (D)	29.2 (49.9) 74.1 (74.5)	C (D)
	Haring with a Daine and		EBL EBT EBR WBL WBT WBR NBU	87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-)	- (-) E (E) - (-) E (E) E (D) E (D)	29.2 (49.9) 74.1 (74.5)	C (D)
31	University Drive at		EBL EBT EBR WBL WBT WBR NBU NBL	87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7)	- (-) E (E) - (-) E (D) E (D) - (-) F (F)	29.2 (49.9) 74.1 (74.5)	C (D)
31	University Drive at SW 23rd St	WB	EBL EBT EBR WBL WBT WBR NBU NBL	87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2)	C (D) E (E) E (D)
31	-	WB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR	87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2)	C (D) E (E) E (D)
31	-	WB NB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR	87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B) - (-)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1)	C (D) E (E) E (D) A (E)
31	-	WB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL	87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2)	E (E)
31	-	WB NB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR	87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B) - (-)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1)	E (E) E (D) A (E)
31	-	WB NB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL	87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh)	C (D) E (E) E (D) A (E) C (C)
31	-	WB NB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1)	C (D) E (E) E (D) A (E)
31	-	WB NB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh)	C (D) E (E) E (D) A (E) C (C)
31	-	WB NB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7)	C (D) E (E) E (D) A (E) C (C) Int. LOS B (D)
31	-	WB NB SB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E) E (E) E (E)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7) 77.1 (74.3)	C (D) E (E) E (D) A (E) C (C) Int. LOS B (D) E (E)
31	-	WB NB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19) 8 (140) 26 (157) 0 (29)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4) 74.7 (74.6)	- (-) E (E) - (-) E (E) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E) E (E) E (E) E (E)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7)	C (D) E (E) E (D) A (E) C (C) Int. LOS B (D)
31	-	WB NB SB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR EBL EBT EBR WBL WBT WBR	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19) 8 (140) 26 (157) 0 (29) 98 (416)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4) 74.7 (74.6) 61 (49.1)	- (-) E (E) - (-) E (E) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E) E (E) E (E) E (E) E (E)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7) 77.1 (74.3)	C (D) E (E) E (D) A (E) C (C) Int. LOS B (D) E (E)
	-	WB NB SB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR EBL EBT EBR WBL WBT WBR NBU	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19) 8 (140) 26 (157) 0 (29) 98 (416) 24 (33)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4) 74.7 (74.6) 61 (49.1) - (-)	- (-) E (E) - (-) E (E) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E) E (E) E (E) E (E) - (-)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7) 77.1 (74.3)	C (D) E (E) E (D) A (E) C (C) Int. LO: B (D) E (E)
31	SW 23rd St	WB NB SB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR EBL EBT EBR WBL WBT WBR NBU NBU	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19) 8 (140) 26 (157) 0 (29) 98 (416) 24 (33) 27 (90)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4) 74.7 (74.6) 61 (49.1) - (-) 83.9 (59)	- (-) E (E) - (-) E (E) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E) E (E) E (E) E (E) F (F) E (E) F (F)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7) 77.1 (74.3)	C (D) E (E) E (D) A (E) C (C) Int. LO: B (D) E (E)
	SW 23rd St University Drive at	WB NB SB EB WB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR EBL EBT EBR WBL WBT WBR NBU NBL NBT	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19) 8 (140) 26 (157) 0 (29) 98 (416) 24 (33) 27 (90) 1795 (2098)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4) 74.7 (74.6) 61 (49.1) - (-) 83.9 (59) 2.3 (39.6)	- (-) E (E) - (-) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E) E (E) E (E) E (E) E (E) A (D) - (-) F (E) A (D)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7) 77.1 (74.3) 63.9 (57.1)	C (D) E (E) E (D) A (E) C (C) Int. LO: B (D) E (E)
	SW 23rd St University Drive at	WB NB SB EB WB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR EBL EBT EBR WBL WBT WBR NBU NBU NBL NBT NBR	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19) 8 (140) 26 (157) 0 (29) 98 (416) 24 (33) 27 (90) 1795 (2098) 34 (76)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4) 74.7 (74.6) 61 (49.1) - (-) 83.9 (59) 2.3 (39.6) - (-)	- (-) E (E) - (-) E (E) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E) E (E) E (E) E (E) E (E) - (-) F (E) A (D) - (-)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7) 77.1 (74.3) 63.9 (57.1)	C (D) E (E) E (D) A (E) C (C) Int. LO: B (D) E (E)
	SW 23rd St University Drive at	WB NB SB EB WB NB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR EBL EBT EBR WBL WBT WBR NBU NBU NBL NBT NBR SBU SBL SBT SBR	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19) 8 (140) 26 (157) 0 (29) 98 (416) 24 (33) 27 (90) 1795 (2098) 34 (76) 88 (335)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4) 74.7 (74.6) 61 (49.1) - (-) 83.9 (59) 2.3 (39.6) - (-) 59 (74.7)	- (-) E (E) - (-) E (E) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E) E (E) E (E) E (E) E (E) E (E) - (-) F (E) A (D) - (-) E (E)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7) 77.1 (74.3) 63.9 (57.1) 4.5 (40.7)	C (D) E (E) E (D) A (E) C (C) Int. LO: B (D) E (E) A (D)
	SW 23rd St University Drive at	WB NB SB EB WB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBT SBR	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19) 8 (140) 26 (157) 0 (29) 98 (416) 24 (33) 27 (90) 1795 (2098) 34 (76) 88 (335) 2262 (2005)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4) 74.7 (74.6) 61 (49.1) - (-) 83.9 (59) 2.3 (39.6) - (-) 59 (74.7) 10.5 (28.9)	- (-) E (E) - (-) E (E) E (D) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7) 77.1 (74.3) 63.9 (57.1)	C (D) E (E) E (D) A (E) C (C) Int. LOS B (D) E (E)
	SW 23rd St University Drive at	WB NB SB EB WB NB	EBL EBT EBR WBL WBT WBR NBU NBL NBT NBR SBU SBL SBT SBR EBL EBT EBR WBL WBT WBR NBU NBU NBL NBT NBR SBU SBL SBT SBR	Intersection 87 (62) 9 (17) 21 (21) 57 (309) 3 (11) 149 (404) 2 (2) 31 (46) 2168 (2765) 112 (364) 55 (87) 86 (228) 2330 (1958) 44 (37) Intersection 13 (183) 2 (19) 8 (140) 26 (157) 0 (29) 98 (416) 24 (33) 27 (90) 1795 (2098) 34 (76) 88 (335)	- (-) 74.1 (74.5) - (-) 74.7 (55.4) 71.5 (53.1) 70.9 (47.9) - (-) 89.9 (107.7) 5.6 (64.6) 2 (11.1) - (-) 81.8 (91.2) 21.8 (22.8) 9.2 (21.6) 77.4 (79.6) 77.6 (78.8) 76.3 (67.3) 74.6 (75.4) 74.7 (74.6) 61 (49.1) - (-) 83.9 (59) 2.3 (39.6) - (-) 59 (74.7) 10.5 (28.9) 6 (15.1)	- (-) E (E) - (-) E (E) E (D) - (-) F (F) A (E) A (B) - (-) F (F) C (C) A (C) E (E) E (E) E (E) E (E) E (E) E (E) - (-) F (E) A (D) - (-) E (E)	29.2 (49.9) 74.1 (74.5) 72.1 (52.2) 6.7 (59.1) 24.9 (32.1) Int. Delay (s/Veh) 19.8 (48.7) 77.1 (74.3) 63.9 (57.1) 4.5 (40.7)	C (D) E (E) E (D) A (E) C (C) Int. LOS B (D) E (E) A (D)

University Drive AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
		ЕВ	EBL EBT	349 (375) 350 (350)	53.1 (54.9) 56 (55.2)	D (D) E (E)	53.7 (53.5)	D (D)
		WB	EBR WBL WBT	634 (614) 0 (0) 0 (0)	49.2 (48.1) - (-) - (-)	D (D) - (-) - (-)	0 (0)	A (A)
33	University Drive at EB SR-84	NB	WBR NBL NBT	0 (0) 0 (0) 1214 (1911)	- (-) - (-) 37.6 (49.6)	- (-) - (-) D (D)	24.2 (35.4)	C (D)
	25 51. 64	CD.	NBR SBU SBL	694 (787) 1 (1) 253 (258)	0.8 (0.8) - (-) 80.6 (96.5)	A (A) - (-) F (F)	20.5 (24.4)	C (C)
		SB	SBT SBR	1854 (1834) 0 (0)	21.3 (10.8)	C (B) - (-)	28.5 (21.4) Int. Delay (s/Veh)	C (C)
				Intersection			33.2 (34.6)	C (C)
		EB	EBL EBT	0 (0) 0 (0)	- (-) - (-)	- (-) - (-)	0 (0)	A (A)
			EBR WBL	0 (0)	- (-) 116.1 (60.1)	- (-) F (E)	- (-)	- (')
	WB	WBT WBR	48 (261) 1135 (734)	113.2 (58.3) 145.7 (52.5)	F (E) F (D)	123.1 (57.3)	F (E)	
34	University Drive at WB SR-84	NB	NBU NBL NBT NBR	4 (3) 91 (188) 1469 (2096) 0 (0)	- (-) 52 (41.4) 8.6 (6.5) - (-)	- (-) D (D) A (A) - (-)	11.2 (9.4)	B (A)
		SB	SBL SBT SBR	0 (0) 1273 (1606) 282 (295)	- (-)	- (-) - (-) C (C) - (-)	27.1 (29.5)	C (C)
			<u> </u>	-		()	Int. Delay (s/Veh)	Int. LOS
				Intersection			59.9 (28.7)	E (C)
			EBU EBL	7 (4) 144 (166)	- (-) 62.5 (95.3)	- (-) E (F)		
		EB	EBT EBR	474 (401) 362 (768)	79.1 (47.1) 79.1 (57.5)	E (D) E (E)	76.6 (59.2)	E (E)
		WB	WBU WBL WBT	1 (0) 651 (559) 573 (436)	- (-) 107.3 (127.3) 45.1 (47.8)	- (-) F (F) D (D)	69.7 (81.6)	E (F)
35	University Drive at Peters Rd	NB	NBL NBT NBR	314 (297) 266 (278) 1537 (1968) 540 (582)	36.4 (45.2) 85.8 (122.7) 50.3 (40.6) 61.7 (22.2)	D (D) F (F) D (D) E (C)	57 (44.9)	E (D)
		SB	SBU SBL SBT	5 (1) 238 (202) 1714 (1915)	- (-) 87.8 (97.7) 69 (36.3)	- (-) F (F) E (D)	69.8 (41.9)	E (D)
		SBR 77 (48) 30.9 (27.4) C (C (C)	Int. Delay (s/Veh) 66.4 (52.8)	Int. LOS E (D)

University Drive AM (PM)


Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBL	6 (176)	76.5 (75.5)	E (E)		
		EB	EBT	- (-)	- (-)	- (-)	76.3 (71.8)	E (E)
			EBR	25 (233)	76.2 (69)	E (E)		
			WBL	- (-)	- (-)	- (-)		
		WB	WBT	- (-)	- (-)	- (-)	- (-)	- (-)
			WBR	- (-)	- (-)	- (-)		
36	University Drive at		NBL	39 (235)	6.1 (26.3)	A (C)		
30	The Fountains	NB	NBT	1882 (2098)	3.6 (10)	A (A)	3.7 (11.6)	A (B)
			NBR	- (-)	- (-)	- (-)		
			SBL	- (-)	- (-)	- (-)		
		SB	SBT	2098 (1879)	1.6 (1.6)	A (A)	1.6 (1.5)	A (A)
			SBR	37 (141)	1.1 (0.2)	A (A)		
					Int. Delay (s/Veh)	Int. LOS		
				Intersection			3.1 (12.5)	A (B)
			EBL	50 (169)	- (-)	- (-)		
		EB	EBT	1 (0)	90.5 (98.8)	F (F)	81.8 (79)	F (E)
			EBR	40 (195)	70.9 (61.8)	E (E)		
			WBL	8 (37)	80.3 (77.2)	F (E)		
		WB	WBT	2 (9)	77.8 (74.4)	E (E)	79.8 (76.4)	E (E)
			WBR	0 (5)	- (-)	- (-)		
			NBU	1 (5)	- (-)	- (-)		
37	University Drive at	NB	NBL	38 (152)	70.8 (86.2)	E (F)	22.1 (34.2)	C (C)
3/	Federated Rd	"	NBT	1846 (2105)	21.1 (30.4)	C (C)	22.1 (34.2)	C (C)
			NBR	3 (12)	- (-)	- (-)		
			SBU	0 (11)	- (-)	- (-)		
		SB	SBL	0 (4)	- (103.4)	- (F)	9.1 (17)	A (B)
			SBT	2122 (1920)	9.2 (16.5)	A (B)	J.1 (1/)	7 (D)
			SBR	86 (91)	6.1 (13.9)	A (B)		
		Intersection					Int. Delay (s/Veh)	Int. LOS
							16.7 (30.7)	B (C)

Davie Road AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
		EB	EBU EBL	5 (5) 126 (192)	- (-) 57.8 (53.9)	- (-) E (D)	65.8 (71.1)	E (E)
			EBT EBR	37 (70) 149 (183)	71.4 (84.5)	E (F) - (-)	-	_ (_/
		WB	WBU WBL WBT	1 (0) 78 (73) 79 (76)	- (-) 63.9 (61.9) 77.5 (69.1)	- (-) E (E) E (E)	- 70 (65.7)	E (E)
38	Davie Road at Nova Dr		WBR NBL	163 (94) 188 (28)	69.3 (65.8) 13.7 (15.8)	E (E) B (B)		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	NB	NBT NBR	924 (827) 66 (78)	16.4 (23.5) 11.6 (17)	B (C)	15.7 (22.8)	B (C)
		SB	SBU SBL SBT	28 (22) 77 (143) 954 (1045)	- (-) 19.5 (27) 28.1 (35)	- (-) B (C) C (C)	31.3 (41)	C (D)
			SBR	456 (474) Intersection	40.8 (59.2)	D (E)	Int. Delay (s/Veh)	Int. LOS
			- FDI	0 (11)	()	()	32.6 (41.7)	C (D)
		ЕВ	EBL EBT EBR	0 (11) 0 (1) 1 (8)	- (-) 55.6 (57) - (-)	- (-) E (E) - (-)	55.6 (57)	E (E)
		WB	WBL WBT	155 (169) 0 (1)	74.9 (92.2) - (62.2)	E (F) - (E)	86.3 (73.8)	F (E)
	Davie Road at		WBR NBU	334 (267) 41 (27)	91.6 (-)	F (-) - (-)		
39	Reese Rd	NB	NBL NBT NBR	6 (0) 1199 (992) 59 (116)	8 (8.2) 11.4 (11.8) 2.9 (6.2)	A (A) B (B) A (A)	10.9 (11.1)	B (B)
		SB	SBU SBL	4 (2) 223 (330)	- (-) 85.6 (86.2)	- (-) F (F)	21.7 (25.6)	C (C)
			SBT SBR	1397 (1480) 4 (3)	11.4 (12.1) - (-)	B (B) - (-)	Int. Delay (s/Veh)	Int. LOS
				Intersection			27 (27.2)	C (C)
		ЕВ	EBL EBT	54 (190) 285 (420)	- (-) 218 (756.2)	- (-) F (F)	174.5 (658.4)	F (F)
		WB	EBR WBL WBT	607 (654) 0 (0) 0 (0)	82.5 (440.7) - (-) - (-)	F (F) - (-) - (-)	0 (0)	A (A)
40	Davie Road at		WBR NBL	0 (0)	- (-) - (-)	- (-) - (-)		()
70	EB SR-84	NB	NBT NBR	603 (562) 933 (710)	334.5 (245.8) 37.8 (35.3)	F (F)	240.9 (180)	F (F)
		SB	SBL SBT SBR	32 (39) 1020 (1161) 0 (0)	14.2 (19.9) 0 (0.1) - (-)	B (B) A (A) - (-)	0.5 (0.8)	A (A)
				•		()	Int. Delay (s/Veh)	Int. LOS
				Intersection			151 (293.8)	F (F)
		ЕВ	EBL EBT EBR	- (-) O (0) O (0)	- (-) - (-) - (-)	- (-) - (-) - (-)	0 (0)	A (A)
		WB	WBL WBT	1052 (1200) 501 (617)	53.1 (72.4) 46.2 (60.7)	D (E)	48.6 (64.6)	D (E)
41	Davie Road at WB SR-84	NB	WBR NBL NBT	- (-) 657 (752) - (-)	- (-) 8.6 (14.7) - (-)	- (-) A (B) - (-)	8.6 (14.7)	A (B)
		65	NBR SBL	0 (0) - (-)	- (-) - (-)	- (-) - (-)		
		SB	SBT SBR	- (-) - (-) Intersection	- (-) - (-)	- (-) - (-)	- (-) Int. Delay (s/Veh)	- (-)
					36.4 (48.1)	D (D)		

SR 7/US 441 AM (PM)

Study Intersection Number	Study Intersection Location	Approach	Movement	Volume (vph)	Delay (s/veh)	LOS	Approach Delay (s/Veh)	Approach LOS
			EBU	0 (1)	- (-)	- (-)		
		EB	EBL	323 (494)	69.6 (209.4)	E (F)	64.7 (185.7)	E (F)
		EB	EBT	- (-)	- (-)	- (-)	04.7 (165.7)	E (F)
			EBR	89 (83)	47.1 (43.9)	D (D)		
			WBL	- (-)	- (-)	- (-)		
		WB	WBT	- (-)	- (-)	- (-)	- (-)	- (-)
	SR 7/US 441 at		WBR	- (-)	- (-)	- (-)		
42	Oakes Rd		NBL	76 (64)	45.5 (23.2)	D (C)		
	Oakes Ru	NB	NBT	1990 (2379)	54.9 (36)	D (D)	54.5 (35.7)	D (D)
			NBR	- (-)	- (-)	- (-)		
			SBL	- (-)	- (-)	- (-)		
		SB	SBT	1908 (1913)	53.5 (27)	D (C)	49.6 (25.9)	D (C)
			SBR	522 (262)	35.5 (17.9)	D (B)		
					Int. Delay (s/Veh)	Int. LOS		
					53 (51.7)	D (D)		
			EBU	2 (0)	- (-)	- (-)		
		ЕВ	EBL	123 (136)	76.4 (103.8)	E (F)	165 (109.1)	F (F)
			EBT	62 (58)	197.1 (113.4)	F (F)	103 (103.1)	. (1)
			EBR	282 (110)	- (-)	- (-)		
			WBL	643 (435)	363.1 (95.9)	F (F)		
		WB	WBT	53 (96)	62.3 (93.2)	E (F)	295 (90.8)	F (F)
			WBR	59 (73)	58.4 (63.6)	E (E)		
	SR 7/US 441 at		NBU	43 (45)	- (-)	- (-)		
43	Riverland Rd/SW 20th St	NB	NBL	163 (205)	88.8 (109.5)	F (F)	41.8 (40.9)	D (D)
	miteriana najovi zom st	""	NBT	1659 (1958)	44.7 (41.8)	D (D)	11.0 (10.5)	5 (5)
			NBR	438 (588)	8.7 (8.6)	A (A)		
			SBU	6 (14)	- (-)	- (-)		
		SB	SBL	24 (37)	38.3 (40.5)	D (D)	58.2 (56.3)	E (E)
		2R	SBT	1587 (1726)	58.8 (57.7)	E (E)	30.2 (30.3)	- (-)
			SBR	21 (78)	37.6 (35.2)	D (D)		
		Intersection					Int. Delay (s/Veh)	Int. LOS
							97 (56)	F (E)

NW/SW 136th Avenue

	•	-	•	•	←	•	₹I	•	†	~	L	>
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	*	+	7	¥	ĵ»			Ä	♦ ₽			2 4
Traffic Volume (vph)	347	23	57	9	39	87	1	82	685	9	12	
Future Volume (vph)	347	23	57	9	39	87	1	82	685	9	12	24
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0			5.0	5.0			5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00			1.00	0.95			1.00
Frt	1.00	1.00	0.85	1.00	0.90			1.00	1.00			1.00
Flt Protected	0.95	1.00	1.00	0.95	1.00			0.95	1.00			0.95
Satd. Flow (prot)	1770	1863	1583	1770	1670			1770	3533			1770
Flt Permitted	0.27	1.00	1.00	0.74	1.00			0.41	1.00			0.26
Satd. Flow (perm)	505	1863	1583	1377	1670			762	3533			490
Peak-hour factor, PHF	0.83	0.83	0.83	0.80	0.80	0.80	0.79	0.79	0.79	0.79	0.85	0.85
Adj. Flow (vph)	418	28	69	11	49	109	1	104	867	11	14	28
RTOR Reduction (vph)	0	0	46	0	75	0	0	0	0	0	0	0
Lane Group Flow (vph)	418	28	23	11	83	0	0	105	878	0	0	42
Turn Type	pm+pt	NA	Perm	Perm	NA		Perm	Perm	NA		Perm	Perm
Protected Phases	7	4			8				2			
Permitted Phases	4		4	8			2	2			6	6
Actuated Green, G (s)	35.9	35.9	35.9	9.9	9.9			60.1	60.1			60.1
Effective Green, g (s)	35.9	35.9	35.9	9.9	9.9			60.1	60.1			60.1
Actuated g/C Ratio	0.34	0.34	0.34	0.09	0.09			0.56	0.56			0.56
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0			5.0	5.0			5.0
Vehicle Extension (s)	2.2	2.0	2.0	2.0	2.0			3.0	3.0			3.0
Lane Grp Cap (vph)	405	625	531	127	154			428	1984			275
v/s Ratio Prot	c0.19	0.02			0.05				c0.25			
v/s Ratio Perm	c0.15		0.01	0.01				0.14				0.09
v/c Ratio	1.03	0.04	0.04	0.09	0.54			0.25	0.44			0.15
Uniform Delay, d1	31.7	24.0	24.0	44.4	46.4			11.9	13.7			11.2
Progression Factor	1.00	1.00	1.00	1.00	1.00			1.00	1.00			1.00
Incremental Delay, d2	53.2	0.0	0.0	0.1	1.8			1.4	0.7			1.2
Delay (s)	85.0	24.0	24.0	44.5	48.2			13.3	14.4			12.4
Level of Service	F	С	С	D	D			В	В			В
Approach Delay (s)		73.5			47.9				14.3			
Approach LOS		Е			D				В			
Intersection Summary												
HCM 2000 Control Delay			27.5	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.68									
Actuated Cycle Length (s)			107.0		um of lost				17.0			
Intersection Capacity Utilization	ation		80.8%	IC	CU Level of	of Service			D			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	↓	4
Movement	SBT	SBR
Lanesconfigurations	^	7
Traffic Volume (vph)	479	275
Future Volume (vph)	479	275
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	5.0	5.0
Lane Util. Factor	0.95	1.00
Frt	1.00	0.85
Flt Protected	1.00	1.00
Satd. Flow (prot)	3539	1583
Flt Permitted	1.00	1.00
Satd. Flow (perm)	3539	1583
Peak-hour factor, PHF	0.85	0.85
Adj. Flow (vph)	564	324
RTOR Reduction (vph)	0	142
Lane Group Flow (vph)	564	182
Turn Type	NA	Perm
Protected Phases	6	7 01111
Permitted Phases		6
Actuated Green, G (s)	60.1	60.1
Effective Green, g (s)	60.1	60.1
Actuated g/C Ratio	0.56	0.56
Clearance Time (s)	5.0	5.0
Vehicle Extension (s)	3.0	3.0
Lane Grp Cap (vph)	1987	889
v/s Ratio Prot	0.16	003
v/s Ratio Perm	0.10	0.11
v/c Ratio	0.28	0.11
Uniform Delay, d1	12.2	11.6
Progression Factor	1.00	1.00
Incremental Delay, d2	0.4	0.5
Delay (s)	12.6	12.1
Level of Service	12.0 B	12.1 B
Approach Delay (s)	12.4	В
Approach LOS	12.4 B	
Appluacii LUS	D	
Intersection Summary		

	۶	-	•	•	←	•	•	†	/	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1,4	† †	7					† †	7	ሽኘ	† †	
Traffic Volume (vph)	425	627	73	0	0	0	0	452	679	303	717	0
Future Volume (vph)	425	627	73	0	0	0	0	452	679	303	717	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.5	7.5	7.5					7.0	7.0	7.0	7.0	
Lane Util. Factor	0.97	0.95	1.00					0.95	1.00	0.97	0.95	
Frt	1.00	1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	3433	3539	1583					3539	1583	3433	3539	
Flt Permitted	0.95	1.00	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	3433	3539	1583					3539	1583	3433	3539	
Peak-hour factor, PHF	0.94	0.94	0.94	0.92	0.92	0.92	0.80	0.80	0.80	0.88	0.88	0.88
Adj. Flow (vph)	452	667	78	0	0	0	0	565	849	344	815	0
RTOR Reduction (vph)	0	0	61	0	0	0	0	0	193	0	0	0
Lane Group Flow (vph)	452	667	17	0	0	0	0	565	656	344	815	0
Turn Type	Split	NA	Prot					NA	Perm	Prot	NA	
Protected Phases	4	4	4					1		23	123	
Permitted Phases									1			
Actuated Green, G (s)	18.0	18.0	18.0					16.0	16.0	27.2	50.2	
Effective Green, g (s)	18.0	18.0	18.0					16.0	16.0	27.2	50.2	
Actuated g/C Ratio	0.22	0.22	0.22					0.19	0.19	0.33	0.61	
Clearance Time (s)	7.5	7.5	7.5					7.0	7.0			
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0			
Lane Grp Cap (vph)	747	770	344					684	306	1129	2148	
v/s Ratio Prot	0.13	c0.19	0.01					0.16		0.10	c0.23	
v/s Ratio Perm									c0.41			
v/c Ratio	0.61	0.87	0.05					0.83	2.14	0.30	0.38	
Uniform Delay, d1	29.1	31.2	25.6					32.0	33.4	20.7	8.3	
Progression Factor	1.00	1.00	1.00					1.00	1.00	1.09	0.81	
Incremental Delay, d2	1.4	10.1	0.1					11.0	525.9	0.1	0.1	
Delay (s)	30.5	41.3	25.6					43.0	559.2	22.8	6.8	
Level of Service	С	D	С					D	F	С	Α	
Approach Delay (s)		36.2			0.0			352.9			11.5	
Approach LOS		D			Α			F			В	
Intersection Summary												
HCM 2000 Control Delay			147.4	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	city ratio		1.13									
Actuated Cycle Length (s)			82.7		um of lost				28.5			
Intersection Capacity Utiliza	tion		85.9%	IC	U Level o	of Service			Е			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	۶	→	•	•	•	•	₹I	4	†	/	-	ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations				Ţ	414	7		Ä	ተተተ			ተተጉ
Traffic Volume (vph)	0	0	0	386	355	889	1	76	800	0	0	633
Future Volume (vph)	0	0	0	386	355	889	1	76	800	0	0	633
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				7.5	7.5	7.5		7.0	7.0			7.0
Lane Util. Factor				0.91	0.86	0.91		1.00	0.91			0.91
Frt				1.00	0.92	0.85		1.00	1.00			0.97
Flt Protected				0.95	1.00	1.00		0.95	1.00			1.00
Satd. Flow (prot)				1610	2942	1441		1770	5085			4954
Flt Permitted				0.95	1.00	1.00		0.95	1.00			1.00
Satd. Flow (perm)				1610	2942	1441		1770	5085			4954
Peak-hour factor, PHF	0.92	0.92	0.92	0.90	0.90	0.90	0.95	0.95	0.95	0.95	0.94	0.94
Adj. Flow (vph)	0	0	0	429	394	988	1	80	842	0	0	673
RTOR Reduction (vph)	0	0	0	0	142	182	0	0	0	0	0	38
Lane Group Flow (vph)	0	0	0	386	789	312	0	81	842	0	0	775
Turn Type				Split	NA	Prot	Prot	Prot	NA			NA
Protected Phases				8	8	8	3	3	123			12
Permitted Phases												
Actuated Green, G (s)				18.0	18.0	18.0		13.2	50.2			30.0
Effective Green, g (s)				18.0	18.0	18.0		13.2	50.2			30.0
Actuated g/C Ratio				0.22	0.22	0.22		0.16	0.61			0.36
Clearance Time (s)				7.5	7.5	7.5		7.0				
Vehicle Extension (s)				3.0	3.0	3.0		2.0				
Lane Grp Cap (vph)				350	640	313		282	3086			1797
v/s Ratio Prot				0.24	c0.27	0.22		0.05	c0.17			c0.16
v/s Ratio Perm												
v/c Ratio				1.10	1.23	1.00		0.29	0.27			0.43
Uniform Delay, d1				32.4	32.4	32.3		30.6	7.7			19.9
Progression Factor				1.00	1.00	1.00		1.23	0.95			1.00
Incremental Delay, d2				78.7	118.2	50.1		0.1	0.0			0.2
Delay (s)				111.1	150.6	82.4		37.9	7.3			20.1
Level of Service				F	F	F		D	Α			С
Approach Delay (s)		0.0			123.6				10.0			20.1
Approach LOS		Α			F				Α			С
Intersection Summary												
HCM 2000 Control Delay			70.3	Н	CM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capacit	ty ratio		0.73									
Actuated Cycle Length (s)	-		82.7	S	um of lost	time (s)			28.5			
Intersection Capacity Utilization	on		85.9%		CU Level o				Е			
Analysis Period (min)			15									

c Critical Lane Group

Movement	SBR
Lane Configurations	
Traffic Volume (vph)	132
Future Volume (vph)	132
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.94
Adj. Flow (vph)	140
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

Lane Configurations			۶	•	₹I	4	†	ļ	✓	
Traffic Volume (vph) 1 132 78 14 121 1503 636 125 Future Volume (vph) 1 132 78 14 121 1503 636 125 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	Movement	EBU	EBL	EBR	NBU	NBL	NBT	SBT	SBR	
Traffic Volume (vph) 1 132 78 14 121 1503 636 125 Future Volume (vph) 1 132 78 14 121 1503 636 125 Ideal Flow (vphpl) 1900 1900 1900 1900 1900 1900 1900 190	Lane Configurations		ሕ ች	7		ă	ተተተ	ተተተ	7	
Ideal Flow (vphpl)	Traffic Volume (vph)	1			14			636		
Total Lost time (s) 6.0 6.0 5.5 5.5 5.5 5.5 Lane Util. Factor 0.97 1.00 1.00 0.91 0.91 1.00 Ft 1.00 0.85 1.00 0.91 0.91 1.00 Fit Protected 0.95 1.00 0.95 1.00 1.00 1.00 0.85 Fit Protected 0.95 1.00 0.95 1.00 1.00 1.00 1.00 Satd. Flow (prot) 3433 1583 1770 5085 5085 1583 Fit Permitted 0.95 1.00 0.35 1.00 1.00 1.00 Satd. Flow (perm) 3433 1583 656 5085 5085 1583 Peak-hour factor, PHF 0.80 0.80 0.80 0.93 0.93 0.93 0.91 0.91 Adj. Flow (vph) 1 165 98 15 130 1616 699 137 RTOR Reduction (vph) 0 166 8 0 145 1616 699 137 RTOR Reduction (vph) 0 166 8 0 145 1616 699 99 Turn Type Prot Prot Prot custom pm+pt NA NA Perm Protected Phases 4 4 4 5 2 6 6 Permitted Phases 5 2 6 6 Actuated Green, G (s) 10.2 10.2 98.3 98.3 86.8 86.8 Actuated g/C Ratio 0.08 0.08 0.08 0.82 0.82 0.72 0.72 Clearance Time (s) 6.0 6.0 5.5 5.5 5.5 5.5 Vehicle Extension (s) 2.0 2.0 1.5 3.0 3.0 3.0 Lane Gro Cap (vph) 291 134 593 4165 3678 1145 V/s Ratio Prot c.0.5 0.01 0.01 0.03 0.14 V/s Ratio Prot c.0.5 0.01 0.01 0.03 0.10 1.00 Lone Grop Cap (vph) 291 134 593 4165 3678 1145 V/s Ratio Prot c.0.5 0.01 0.01 0.03 0.14 V/s Ratio Prot c.0.5 0.01 0.01 0.03 0.10 1.00 Lone Grop Cap (vph) 291 134 593 4165 3678 1145 V/s Ratio Prot c.0.5 0.01 0.01 0.03 0.14 V/s Ratio Prot c.0.5 0.01 0.01 0.03 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 Lovel of Service D D A A A A A A A A A A A A A A A A A	Future Volume (vph)	1	132	78	14	121	1503	636	125	
Lane Util. Factor	Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	
Fit Protected	Total Lost time (s)		6.0	6.0		5.5	5.5	5.5	5.5	
Fit Protected 0.95 1.00 0.95 1.00 1.00 1.00 Satd. Flow (prot) 3433 1583 1770 5085 5085 1583 Fit Permitted 0.95 1.00 0.35 1.00 1.00 1.00 Satd. Flow (perm) 3433 1583 656 5085 5085 1583 Satd. Flow (perm) 3433 1583 656 5085 5085 1583 Satd. Flow (perm) 1 165 98 15 130 1616 699 137 Satd. Flow (prot) 1 165 98 15 130 1616 699 137 Satd. Flow (prot) 1 165 98 15 130 1616 699 137 Satd. Flow (prot) 1 166 8 0 145 1616 699 99 Satd. Flow (prot) 1 166 8 0 145 1616 699 99 Satd. Flow (prot) 1 166 8 0 145 1616 699 99 Satd. Flow (prot) 1 1 165 98 15 130 1616 699 99 Satd. Flow (prot) 1 1 101 101 101 101 101 101 101 101 10	Lane Util. Factor		0.97	1.00		1.00	0.91	0.91	1.00	
Satd. Flow (prot) 3433 1583 1770 5085 5085 1583 Flt Permitted 0.95 1.00 0.35 1.00 1.00 1.00 Satd. Flow (perm) 3433 1583 656 5085 5085 1583 Peak-hour factor, PHF 0.80 0.80 0.80 0.93 0.93 0.91 0.91 Adj. Flow (vph) 1 165 98 15 130 1616 699 137 RTOR Reduction (vph) 0 0 90 0 0 0 38 Lane Group Flow (vph) 0 166 8 0 145 1616 699 99 Turn Type Prot Prot Prot custom pm+pt NA NA Permitted Phases Actuated Green, G (s) 10.2 10.2 98.3 98.3 86.8 86.8 Effective Green, g (s) 10.2 10.2 98.3 98.3 86.8 86.8 Actuated g/c Ra	Frt		1.00	0.85		1.00	1.00	1.00	0.85	
Fit Permitted 0.95 1.00 0.35 1.00 1.00 1.00 Satd. Flow (perm) 3433 1583 656 5085 5085 1583 Peak-hour factor, PHF 0.80 0.80 0.80 0.93 0.93 0.93 0.91 0.91 0.91 0.91 0.91 0.91 0.91 0.91	Flt Protected		0.95	1.00		0.95	1.00	1.00	1.00	
Satd. Flow (perm) 3433 1583 656 5085 5085 1583 Peak-hour factor, PHF 0.80 0.80 0.80 0.93 0.93 0.93 0.91 0.91 Adj. Flow (vph) 1 165 98 15 130 1616 699 137 RTOR Reduction (vph) 0 0 90 0 0 0 38 Lane Group Flow (vph) 0 166 8 0 145 1616 699 99 Turn Type Prot Prot Prot custom pm+pt NA NA Perm Protected Phases 4 4 4 5 2 6 Permitted Phases 5 2 6 6 6 8.6.8 86.8 86.8 Effective Green, G (s) 10.2 10.2 98.3 98.3 86.8 86.8 Effective Green, g (s) 10.2 10.2 98.3 98.3 86.8 86.8	Satd. Flow (prot)		3433	1583		1770	5085	5085	1583	
Peak-hour factor, PHF 0.80 0.80 0.80 0.93 0.93 0.93 0.91 0.91 Adj. Flow (vph) 1 165 98 15 130 1616 699 137 RTOR Reduction (vph) 0 0 90 0 0 0 38 Lane Group Flow (vph) 0 166 8 0 145 1616 699 99 Turn Type Prot Prot Prot custom pm+pt NA NA Perm Protected Phases 4 4 4 5 2 6 Permitted Phases 5 2 6 6 8 86.8	Flt Permitted		0.95	1.00		0.35	1.00	1.00	1.00	
Adj. Flow (vph) 1 165 98 15 130 1616 699 137 RTOR Reduction (vph) 0 0 90 0 0 0 38 Lane Group Flow (vph) 0 166 8 0 145 1616 699 99 Turn Type Prot Prot Prot custom pm+pt NA NA Perm Protected Phases 5 2 6 6 6 Actuated Green, G (s) 10.2 10.2 98.3 98.3 86.8	Satd. Flow (perm)		3433	1583		656	5085	5085	1583	
Adj. Flow (vph) 1 165 98 15 130 1616 699 137 RTOR Reduction (vph) 0 0 90 0 0 0 38 Lane Group Flow (vph) 0 166 8 0 145 1616 699 99 Turn Type Prot Prot Prot custom pm+pt NA NA Perm Protected Phases 5 2 6 8 86.8	Peak-hour factor, PHF	0.80	0.80	0.80	0.93	0.93	0.93	0.91	0.91	
Lane Group Flow (vph) 0 166 8 0 145 1616 699 99 Turn Type Prot Prot Prot custom pm+pt NA NA Perm Protected Phases 4 4 4 5 2 6 Permitted Phases 5 2 6 6 Actuated Green, G (s) 10.2 10.2 98.3 98.3 86.8 86.8 Effective Green, g (s) 10.2 10.2 98.3 98.3 86.8 86.8 Actuated g/C Ratio 0.08 0.08 0.82 0.82 0.72 0.72 Clearance Time (s) 6.0 6.0 5.5 5.5 5.5 5.5 Vehicle Extension (s) 2.0 2.0 1.5 3.0 3.0 3.0 Lane Grp Cap (vph) 291 134 593 4165 3678 1145 v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Prot	Adj. Flow (vph)	1	165	98	15	130	1616	699	137	
Turn Type	RTOR Reduction (vph)	0	0	90	0	0	0	0	38	
Protected Phases 4 4 4 4 5 2 6 Permitted Phases 5 2 6 6 Actuated Green, G (s) 10.2 10.2 98.3 98.3 86.8 86.8 Effective Green, g (s) 10.2 10.2 98.3 98.3 86.8 86.8 Actuated g/C Ratio 0.08 0.08 0.82 0.82 0.72 0.72 Clearance Time (s) 6.0 6.0 5.5 5.5 5.5 5.5 Vehicle Extension (s) 2.0 2.0 1.5 3.0 3.0 3.0 Lane Grp Cap (vph) 291 134 593 4165 3678 1145 v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9	Lane Group Flow (vph)	0	166	8	0	145	1616	699	99	
Protected Phases 4 4 4 4 5 2 6 Permitted Phases 5 2 98.3 98.3 86.8 86.8 Effective Green, g (s) 10.2 10.2 98.3 98.3 86.8 86.8 Actuated g/C Ratio 0.08 0.08 0.82 0.82 0.72 0.72 Clearance Time (s) 6.0 6.0 5.5 5.5 5.5 5.5 Vehicle Extension (s) 2.0 2.0 1.5 3.0 3.0 3.0 Lane Grp Cap (vph) 291 134 593 4165 3678 1145 v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1	Turn Type	Prot	Prot	Prot	custom	pm+pt	NA	NA	Perm	
Actuated Green, G (s) 10.2 10.2 98.3 98.3 86.8 86.8 Effective Green, g (s) 10.2 10.2 98.3 98.3 86.8 86.8 Actuated g/C Ratio 0.08 0.08 0.82 0.82 0.72 0.72 Clearance Time (s) 6.0 6.0 5.5 5.5 5.5 Vehicle Extension (s) 2.0 2.0 1.5 3.0 3.0 3.0 Lane Grp Cap (vph) 291 134 593 4165 3678 1145 v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A A Approach Delay (s) 53.0	Protected Phases	4	4	4			2	6		
Effective Green, g (s) 10.2 10.2 98.3 98.3 86.8 86.8 Actuated g/C Ratio 0.08 0.08 0.82 0.82 0.72 0.72 Clearance Time (s) 6.0 6.0 5.5 5.5 5.5 Vehicle Extension (s) 2.0 2.0 1.5 3.0 3.0 3.0 Lane Grp Cap (vph) 291 134 593 4165 3678 1145 v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A A Approach Delay (s) 53.0	Permitted Phases				5				6	
Actuated g/C Ratio 0.08 0.08 0.82 0.82 0.72 0.72 Clearance Time (s) 6.0 6.0 5.5 5.5 5.5 Vehicle Extension (s) 2.0 2.0 1.5 3.0 3.0 3.0 Lane Grp Cap (vph) 291 134 593 4165 3678 1145 v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A A Approach Delay (s) 53.0	Actuated Green, G (s)		10.2	10.2		98.3	98.3	86.8	86.8	
Actuated g/C Ratio 0.08 0.08 0.82 0.72 0.72 Clearance Time (s) 6.0 6.0 5.5 5.5 5.5 5.5 Vehicle Extension (s) 2.0 2.0 1.5 3.0 3.0 3.0 Lane Grp Cap (vph) 291 134 593 4165 3678 1145 v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A Approach Delay (s) 53.0 3.1 5.4 5.4 <td>Effective Green, g (s)</td> <td></td> <td>10.2</td> <td>10.2</td> <td></td> <td>98.3</td> <td>98.3</td> <td>86.8</td> <td>86.8</td> <td></td>	Effective Green, g (s)		10.2	10.2		98.3	98.3	86.8	86.8	
Vehicle Extension (s) 2.0 2.0 1.5 3.0 3.0 3.0 Lane Grp Cap (vph) 291 134 593 4165 3678 1145 v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A Approach Delay (s) 53.0 3.1 5.4 5.4	Actuated g/C Ratio		0.08	0.08		0.82	0.82	0.72	0.72	
Lane Grp Cap (vph) 291 134 593 4165 3678 1145 v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A Approach Delay (s) 53.0 3.1 5.4 5.4	Clearance Time (s)		6.0	6.0		5.5	5.5	5.5	5.5	
v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A Approach Delay (s) 53.0 3.1 5.4	Vehicle Extension (s)		2.0	2.0		1.5	3.0	3.0	3.0	
v/s Ratio Prot c0.05 0.01 0.01 c0.32 0.14 v/s Ratio Perm 0.19 0.06 0.06 v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A Approach Delay (s) 53.0 3.1 5.4	Lane Grp Cap (vph)		291	134		593	4165	3678	1145	
v/c Ratio 0.57 0.06 0.24 0.39 0.19 0.09 Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A Approach Delay (s) 53.0 3.1 5.4 5.4	v/s Ratio Prot		c0.05	0.01		0.01	c0.32	0.14		
Uniform Delay, d1 52.8 50.5 2.3 2.9 5.3 4.9 Progression Factor 1.00 1.00 1.00 1.00 1.00 Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A Approach Delay (s) 53.0 3.1 5.4	v/s Ratio Perm					0.19			0.06	
Progression Factor 1.00 1	v/c Ratio		0.57	0.06		0.24	0.39	0.19	0.09	
Incremental Delay, d2 1.7 0.1 0.1 0.3 0.1 0.1 Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A Approach Delay (s) 53.0 3.1 5.4	Uniform Delay, d1		52.8	50.5		2.3	2.9	5.3	4.9	
Delay (s) 54.5 50.6 2.4 3.1 5.4 5.0 Level of Service D D A A A A Approach Delay (s) 53.0 3.1 5.4	Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00	
Level of Service D D A A A A A A A A A A A A A A A A A	Incremental Delay, d2		1.7	0.1		0.1	0.3	0.1	0.1	
Level of Service D D A A A A Approach Delay (s) 53.0 3.1 5.4	Delay (s)		54.5	50.6		2.4	3.1	5.4	5.0	
	Level of Service		D	D		Α	Α	Α	Α	
Approach LOS D A A	Approach Delay (s)		53.0				3.1	5.4		
	Approach LOS		D				Α	Α		
Intersection Summary	Intersection Summary									
HCM 2000 Control Delay 8.4 HCM 2000 Level of Service A	HCM 2000 Control Delay			8.4	F	ICM 2000	Level of S	Service		A
HCM 2000 Volume to Capacity ratio 0.43		y ratio								
•	Actuated Cycle Length (s)	_			S	Sum of los	t time (s)			17.0
Intersection Capacity Utilization 43.6% ICU Level of Service A		on		43.6%						A
Analysis Period (min) 15	Analysis Period (min)			15						

c Critical Lane Group

	•	→	←	4	-	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			↑ ↑			7
Traffic Volume (veh/h)	0	0	1624	162	0	162
Future Volume (Veh/h)	0	0	1624	162	0	162
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	1765	176	0	176
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	1941				1853	970
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1941				1853	970
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)					0.0	0.0
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	30
cM capacity (veh/h)	298				66	253
		1115	05.4			
Direction, Lane #	WB 1	WB 2	SB 1			
Volume Total	1177	764	176			
Volume Left	0	0	0			
Volume Right	0	176	176			
cSH	1700	1700	253			
Volume to Capacity	0.69	0.45	0.70			
Queue Length 95th (ft)	0	0	116			
Control Delay (s)	0.0	0.0	46.5			
Lane LOS			Е			
Approach Delay (s)	0.0		46.5			
Approach LOS			Е			
Intersection Summary						
Average Delay			3.9			
Intersection Capacity Utiliz	ation		66.7%	IC	U Level o	of Service
Analysis Period (min)			15	,,	2 20.010	. 3030
, and your office (ITIIII)			10			

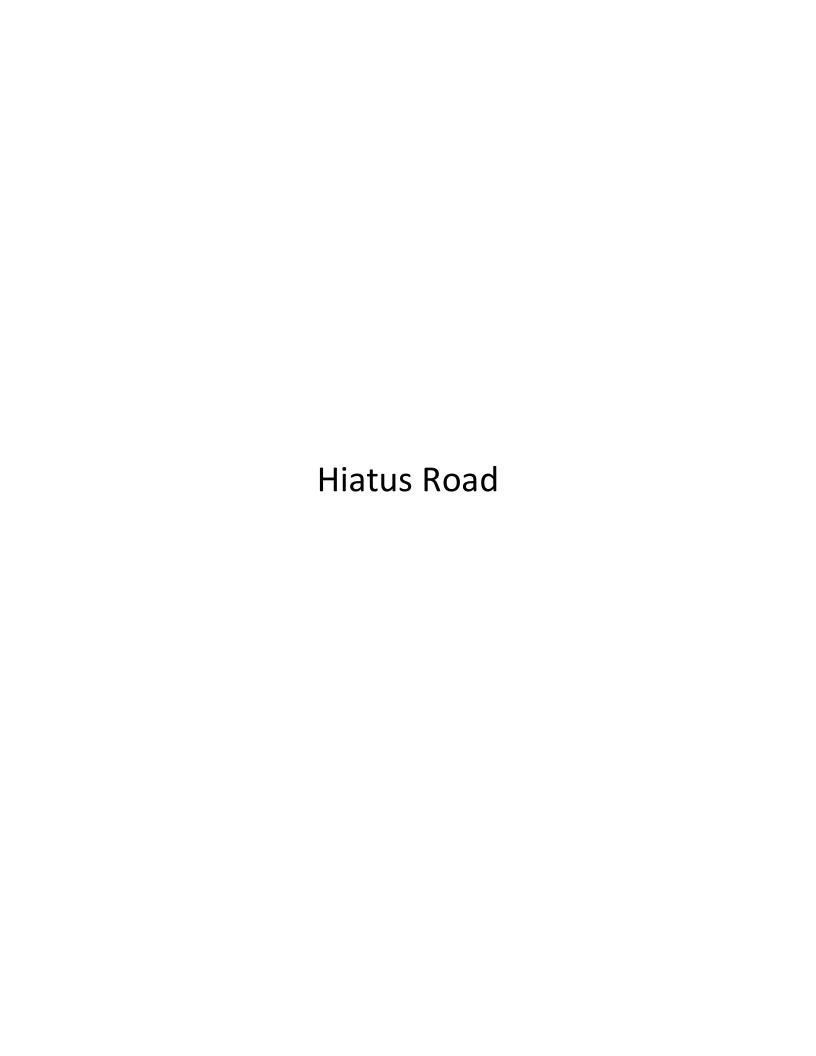
	ၨ	•	₹I	4	†	L	ļ	4		
Movement	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR		
Lane Configurations	*	7		ă	^	Ð	^	7		
Traffic Volume (vph)	135	79	2	72	1714	25	1493	246		
Future Volume (vph)	135	79	2	72	1714	25	1493	246		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0		7.5	7.5	7.5	7.5	7.5		
Lane Util. Factor	1.00	1.00		1.00	0.91	1.00	0.91	1.00		
Frt	1.00	0.85		1.00	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00		0.95	1.00	0.95	1.00	1.00		
Satd. Flow (prot)	1770	1583		1770	5085	1770	5085	1583		
FIt Permitted	0.95	1.00		0.11	1.00	0.10	1.00	1.00		
Satd. Flow (perm)	1770	1583		211	5085	187	5085	1583		
Peak-hour factor, PHF	0.73	0.73	0.95	0.95	0.95	0.90	0.90	0.90		
Adj. Flow (vph)	185	108	2	76	1804	28	1659	273		
RTOR Reduction (vph)	0	94	0	0	0	0	0	73		
Lane Group Flow (vph)	185	14	0	78	1804	28	1659	200		
Turn Type	Prot	Prot	custom	pm+pt	NA	pm+pt	NA	Perm		
Protected Phases	4	4		5	2	1	6			
Permitted Phases			5	2		6		6		
Actuated Green, G (s)	21.1	21.1		120.7	115.0	115.1	112.2	112.2		
Effective Green, g (s)	21.1	21.1		120.7	115.0	115.1	112.2	112.2		
Actuated g/C Ratio	0.13	0.13		0.75	0.72	0.72	0.70	0.70		
Clearance Time (s)	6.0	6.0		7.5	7.5	7.5	7.5	7.5		
Vehicle Extension (s)	2.0	2.0		1.5	3.0	1.5	3.0	3.0		
Lane Grp Cap (vph)	233	208		214	3654	163	3565	1110		
v/s Ratio Prot	c0.10	0.01		c0.01	c0.35	0.00	0.33			
v/s Ratio Perm				0.26		0.12		0.13		
v/c Ratio	0.79	0.07		0.36	0.49	0.17	0.47	0.18		
Uniform Delay, d1	67.3	60.8		6.8	9.8	7.3	10.6	8.2		
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	15.8	0.1		0.4	0.5	0.2	0.4	0.4		
Delay (s)	83.1	60.9		7.2	10.3	7.5	11.0	8.5		
Level of Service	F	Е		Α	В	Α	В	Α		
Approach Delay (s)	74.9				10.2		10.6			
Approach LOS	Е				В		В			
Intersection Summary										
HCM 2000 Control Delay			15.0	Н	CM 2000	Level of	Service		В	
HCM 2000 Volume to Capaci	ty ratio		0.54							
Actuated Cycle Length (s)			160.0	S	um of los	t time (s)			21.0	
Intersection Capacity Utilizati	on		61.4%			of Service	!		В	
Analysis Period (min)			15							

c Critical Lane Group

	•	→	•	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	, J	4₽	7					11111	7	1,1	ተተተ	
Traffic Volume (vph)	371	518	401	0	0	0	0	1116	809	395	1363	0
Future Volume (vph)	371	518	401	0	0	0	0	1116	809	395	1363	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.5	7.5	7.5					7.5	7.5	8.5	8.5	
Lane Util. Factor	0.91	0.91	1.00					0.81	1.00	0.97	0.91	
Frt	1.00	1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95	0.99	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1610	3367	1583					7544	1583	3433	5085	
Flt Permitted	0.95	0.99	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1610	3367	1583					7544	1583	3433	5085	
Peak-hour factor, PHF	0.86	0.86	0.86	0.92	0.92	0.92	0.87	0.87	0.87	0.95	0.95	0.95
Adj. Flow (vph)	431	602	466	0	0	0	0	1283	930	416	1435	0
RTOR Reduction (vph)	0	0	166	0	0	0	0	0	147	0	0	0
Lane Group Flow (vph)	336	697	300	0	0	0	0	1283	783	416	1435	0
Turn Type	Split	NA	Perm					NA	Perm	Prot	NA	
Protected Phases	16	16						4 5		23	2345	
Permitted Phases			16						4 5			
Actuated Green, G (s)	35.0	35.0	35.0					39.5	39.5	63.5	111.0	
Effective Green, g (s)	27.0	27.0	27.0					39.5	39.5	63.5	95.5	
Actuated g/C Ratio	0.17	0.17	0.17					0.24	0.24	0.39	0.59	
Clearance Time (s)												
Vehicle Extension (s)												
Lane Grp Cap (vph)	268	561	263					1839	385	1345	2997	
v/s Ratio Prot	c0.21	0.21						0.17		0.12	c0.28	
v/s Ratio Perm			0.19						c0.49			
v/c Ratio	1.25	1.24	1.14					0.70	2.03	0.31	0.48	
Uniform Delay, d1	67.5	67.5	67.5					55.8	61.2	34.1	19.0	
Progression Factor	1.00	1.00	1.00					1.00	1.00	0.27	0.23	
Incremental Delay, d2	141.0	123.6	99.1					0.9	473.7	0.1	0.1	
Delay (s)	208.5	191.1	166.6					56.8	534.9	9.3	4.4	
Level of Service	F	F	F					Е	F	Α	Α	
Approach Delay (s)		187.4			0.0			257.7			5.5	
Approach LOS		F			Α			F			Α	
Intersection Summary												
HCM 2000 Control Delay			154.8	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.27									
Actuated Cycle Length (s)			162.0		um of lost				48.0			
Intersection Capacity Utiliza	ation		97.7%	IC	U Level o	of Service			F			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	۶	→	•	•	←	•	4	†	/	/	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				7	414	7	1,1	ተተተ			11111	7
Traffic Volume (vph)	0	0	0	602	102	439	516	971	0	0	1156	494
Future Volume (vph)	0	0	0	602	102	439	516	971	0	0	1156	494
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				8.0	8.0	8.0	8.5	7.5			7.5	7.5
Lane Util. Factor				0.91	0.91	1.00	0.97	0.91			0.81	1.00
Frt				1.00	1.00	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1610	3268	1583	3433	5085			7544	1583
FIt Permitted				0.95	0.96	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1610	3268	1583	3433	5085			7544	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.90	0.90	0.90	0.92	0.92	0.92	0.79	0.79	0.79
Adj. Flow (vph)	0	0	0	669	113	488	561	1055	0	0	1463	625
RTOR Reduction (vph)	0	0	0	0	0	156	0	0	0	0	0	221
Lane Group Flow (vph)	0	0	0	334	448	332	561	1055	0	0	1463	404
Turn Type				Split	NA	Perm	Prot	NA			NA	Perm
Protected Phases				3 4	3 4		5 6	1256			12	
Permitted Phases						3 4						12
Actuated Green, G (s)				35.0	35.0	35.0	63.5	111.0			39.5	39.5
Effective Green, g (s)				35.0	35.0	35.0	63.5	94.5			39.5	39.5
Actuated g/C Ratio				0.22	0.22	0.22	0.39	0.58			0.24	0.24
Clearance Time (s)												
Vehicle Extension (s)												
Lane Grp Cap (vph)				347	706	342	1345	2966			1839	385
v/s Ratio Prot				0.21	0.14		c0.16	0.21			0.19	
v/s Ratio Perm						c0.21	2 12					c0.26
v/c Ratio				0.96	0.94dl	0.97	0.42	0.36			0.80	1.05
Uniform Delay, d1				62.9	57.7	63.0	35.8	17.7			57.5	61.2
Progression Factor				1.00	1.00	1.00	0.32	0.20			1.00	1.00
Incremental Delay, d2				38.2	1.9	40.7	0.6	0.2			3.7	59.5
Delay (s)				101.0	59.6	103.7	12.0	3.7			61.1	120.8
Level of Service		0.0		F	E 07.4	F	В	A			E	F
Approach LOS		0.0			87.4			6.6			79.0	
Approach LOS		А			F			А			Е	
Intersection Summary												
HCM 2000 Control Delay			57.6	H	ICM 2000	Level of	Service		Е			
HCM 2000 Volume to Capacity	ratio		0.89									
Actuated Cycle Length (s)			162.0		Sum of los				48.0			
Intersection Capacity Utilization	1		97.7%	I	CU Level	of Service			F			
Analysis Period (min)			15									
dl Defacto Left Lane. Recode	e with 1	though la	ne as a l	eft lane.								
c Critical Lane Group												


I-595 ACS: Flamingo Rd AM 5:00 pm 04/13/2020 Existing AM

	۶	-	•	F	•	←	•	₹I	•	†	/	L
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU
Lane Configurations	¥	† †	7		ሽኘ	^	7		Ä	ተተተ	7	
Traffic Volume (vph)	30	115	237	2	375	93	222	12	56	866	476	2
Future Volume (vph)	30	115	237	2	375	93	222	12	56	866	476	2
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0		7.0	7.0	7.0		7.0	7.0	7.0	
Lane Util. Factor	1.00	0.95	1.00		0.97	0.95	1.00		1.00	0.91	1.00	
Frt	1.00	1.00	0.85		1.00	1.00	0.85		1.00	1.00	0.85	
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00		0.95	1.00	1.00	
Satd. Flow (prot)	1770	3539	1583		3433	3539	1583		1770	5085	1583	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00		0.95	1.00	1.00	
Satd. Flow (perm)	1770	3539	1583		3433	3539	1583		1770	5085	1583	
Peak-hour factor, PHF	0.68	0.68	0.68	0.93	0.93	0.93	0.93	0.91	0.91	0.91	0.91	0.91
Adj. Flow (vph)	44	169	349	2	403	100	239	13	62	952	523	2
RTOR Reduction (vph)	0	0	190	0	0	0	186	0	0	0	268	0
Lane Group Flow (vph)	44	169	159	0	405	100	53	0	75	952	255	0
Turn Type	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot
Protected Phases	7	4		3	3	8		5	5	2		1
Permitted Phases			4				8				2	
Actuated Green, G (s)	7.0	21.9	21.9		20.5	35.4	35.4		10.7	78.0	78.0	
Effective Green, g (s)	7.0	21.9	21.9		20.5	35.4	35.4		10.7	78.0	78.0	
Actuated g/C Ratio	0.04	0.14	0.14		0.13	0.22	0.22		0.07	0.49	0.49	
Clearance Time (s)	7.0	7.0	7.0		7.0	7.0	7.0		7.0	7.0	7.0	
Vehicle Extension (s)	1.5	2.5	2.5		1.5	2.5	2.5		1.5	3.0	3.0	
Lane Grp Cap (vph)	77	484	216		439	783	350		118	2478	771	
v/s Ratio Prot	0.02	0.05			c0.12	0.03			0.04	0.19		
v/s Ratio Perm			c0.10				0.03				0.16	
v/c Ratio	0.57	0.35	0.74		0.92	0.13	0.15		0.64	0.38	0.33	
Uniform Delay, d1	75.0	62.6	66.3		69.0	49.9	50.2		72.8	25.9	25.1	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	
Incremental Delay, d2	6.2	0.3	11.6		24.5	0.1	0.1		8.0	0.5	1.1	
Delay (s)	81.2	62.9	77.9		93.5	50.0	50.3		80.7	26.3	26.2	
Level of Service	F	Е	Е		F	D	D		F	С	С	
Approach Delay (s)		73.7				73.8				28.9		
Approach LOS		Е				E				С		
Intersection Summary												
HCM 2000 Control Delay			44.1	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	city ratio		0.61									
Actuated Cycle Length (s)			160.0	Sı	um of lost	time (s)			28.0			
Intersection Capacity Utilizat	tion		74.4%	IC	U Level o	of Service	;		D			
Analysis Period (min)			15									

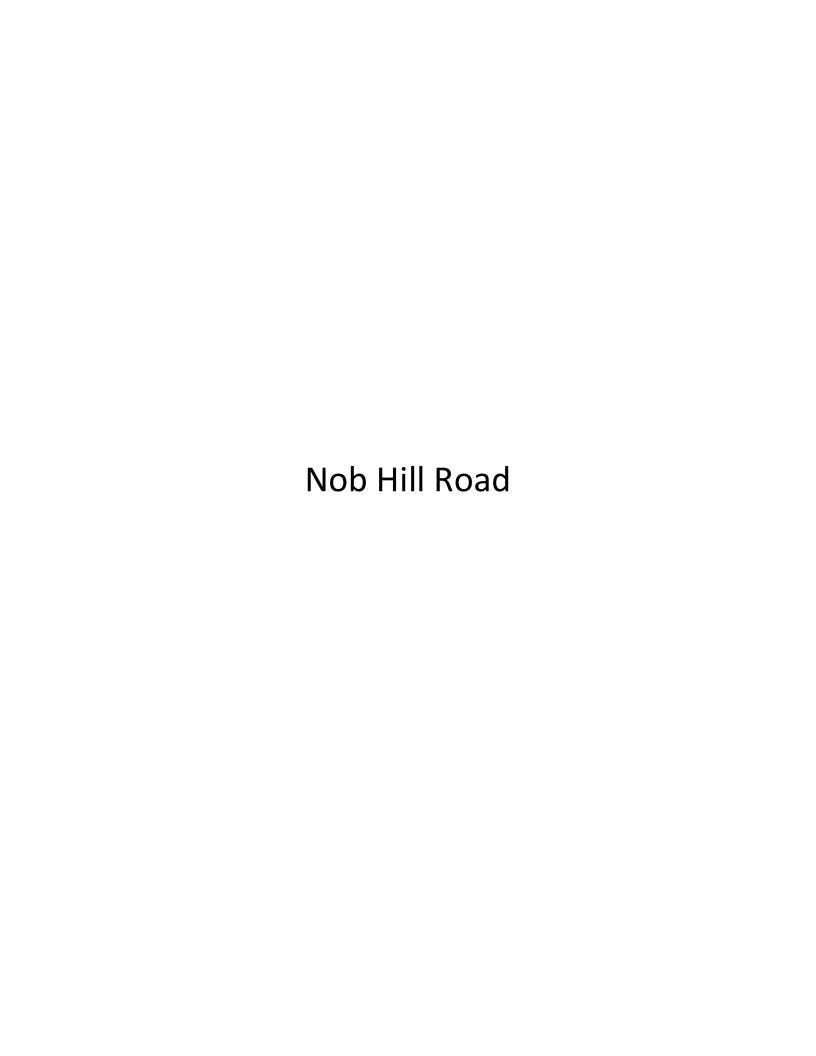
Analysis Period (min)
c Critical Lane Group

	-	↓	4
Movement	SBL	SBT	SBR
Lane Configurations	ሽኘ	^	7
Traffic Volume (vph)	149	1113	32
Future Volume (vph)	149	1113	32
Ideal Flow (vphpl)	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0
Lane Util. Factor	0.97	0.91	1.00
Frt	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00
Satd. Flow (prot)	3433	5085	1583
Flt Permitted	0.95	1.00	1.00
Satd. Flow (perm)	3433	5085	1583
Peak-hour factor, PHF	0.91	0.91	0.91
Adj. Flow (vph)	164	1223	35
RTOR Reduction (vph)	0	0	18
Lane Group Flow (vph)	166	1223	17
Turn Type	Prot	NA	Perm
Protected Phases	1	6	
Permitted Phases			6
Actuated Green, G (s)	11.6	78.9	78.9
Effective Green, g (s)	11.6	78.9	78.9
Actuated g/C Ratio	0.07	0.49	0.49
Clearance Time (s)	7.0	7.0	7.0
Vehicle Extension (s)	1.5	3.0	3.0
Lane Grp Cap (vph)	248	2507	780
v/s Ratio Prot	c0.05	c0.24	.00
v/s Ratio Perm	00.00	30.2 F	0.01
v/c Ratio	0.67	0.49	0.02
Uniform Delay, d1	72.3	27.1	20.8
Progression Factor	1.00	1.00	1.00
Incremental Delay, d2	5.2	0.7	0.1
Delay (s)	77.6	27.7	20.8
Level of Service	77.0 E	C C	20.0 C
Approach Delay (s)		33.4	
Approach LOS		C	
Intersection Summary			

	٠	→	+	4	/	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			ħβ			7
Traffic Volume (veh/h)	0	0	1498	10	0	18
Future Volume (Veh/h)	0	0	1498	10	0	18
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	1628	11	0	20
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	1639				1634	820
vC1, stage 1 conf vol	1000				1001	020
vC2, stage 2 conf vol						
vCu, unblocked vol	1639				1634	820
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)					7.0	J. J
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	94
cM capacity (veh/h)	391				92	318
		WD 2	CD 1		-	•
Direction, Lane #	WB 1	WB 2	SB 1			
Volume Total	1085	554	20			
Volume Left	0	0	0			
Volume Right	0	11	20			
cSH	1700	1700	318			
Volume to Capacity	0.64	0.33	0.06			
Queue Length 95th (ft)	0	0	5			
Control Delay (s)	0.0	0.0	17.1			
Lane LOS			C			
Approach Delay (s)	0.0		17.1			
Approach LOS			С			
Intersection Summary						
Average Delay			0.2			
Intersection Capacity Utiliz	zation		51.7%	IC	U Level o	of Service
Analysis Period (min)			15			

	۶	→	•	•	—	4	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4₽	7					ተተተ	7	77	^↑	
Traffic Volume (vph)	542	454	117	0	0	0	0	490	440	837	547	0
Future Volume (vph)	542	454	117	0	0	0	0	490	440	837	547	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0					7.0	7.5	7.0	7.0	
Lane Util. Factor	0.91	0.91	1.00					0.91	1.00	0.97	0.95	
Frt	1.00	1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95	0.98	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1610	3336	1583					5085	1583	3433	3539	
Flt Permitted	0.95	0.98	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1610	3336	1583					5085	1583	3433	3539	
Peak-hour factor, PHF	0.95	0.95	0.95	0.92	0.92	0.92	0.89	0.89	0.89	0.86	0.86	0.86
Adj. Flow (vph)	571	478	123	0	0	0	0	551	494	973	636	0
RTOR Reduction (vph)	0	0	97	0	0	0	0	0	69	0	0	0
Lane Group Flow (vph)	343	706	26	0	0	0	0	551	425	973	636	0
Turn Type	Perm	NA	Perm					NA	custom	Prot	NA	
Protected Phases		16						4 5		2	2345	
Permitted Phases	16		16						3 4 5			
Actuated Green, G (s)	44.5	44.5	44.5					34.0	76.5	35.0	118.5	
Effective Green, g (s)	37.0	37.0	37.0					34.0	69.5	35.0	111.0	
Actuated g/C Ratio	0.21	0.21	0.21					0.19	0.39	0.20	0.63	
Clearance Time (s)										7.0		
Lane Grp Cap (vph)	336	697	330					976	621	678	2219	
v/s Ratio Prot								c0.11		c0.28	0.18	
v/s Ratio Perm	c0.21	0.21	0.02						c0.27			
v/c Ratio	1.02	1.01	0.08					0.56	0.68	1.44	0.29	
Uniform Delay, d1	70.0	70.0	56.3					64.8	44.6	71.0	15.0	
Progression Factor	1.00	1.00	1.00					1.00	1.00	0.45	0.06	
Incremental Delay, d2	54.5	37.3	0.5					2.4	6.0	201.4	0.2	
Delay (s)	124.5	107.3	56.7					67.2	50.7	233.5	1.1	
Level of Service	F	F	Е					Е	D	F	Α	
Approach Delay (s)		107.1			0.0			59.4			141.6	
Approach LOS		F			Α			Е			F	
Intersection Summary												
HCM 2000 Control Delay			108.6	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.01									
Actuated Cycle Length (s)			177.0		um of lost				43.0			
Intersection Capacity Utiliza	tion		135.5%	IC	U Level	of Service	!		Н			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	—	•	₹I	1	†	<i>></i>	/	↓
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations				ሻ	4₽	7		ă	^			1111
Traffic Volume (vph)	0	0	0	244	61	418	2	195	835	0	0	1138
Future Volume (vph)	0	0	0	244	61	418	2	195	835	0	0	1138
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				7.5	7.5	7.5		7.0	7.0			7.0
Lane Util. Factor				0.91	0.91	1.00		1.00	0.95			0.86
Frt				1.00	1.00	0.85		1.00	1.00			1.00
Flt Protected				0.95	0.97	1.00		0.95	1.00			1.00
Satd. Flow (prot)				1610	3281	1583		1770	3539			6408
Flt Permitted				0.95	0.97	1.00		0.95	1.00			1.00
Satd. Flow (perm)				1610	3281	1583		1770	3539			6408
Peak-hour factor, PHF	0.92	0.92	0.92	0.90	0.90	0.90	0.87	0.87	0.87	0.87	0.86	0.86
Adj. Flow (vph)	0	0	0	271	68	464	2	224	960	0	0	1323
RTOR Reduction (vph)	0	0	0	0	0	124	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	135	204	340	0	226	960	0	0	1323
Turn Type				Perm	NA	Perm	Prot	Prot	NA			NA
Protected Phases					3 4		56	56	1256			12
Permitted Phases				3 4		3 4						
Actuated Green, G (s)				44.5	44.5	44.5		67.0	118.5			44.0
Effective Green, g (s)				44.5	44.5	44.5		67.0	111.0			44.0
Actuated g/C Ratio				0.25	0.25	0.25		0.38	0.63			0.25
Clearance Time (s)												
Lane Grp Cap (vph)				404	824	397		670	2219			1592
v/s Ratio Prot								0.13	c0.27			0.21
v/s Ratio Perm				0.08	0.06	c0.21						
v/c Ratio				0.33	0.25	0.86		0.34	0.43			0.83
Uniform Delay, d1				54.1	52.9	63.2		39.2	16.9			63.0
Progression Factor				1.00	1.00	1.00		0.37	0.24			1.00
Incremental Delay, d2				2.2	0.7	20.5		1.0	0.5			5.2
Delay (s)				56.4	53.6	83.6		15.4	4.6			68.2
Level of Service				Е	D	F		В	Α			E
Approach Delay (s)		0.0			71.4				6.6			175.6
Approach LOS		Α			Е				Α			F
Intersection Summary												
HCM 2000 Control Delay			108.2	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacit	y ratio		1.01									
Actuated Cycle Length (s)			177.0		um of los				43.0			
Intersection Capacity Utilization	n		135.5%	IC	U Level	of Service			Н			
Analysis Period (min)			15									
c Critical Lane Group												



Movement	SBR
La ner Configurations	7
Traffic Volume (vph)	775
Future Volume (vph)	775
Ideal Flow (vphpl)	1900
Total Lost time (s)	7.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1583
Flt Permitted	1.00
Satd. Flow (perm)	1583
Peak-hour factor, PHF	0.86
Adj. Flow (vph)	901
RTOR Reduction (vph)	286
Lane Group Flow (vph)	615
Turn Type	Prot
Protected Phases	12
Permitted Phases	· -
Actuated Green, G (s)	44.0
Effective Green, g (s)	44.0
Actuated g/C Ratio	0.25
Clearance Time (s)	, v
Lane Grp Cap (vph)	393
v/s Ratio Prot	c0.39
v/s Ratio Perm	00.00
v/c Ratio	1.57
Uniform Delay, d1	66.5
Progression Factor	1.00
Incremental Delay, d2	266.8
Delay (s)	333.3
Level of Service	F
Approach Delay (s)	•
Approach LOS	
Intersection Summary	

	₾	۶	-	\rightarrow	F	•	←	•	4	†	~	L
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBU
Lane Configurations		Ä	^	7		Ä	^	7	Ä	ተተተ	7	
Traffic Volume (vph)	5	129	448	433	1	443	468	151	241	644	368	1
Future Volume (vph)	5	129	448	433	1	443	468	151	241	644	368	1
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0	
Lane Util. Factor		1.00	0.95	1.00		1.00	0.95	1.00	1.00	0.91	1.00	
Frt		1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	
Flt Protected		0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (prot)		1770	3539	1583		1770	3539	1583	1770	5085	1583	
Flt Permitted		0.43	1.00	1.00		0.20	1.00	1.00	0.08	1.00	1.00	
Satd. Flow (perm)		809	3539	1583		372	3539	1583	146	5085	1583	
Peak-hour factor, PHF	0.82	0.82	0.82	0.82	0.81	0.81	0.81	0.81	0.85	0.85	0.85	0.90
Adj. Flow (vph)	6	157	546	528	1	547	578	186	284	758	433	1
RTOR Reduction (vph)	0	0	0	218	0	0	0	126	0	0	231	0
Lane Group Flow (vph)	0	163	546	310	0	548	578	60	284	758	202	0
Turn Type	custom	pm+pt	NA	Perm	custom	pm+pt	NA	Perm	pm+pt	NA	Perm	custom
Protected Phases		7	4			3	8		5	2		
Permitted Phases	7	4		4	3	8		8	2		2	1
Actuated Green, G (s)		45.4	35.6	35.6		68.6	51.8	51.8	77.4	53.3	53.3	
Effective Green, g (s)		45.4	35.6	35.6		68.6	51.8	51.8	77.4	53.3	53.3	
Actuated g/C Ratio		0.28	0.22	0.22		0.43	0.32	0.32	0.48	0.33	0.33	
Clearance Time (s)		7.0	7.0	7.0		7.0	7.0	7.0	7.0	7.0	7.0	
Vehicle Extension (s)		1.5	2.0	2.0		1.5	2.0	2.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		288	787	352		386	1145	512	322	1693	527	
v/s Ratio Prot		0.03	0.15			c0.23	0.16		c0.14	0.15		
v/s Ratio Perm		0.13		0.20		c0.38		0.04	c0.29		0.13	
v/c Ratio		0.57	0.69	0.88		1.42	0.50	0.12	0.88	0.45	0.38	
Uniform Delay, d1		45.4	57.2	60.1		37.8	43.7	38.0	48.7	41.8	40.8	
Progression Factor		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		1.5	2.2	20.7		203.5	0.1	0.0	23.4	0.9	2.1	
Delay (s)		46.9	59.3	80.8		241.3	43.9	38.1	72.1	42.7	42.9	
Level of Service		D	E	F		F	D	D	E	D	D	
Approach Delay (s)			66.9				125.5			48.4		
Approach LOS			Е				F			D		
Intersection Summary												
HCM 2000 Control Delay			72.0	H	HCM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.19									
Actuated Cycle Length (s)			160.0	5	Sum of los	t time (s)			28.0			
Intersection Capacity Utiliza	ation		108.1%	I	CU Level	of Service)		G			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	-	ļ	4
Movement	SBL	SBT	SBR
Lane Configurations	ă	^ ^	7
Traffic Volume (vph)	213	1037	136
Future Volume (vph)	213	1037	136
Ideal Flow (vphpl)	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0
Lane Util. Factor	1.00	0.91	1.00
Frt	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00
Satd. Flow (prot)	1770	5085	1583
Flt Permitted	0.32	1.00	1.00
Satd. Flow (perm)	588	5085	1583
Peak-hour factor, PHF	0.90	0.90	0.90
Adj. Flow (vph)	237	1152	151
RTOR Reduction (vph)	0	0	108
Lane Group Flow (vph)	238	1152	43
Turn Type	pm+pt	NA	Perm
Protected Phases	1	6	
Permitted Phases	6		6
Actuated Green, G (s)	62.7	45.6	45.6
Effective Green, g (s)	62.7	45.6	45.6
Actuated g/C Ratio	0.39	0.29	0.29
Clearance Time (s)	7.0	7.0	7.0
Vehicle Extension (s)	3.0	3.0	3.0
Lane Grp Cap (vph)	356	1449	451
v/s Ratio Prot	0.07	0.23	
v/s Ratio Perm	0.19		0.03
v/c Ratio	0.67	0.80	0.10
Uniform Delay, d1	34.3	52.9	42.0
Progression Factor	1.00	1.00	1.00
Incremental Delay, d2	4.7	4.6	0.4
Delay (s)	39.0	57.5	42.5
Level of Service	D	E	D
Approach Delay (s)		53.1	
Approach LOS		D	
Intersection Summary			
intersection outlinary			

	•	→	•	•	←	•	₹I	4	†	~	L	>
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	7	4î		ň	f)			Ä	^	7		Ä
Traffic Volume (vph)	45	7	3	85	0	234	1	19	932	109	44	175
Future Volume (vph)	45	7	3	85	0	234	1	19	932	109	44	175
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			7.0	7.0	7.0		7.0
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00	0.95	1.00		1.00
Frt	1.00	0.96		1.00	0.85			1.00	1.00	0.85		1.00
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00	1.00		0.95
Satd. Flow (prot)	1770	1783		1770	1583			1770	3539	1583		1770
Flt Permitted	0.15	1.00		0.75	1.00			0.27	1.00	1.00		0.21
Satd. Flow (perm)	285	1783		1394	1583			503	3539	1583		400
Peak-hour factor, PHF	0.69	0.69	0.69	0.68	0.68	0.68	0.93	0.93	0.93	0.93	0.94	0.94
Adj. Flow (vph)	65	10	4	125	0	344	1	20	1002	117	47	186
RTOR Reduction (vph)	0	3	0	0	219	0	0	0	0	46	0	0
Lane Group Flow (vph)	65	11	0	125	125	0	0	21	1002	71	0	233
Turn Type	Perm	NA		Perm	NA		custom	pm+pt	NA	Perm	custom	pm+pt
Protected Phases		4			8			5	2			1
Permitted Phases	4			8			5	2		2	1	6
Actuated Green, G (s)	26.1	26.1		26.1	26.1			91.5	88.6	88.6		106.9
Effective Green, g (s)	26.1	26.1		26.1	26.1			91.5	88.6	88.6		106.9
Actuated g/C Ratio	0.18	0.18		0.18	0.18			0.63	0.61	0.61		0.73
Clearance Time (s)	6.0	6.0		6.0	6.0			7.0	7.0	7.0		7.0
Vehicle Extension (s)	2.0	2.0		2.0	2.0			1.5	3.0	3.0		1.5
Lane Grp Cap (vph)	50	318		249	282			340	2147	960		398
v/s Ratio Prot		0.01			0.08			0.00	0.28			c0.05
v/s Ratio Perm	c0.23			0.09				0.04		0.04		c0.38
v/c Ratio	1.30	0.03		0.50	0.44			0.06	0.47	0.07		0.59
Uniform Delay, d1	60.0	49.5		54.1	53.5			10.4	15.7	11.8		9.5
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00		1.00
Incremental Delay, d2	227.6	0.0		0.6	0.4			0.0	0.7	0.1		1.4
Delay (s)	287.5	49.5		54.7	53.9			10.4	16.5	12.0		10.9
Level of Service	F	D		D	D			В	В	В		В
Approach Delay (s)		245.3			54.1				15.9			
Approach LOS		F			D				В			
Intersection Summary												
HCM 2000 Control Delay			26.0	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	city ratio		0.74									
Actuated Cycle Length (s)			146.0		um of lost				20.0			
Intersection Capacity Utiliza	ation		79.1%	IC	U Level o	of Servic	e		D			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

Movement	SBT	SBR
Lane	^	7
Traffic Volume (vph)	943	75
Future Volume (vph)	943	75
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	7.0	7.0
Lane Util. Factor	0.95	1.00
Frt	1.00	0.85
Flt Protected	1.00	1.00
Satd. Flow (prot)	3539	1583
Flt Permitted	1.00	1.00
Satd. Flow (perm)	3539	1583
Peak-hour factor, PHF	0.94	0.94
Adj. Flow (vph)	1003	80
RTOR Reduction (vph)	0	25
Lane Group Flow (vph)	1003	55
	NA	Perm
Turn Type Protected Phases	NA 6	Perm
	b	c
Permitted Phases	07.0	6
Actuated Green, G (s)	97.0	97.0
Effective Green, g (s)	97.0	97.0
Actuated g/C Ratio	0.66	0.66
Clearance Time (s)	7.0	7.0
Vehicle Extension (s)	3.0	3.0
Lane Grp Cap (vph)	2351	1051
v/s Ratio Prot	0.28	
v/s Ratio Perm		0.03
v/c Ratio	0.43	0.05
Uniform Delay, d1	11.5	8.5
Progression Factor	1.00	1.00
Incremental Delay, d2	0.6	0.1
Delay (s)	12.0	8.6
Level of Service	В	Α
Approach Delay (s)	11.6	
Approach LOS	В	

	•	→	\rightarrow	F	•	•	•	4	†	/	-	ţ
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	f)			Ä	f)		Ä	†	7	¥	*
Traffic Volume (vph)	114	64	87	20	13	12	132	94	1142	18	110	1136
Future Volume (vph)	114	64	87	20	13	12	132	94	1142	18	110	1136
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0			6.0	6.0		7.0	7.0	7.0	7.0	7.0
Lane Util. Factor	1.00	1.00			1.00	1.00		1.00	0.95	1.00	1.00	0.95
Frt	1.00	0.91			1.00	0.86		1.00	1.00	0.85	1.00	1.00
Flt Protected	0.95	1.00			0.95	1.00		0.95	1.00	1.00	0.95	1.00
Satd. Flow (prot)	1770	1701			1770	1606		1770	3539	1583	1770	3539
Flt Permitted	0.49	1.00			0.48	1.00		0.18	1.00	1.00	0.18	1.00
Satd. Flow (perm)	921	1701			900	1606		335	3539	1583	339	3539
Peak-hour factor, PHF	0.71	0.71	0.71	0.69	0.69	0.69	0.69	0.91	0.91	0.91	0.90	0.90
Adj. Flow (vph)	161	90	123	29	19	17	191	103	1255	20	122	1262
RTOR Reduction (vph)	0	41	0	0	0	42	0	0	0	7	0	0
Lane Group Flow (vph)	161	172	0	0	48	166	0	103	1255	13	122	1262
Turn Type	Perm	NA		Perm	Perm	NA		Perm	NA	Perm	Perm	NA
Protected Phases		4				8			2			6
Permitted Phases	4			8	8			2		2	6	
Actuated Green, G (s)	19.1	19.1			19.1	19.1		63.9	63.9	63.9	63.9	63.9
Effective Green, g (s)	19.1	19.1			19.1	19.1		63.9	63.9	63.9	63.9	63.9
Actuated g/C Ratio	0.20	0.20			0.20	0.20		0.67	0.67	0.67	0.67	0.67
Clearance Time (s)	6.0	6.0			6.0	6.0		7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	2.0	2.0			2.0	2.0		3.0	3.0	3.0	3.0	3.0
Lane Grp Cap (vph)	183	338			179	319		222	2355	1053	225	2355
v/s Ratio Prot		0.10				0.10			0.35			0.36
v/s Ratio Perm	c0.17				0.05			0.31		0.01	c0.36	
v/c Ratio	0.88	0.51			0.27	0.52		0.46	0.53	0.01	0.54	0.54
Uniform Delay, d1	37.3	34.3			32.5	34.4		7.8	8.3	5.4	8.4	8.3
Progression Factor	1.00	1.00			1.00	1.00		1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	33.9	0.4			0.3	0.7		6.8	0.9	0.0	9.1	0.9
Delay (s)	71.2	34.7			32.8	35.1		14.6	9.2	5.4	17.5	9.2
Level of Service	E	С			С	D		В	Α	Α	В	Α
Approach Delay (s)		50.4				34.7			9.5			9.9
Approach LOS		D				С			Α			Α
Intersection Summary												
HCM 2000 Control Delay			16.1	Н	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.62									
Actuated Cycle Length (s)			96.0	S	um of lost	time (s)			13.0			
Intersection Capacity Utiliza	ition		78.3%	IC	CU Level	of Service			D			
Analysis Period (min)			15									

c Critical Lane Group

Movement	SBR
Lar t Configurations	7
Traffic Volume (vph)	3
Future Volume (vph)	3
Ideal Flow (vphpl)	1900
Total Lost time (s)	7.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1583
Flt Permitted	1.00
Satd. Flow (perm)	1583
Peak-hour factor, PHF	0.90
Adj. Flow (vph)	3
RTOR Reduction (vph)	1
Lane Group Flow (vph)	2
Turn Type	Perm
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	63.9
Effective Green, g (s)	63.9
Actuated g/C Ratio	0.67
Clearance Time (s)	7.0
Vehicle Extension (s)	3.0
Lane Grp Cap (vph)	1053
v/s Ratio Prot	
v/s Ratio Perm	0.00
v/c Ratio	0.00
Uniform Delay, d1	5.4
Progression Factor	1.00
Incremental Delay, d2	0.0
Delay (s)	5.4
Level of Service	Α
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection outlinary	

	۶	→	•	•	•	•	4	†	/	L	-	ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	7	4₽	7					ተተተ	7		ሽኘ	*
Traffic Volume (vph)	362	422	279	0	0	0	0	687	703	1	726	972
Future Volume (vph)	362	422	279	0	0	0	0	687	703	1	726	972
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0					7.0	7.0		7.0	7.0
Lane Util. Factor	0.91	0.91	1.00					0.91	1.00		0.97	0.95
Frt	1.00	1.00	0.85					1.00	0.85		1.00	1.00
Flt Protected	0.95	0.99	1.00					1.00	1.00		0.95	1.00
Satd. Flow (prot)	1610	3356	1583					5085	1583		3433	3539
Flt Permitted	0.95	0.99	1.00					1.00	1.00		0.95	1.00
Satd. Flow (perm)	1610	3356	1583					5085	1583		3433	3539
Peak-hour factor, PHF	0.86	0.86	0.86	0.92	0.92	0.92	0.90	0.90	0.90	0.95	0.95	0.95
Adj. Flow (vph)	421	491	324	0	0	0	0	763	781	1	764	1023
RTOR Reduction (vph)	0	0	122	0	0	0	0	0	89	0	0	0
Lane Group Flow (vph)	295	617	202	0	0	0	0	763	692	0	765	1023
Turn Type	Split	NA	Prot					NA	Prot	Prot	Prot	NA
Protected Phases	16	16	16					4 5	4 5	23	23	2345
Permitted Phases												
Actuated Green, G (s)	59.5	59.5	59.5					60.7	60.7		96.3	164.5
Effective Green, g (s)	52.0	52.0	52.0					60.7	60.7		96.3	157.0
Actuated g/C Ratio	0.22	0.22	0.22					0.26	0.26		0.40	0.66
Clearance Time (s)												
Vehicle Extension (s)												
Lane Grp Cap (vph)	351	733	345					1296	403		1389	2334
v/s Ratio Prot	0.18	c0.18	0.13					0.15	c0.44		c0.22	0.29
v/s Ratio Perm												
v/c Ratio	0.84	0.84	0.59					0.59	1.72		0.55	0.44
Uniform Delay, d1	89.0	89.1	83.3					77.7	88.7		54.3	19.4
Progression Factor	1.00	1.00	1.00					1.00	1.00		0.12	0.29
Incremental Delay, d2	15.8	8.3	1.6					0.4	333.5		0.1	0.0
Delay (s)	104.8	97.4	85.0					78.2	422.1		6.5	5.6
Level of Service	F	F	F					Е	F		Α	Α
Approach Delay (s)		95.9			0.0			252.1				6.0
Approach LOS		F			Α			F				Α
Intersection Summary												
HCM 2000 Control Delay			113.5	H	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	ity ratio		1.03									
Actuated Cycle Length (s)			238.0	Sı	um of lost	time (s)			43.0			
Intersection Capacity Utilizati	ion		114.8%			of Service			Н			
Analysis Period (min)			15									

c Critical Lane Group

Movement	SBR
Lart Configurations	ODIC
Traffic Volume (vph)	0
Future Volume (vph)	0
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.95
Adj. Flow (vph)	0
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s) Level of Service	
Approach Delay (s)	
Approach LOS	
••	
Intersection Summary	

	۶	→	\rightarrow	•	←	•	∳ 1	•	†	/	>	ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations				*	€ 1}	7		Ä	† †			1111
Traffic Volume (vph)	0	0	0	460	45	475	2	315	733	0	0	1237
Future Volume (vph)	0	0	0	460	45	475	2	315	733	0	0	1237
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				7.5	7.5	7.5		7.0	7.0			7.0
Lane Util. Factor				0.91	0.86	0.91		1.00	0.95			0.86
Frt				1.00	0.93	0.85		1.00	1.00			1.00
Flt Protected				0.95	0.98	1.00		0.95	1.00			1.00
Satd. Flow (prot)				1610	2907	1441		1770	3539			6408
Flt Permitted				0.95	0.98	1.00		0.95	1.00			1.00
Satd. Flow (perm)				1610	2907	1441		1770	3539			6408
Peak-hour factor, PHF	0.92	0.92	0.92	0.91	0.91	0.91	0.87	0.87	0.87	0.87	0.94	0.94
Adj. Flow (vph)	0	0	0	505	49	522	2	362	843	0	0	1316
RTOR Reduction (vph)	0	0	0	0	73	177	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	283	459	84	0	364	843	0	0	1316
Turn Type				Split	NA	Perm	Prot	Prot	NA			NA
Protected Phases				3 4	3 4		56	56	1256			12
Permitted Phases						3 4						
Actuated Green, G (s)				55.5	55.5	55.5		106.7	168.5			54.3
Effective Green, g (s)				55.5	55.5	55.5		106.7	161.0			54.3
Actuated g/C Ratio				0.23	0.23	0.23		0.45	0.68			0.23
Clearance Time (s)												
Vehicle Extension (s)												
Lane Grp Cap (vph)				375	677	336		793	2394			1461
v/s Ratio Prot				c0.18	0.16			c0.21	0.24			c0.21
v/s Ratio Perm						0.06						
v/c Ratio				0.75	0.68	0.25		0.46	0.35			0.90
Uniform Delay, d1				84.9	83.1	74.3		45.6	16.4			89.2
Progression Factor				1.00	1.00	1.00		0.18	0.30			1.00
Incremental Delay, d2				7.5	2.1	0.1		0.2	0.0			7.8
Delay (s)				92.4	85.2	74.4		8.2	4.9			97.0
Level of Service				F	F	Е		Α	Α			F
Approach Delay (s)		0.0			84.5				5.9			94.6
Approach LOS		Α			F				Α			F
Intersection Summary												
HCM 2000 Control Delay			63.9	H	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capac	ity ratio		0.72									
Actuated Cycle Length (s)			238.0		um of lost				43.0			
Intersection Capacity Utilizati	on		114.8%	IC	U Level of	of Service	!		Н			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

Movement	SBR
La ner Configurations	7
Traffic Volume (vph)	231
Future Volume (vph)	231
Ideal Flow (vphpl)	1900
Total Lost time (s)	7.5
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1583
Flt Permitted	1.00
Satd. Flow (perm)	1583
Peak-hour factor, PHF	0.94
Adj. Flow (vph)	246
RTOR Reduction (vph)	118
Lane Group Flow (vph)	128
Turn Type	custom
Protected Phases	Custom
Permitted Phases	6
Actuated Green, G (s)	49.7
Effective Green, g (s)	49.7
Actuated g/C Ratio	0.21
Clearance Time (s)	7.5
Vehicle Extension (s)	2.5
Lane Grp Cap (vph)	330
v/s Ratio Prot	0.00
v/s Ratio Perm	0.08
v/c Ratio	0.39
Uniform Delay, d1	81.1
Progression Factor	1.00
Incremental Delay, d2	0.6
Delay (s)	81.6
Level of Service	F
Approach Delay (s)	
Approach LOS	
Intersection Summary	
min social community	

		•	•	₹I	4	†	L	↓	4	
Movement	EBU	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR	
Lane Configurations		ă	7		ă	† †	Ð	^	7	
Traffic Volume (vph)	1	97	156	1	95	1113	3	1312	79	
Future Volume (vph)	1	97	156	1	95	1113	3	1312	79	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		6.0	6.0		7.0	7.0	7.0	7.0	7.0	
Lane Util. Factor		1.00	1.00		1.00	0.95	1.00	0.95	1.00	
Frt		1.00	0.85		1.00	1.00	1.00	1.00	0.85	
Flt Protected		0.95	1.00		0.95	1.00	0.95	1.00	1.00	
Satd. Flow (prot)		1770	1583		1770	3539	1770	3539	1583	
Flt Permitted		0.95	1.00		0.09	1.00	0.24	1.00	1.00	
Satd. Flow (perm)		1770	1583		172	3539	456	3539	1583	
Peak-hour factor, PHF	0.63	0.63	0.63	0.96	0.96	0.96	0.85	0.85	0.85	
Adj. Flow (vph)	2	154	248	1	99	1159	4	1544	93	
RTOR Reduction (vph)	0	0	191	0	0	0	0	0	29	
Lane Group Flow (vph)	0	156	57	0	100	1159	4	1544	64	
Turn Type	Prot	Prot	Perm	Perm	pm+pt	NA	Perm	NA	Perm	
Protected Phases	4	4			5	2		6		
Permitted Phases			4	2	2		6		6	
Actuated Green, G (s)		13.8	13.8		80.2	80.2	67.1	67.1	67.1	
Effective Green, g (s)		13.8	13.8		80.2	80.2	67.1	67.1	67.1	
Actuated g/C Ratio		0.13	0.13		0.75	0.75	0.63	0.63	0.63	
Clearance Time (s)		6.0	6.0		7.0	7.0	7.0	7.0	7.0	
Vehicle Extension (s)		2.0	2.0		1.5	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		228	204		220	2652	285	2219	992	
v/s Ratio Prot		c0.09			0.03	c0.33		c0.44		
v/s Ratio Perm			0.04		0.31		0.01		0.04	
v/c Ratio		0.68	0.28		0.45	0.44	0.01	0.70	0.06	
Uniform Delay, d1		44.5	42.1		11.0	5.0	7.5	13.2	7.8	
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		6.6	0.3		0.5	0.5	0.1	1.8	0.1	
Delay (s)		51.1	42.4		11.6	5.5	7.6	15.0	7.9	
Level of Service		D	D		В	Α	Α	В	Α	
Approach Delay (s)		45.8				6.0		14.6		
Approach LOS		D				Α		В		
Intersection Summary										
HCM 2000 Control Delay			15.1	H	ICM 2000	Level of	Service		В	
HCM 2000 Volume to Capacit	y ratio		0.70							
Actuated Cycle Length (s)			107.0	S	Sum of los	t time (s)			20.0	
Intersection Capacity Utilization	n		67.9%		CU Level				С	
Analysis Period (min)			15							

c Critical Lane Group

	•	→	\rightarrow	•	←	•	•	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ă	ተተተ	7	ሽኘ	^	7	ă	^	77	ሽኘ	^	7
Traffic Volume (vph)	62	782	124	272	697	101	140	621	452	183	998	95
Future Volume (vph)	62	782	124	272	697	101	140	621	452	183	998	95
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5	6.5	6.5	6.5	6.5
Lane Util. Factor	1.00	0.91	1.00	0.97	0.95	1.00	1.00	0.95	0.88	0.97	0.95	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1770	5085	1583	3433	3539	1583	1770	3539	2787	3433	3539	1583
Flt Permitted	0.26	1.00	1.00	0.95	1.00	1.00	0.07	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	476	5085	1583	3433	3539	1583	137	3539	2787	3433	3539	1583
Peak-hour factor, PHF	0.91	0.91	0.91	0.92	0.92	0.92	0.93	0.93	0.93	0.92	0.92	0.92
Adj. Flow (vph)	68	859	136	296	758	110	151	668	486	199	1085	103
RTOR Reduction (vph)	0	0	87	0	0	71	0	0	70	0	0	68
Lane Group Flow (vph)	68	859	49	296	758	39	151	668	416	199	1085	35
Turn Type	pm+pt	NA	Perm	Prot	NA	Perm	pm+pt	NA	custom	Prot	NA	Perm
Protected Phases	1	6		5	2		7	4		3	8	
Permitted Phases	6		6			2	4		4 5			8
Actuated Green, G (s)	57.4	49.4	49.4	15.6	57.0	57.0	67.9	54.4	76.5	13.6	54.5	54.5
Effective Green, g (s)	57.4	49.4	49.4	15.6	57.0	57.0	67.9	54.4	76.5	13.6	54.5	54.5
Actuated g/C Ratio	0.36	0.31	0.31	0.10	0.36	0.36	0.42	0.34	0.48	0.08	0.34	0.34
Clearance Time (s)	7.0	7.0	7.0	7.0	7.0	7.0	6.5	6.5		6.5	6.5	6.5
Vehicle Extension (s)	2.0	3.0	3.0	2.0	3.0	3.0	2.0	2.5		2.0	2.5	2.5
Lane Grp Cap (vph)	235	1569	488	334	1260	563	195	1203	1332	291	1205	539
v/s Ratio Prot	0.01	0.17		c0.09	c0.21		c0.07	0.19		0.06	c0.31	
v/s Ratio Perm	0.09		0.03			0.02	0.26		0.15			0.02
v/c Ratio	0.29	0.55	0.10	0.89	0.60	0.07	0.77	0.56	0.31	0.68	0.90	0.07
Uniform Delay, d1	35.0	46.0	39.4	71.3	42.2	34.0	39.6	43.0	25.6	71.1	50.2	35.6
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Incremental Delay, d2	0.2	1.4	0.4	22.8	2.1	0.2	15.9	1.9	0.0	5.2	10.9	0.2
Delay (s)	35.2	47.4	39.9	94.1	44.3	34.2	55.5	44.8	25.7	76.3	61.0	35.8
Level of Service	D	D	D	F	D	С	Е	D	С	Е	Е	D
Approach Delay (s)		45.6			56.0			38.9			61.4	
Approach LOS		D			Е			D			Е	
Intersection Summary												
HCM 2000 Control Delay			50.7	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.79									
Actuated Cycle Length (s)	1 7				um of lost	t time (s)			27.0			
Intersection Capacity Utiliza	ation		81.3%	IC	CU Level of	of Service	9		D			
Analysis Period (min)			15									

c Critical Lane Group

	٠	→	\rightarrow	•	•	•	₹ I	4	†	/	L	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	Ä	f)		Ä	₽			Ä	^	7		Ä
Traffic Volume (vph)	262	113	114	110	20	67	2	25	1280	163	3	213
Future Volume (vph)	262	113	114	110	20	67	2	25	1280	163	3	213
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			7.0	7.0	7.0		7.0
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00	0.95	1.00		1.00
Frt	1.00	0.92		1.00	0.88			1.00	1.00	0.85		1.00
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00	1.00		0.95
Satd. Flow (prot)	1770	1722		1770	1648			1770	3539	1583		1770
Flt Permitted	0.47	1.00		0.28	1.00			0.19	1.00	1.00		0.05
Satd. Flow (perm)	877	1722		522	1648			357	3539	1583		94
Peak-hour factor, PHF	0.86	0.86	0.86	0.85	0.85	0.85	0.89	0.89	0.89	0.89	0.92	0.92
Adj. Flow (vph)	305	131	133	129	24	79	2	28	1438	183	3	232
RTOR Reduction (vph)	0	25	0	0	69	0	0	0	0	67	0	0
Lane Group Flow (vph)	305	239	0	129	34	0	0	30	1438	116	0	235
Turn Type	pm+pt	NA		pm+pt	NA		custom	pm+pt	NA	Perm	custom	pm+pt
Protected Phases	7	4		3	8			5	2			1
Permitted Phases	4			8			5	2		2	1	6
Actuated Green, G (s)	45.6	26.6		33.6	20.6			76.3	72.0	72.0		101.4
Effective Green, g (s)	45.6	26.6		33.6	20.6			76.3	72.0	72.0		101.4
Actuated g/C Ratio	0.29	0.17		0.21	0.13			0.48	0.45	0.45		0.63
Clearance Time (s)	6.0	6.0		6.0	6.0			7.0	7.0	7.0		7.0
Vehicle Extension (s)	1.5	2.0		1.5	2.0			1.5	3.0	3.0		1.5
Lane Grp Cap (vph)	355	286		211	212			208	1592	712		294
v/s Ratio Prot	c0.10	0.14		0.05	0.02			0.00	c0.41			c0.11
v/s Ratio Perm	c0.14			0.08				0.06		0.07		0.39
v/c Ratio	0.86	0.84		0.61	0.16			0.14	0.90	0.16		0.80
Uniform Delay, d1	51.5	64.6		54.3	62.0			22.8	40.8	26.1		51.4
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00		1.00
Incremental Delay, d2	17.7	17.9		3.7	0.1			0.1	8.8	0.5		13.2
Delay (s)	69.1	82.5		57.9	62.1			22.9	49.6	26.6		64.6
Level of Service	Е	F		Е	Е			С	D	С		Е
Approach Delay (s)		75.3			59.8				46.5			
Approach LOS		Е			Е				D			
Intersection Summary												
HCM 2000 Control Delay			45.3	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.90									
Actuated Cycle Length (s)			160.0		um of lost				26.0			
Intersection Capacity Utilization	ation		89.4%	IC	CU Level o	of Servic	е		E			
Analysis Period (min)			15									

c Critical Lane Group

	↓	4
Movement	SBT	SBR
Lane Configurations	<u> </u>	7
Traffic Volume (vph)	1109	59
Future Volume (vph)	1109	59
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	7.0	7.0
Lane Util. Factor	0.95	1.00
Frt	1.00	0.85
Fit Protected	1.00	1.00
	3539	1583
Satd. Flow (prot)		
Flt Permitted	1.00	1.00
Satd. Flow (perm)	3539	1583
Peak-hour factor, PHF	0.92	0.92
Adj. Flow (vph)	1205	64
RTOR Reduction (vph)	0	28
Lane Group Flow (vph)	1205	36
Turn Type	NA	Perm
Protected Phases	6	
Permitted Phases		6
Actuated Green, G (s)	90.1	90.1
Effective Green, g (s)	90.1	90.1
Actuated g/C Ratio	0.56	0.56
Clearance Time (s)	7.0	7.0
Vehicle Extension (s)	3.0	3.0
Lane Grp Cap (vph)	1992	891
v/s Ratio Prot	0.34	331
v/s Ratio Perm	0.04	0.02
v/c Ratio	0.60	0.02
Uniform Delay, d1	23.2	15.6
Progression Factor	1.00	1.00
	1.00	0.1
Incremental Delay, d2		
Delay (s)	24.5	15.7
Level of Service	C	В
Approach Delay (s)	30.4 C	
Approach LOS	()	
Approach LOS	C	

		•	\rightarrow	4	†	L♣	ļ	4		
Movement	EBU	EBL	EBR	NBL	NBT	SBU	SBT	SBR		
Lane Configurations		ă	7	ă	^	Ð	^	7		
Traffic Volume (vph)	1	214	42	19	1596	52	1342	90		
Future Volume (vph)	1	214	42	19	1596	52	1342	90		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor		1.00	1.00	1.00	0.91	1.00	0.91	1.00		
Frt		1.00	0.85	1.00	1.00	1.00	1.00	0.85		
Flt Protected		0.95	1.00	0.95	1.00	0.95	1.00	1.00		
Satd. Flow (prot)		1770	1583	1770	5085	1770	5085	1583		
Flt Permitted		0.95	1.00	0.15	1.00	0.09	1.00	1.00		
Satd. Flow (perm)		1770	1583	279	5085	170	5085	1583		
Peak-hour factor, PHF	0.85	0.85	0.85	0.94	0.94	0.93	0.93	0.93		
Adj. Flow (vph)	1	252	49	20	1698	56	1443	97		
RTOR Reduction (vph)	0	0	40	0	0	0	0	39		
Lane Group Flow (vph)	0	253	9	20	1698	56	1443	58		
Turn Type	Prot	Prot	Perm	pm+pt	NA	pm+pt	NA	Perm		
Protected Phases	4	4		5	2	1	6			
Permitted Phases			4	2		6		6		
Actuated Green, G (s)		16.1	16.1	53.6	51.7	58.2	54.0	54.0		
Effective Green, g (s)		16.1	16.1	53.6	51.7	58.2	54.0	54.0		
Actuated g/C Ratio		0.18	0.18	0.60	0.57	0.65	0.60	0.60		
Clearance Time (s)		6.0	6.0	6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)		2.0	2.0	1.5	3.0	1.5	3.0	3.0		
Lane Grp Cap (vph)		316	283	197	2921	184	3051	949		
v/s Ratio Prot		c0.14		0.00	c0.33	c0.01	0.28			
v/s Ratio Perm			0.01	0.06		0.18		0.04		
v/c Ratio		0.80	0.03	0.10	0.58	0.30	0.47	0.06		
Uniform Delay, d1		35.4	30.5	7.7	12.2	7.8	10.1	7.5		
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2		12.8	0.0	0.1	0.9	0.3	0.5	0.1		
Delay (s)		48.2	30.5	7.8	13.1	8.1	10.6	7.6		
Level of Service		D	С	Α	В	Α	В	Α		
Approach Delay (s)		45.4			13.0		10.3			
Approach LOS		D			В		В			
Intersection Summary										
HCM 2000 Control Delay			14.5	Н	CM 2000	Level of	Service		В	
HCM 2000 Volume to Capacit	y ratio		0.61							
Actuated Cycle Length (s)			90.0	S	um of los	t time (s)			18.0	
Intersection Capacity Utilization	on		61.1%			of Service			В	
Analysis Period (min)			15							

c Critical Lane Group

	•	-	•	•	←	•	•	†	/	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	4₽	7					1111	7	ሽኘ	^	
Traffic Volume (vph)	750	409	458	0	0	0	0	1375	487	713	1026	0
Future Volume (vph)	750	409	458	0	0	0	0	1375	487	713	1026	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0					7.0	7.0	7.0	7.0	
Lane Util. Factor	0.91	0.91	1.00					0.86	1.00	0.97	0.95	
Frt	1.00	1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95	0.98	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1610	3312	1583					6408	1583	3433	3539	
Flt Permitted	0.95	0.98	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1610	3312	1583					6408	1583	3433	3539	
Peak-hour factor, PHF	0.97	0.97	0.97	0.92	0.92	0.92	0.87	0.87	0.87	0.93	0.93	0.93
Adj. Flow (vph)	773	422	472	0	0	0	0	1580	560	767	1103	0
RTOR Reduction (vph)	0	0	105	0	0	0	0	0	93	0	0	0
Lane Group Flow (vph)	394	801	367	0	0	0	0	1580	467	767	1103	0
Turn Type	Split	NA	Prot					NA	Prot	Prot	NA	
Protected Phases	16	16	16					4 5	4 5	23	2345	
Permitted Phases												
Actuated Green, G (s)	53.0	53.0	53.0					53.0	53.0	97.0	157.0	
Effective Green, g (s)	53.0	53.0	53.0					53.0	53.0	97.0	157.0	
Actuated g/C Ratio	0.24	0.24	0.24					0.24	0.24	0.43	0.70	
Clearance Time (s)												
Vehicle Extension (s)												
Lane Grp Cap (vph)	380	783	374					1516	374	1486	2480	
v/s Ratio Prot	c0.24	0.24	0.23					0.25	c0.29	c0.22	0.31	
v/s Ratio Perm												
v/c Ratio	1.04	1.02	0.98					1.04	1.25	0.52	0.44	
Uniform Delay, d1	85.5	85.5	85.0					85.5	85.5	46.4	14.6	
Progression Factor	1.00	1.00	1.00					1.00	1.00	0.05	0.46	
Incremental Delay, d2	56.0	38.1	41.5					34.9	132.2	0.0	0.0	
Delay (s)	141.5	123.6	126.5					120.4	217.7	2.3	6.7	
Level of Service	F	F	F					F	F	Α	А	
Approach Delay (s)		128.7			0.0			145.9			4.9	
Approach LOS		F			Α			F			Α	
Intersection Summary												
HCM 2000 Control Delay			94.4	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		0.94									
Actuated Cycle Length (s)			224.0		um of lost				42.0			
Intersection Capacity Utiliza	ation		141.2%	IC	U Level o	of Service			Н			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				, J	413-	7	ሽኘ	^			1111	7
Traffic Volume (vph)	0	0	0	228	309	669	491	1634	0	0	1511	642
Future Volume (vph)	0	0	0	228	309	669	491	1634	0	0	1511	642
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				7.0	7.0	7.0	7.0	7.0			7.0	7.0
Lane Util. Factor				0.91	0.86	0.91	0.97	0.95			0.86	1.00
Frt				1.00	0.92	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	1.00	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1610	2957	1441	3433	3539			6408	1583
Flt Permitted				0.95	1.00	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1610	2957	1441	3433	3539			6408	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.90	0.90	0.90	0.94	0.94	0.94	0.95	0.95	0.95
Adj. Flow (vph)	0	0	0	253	343	743	522	1738	0	0	1591	676
RTOR Reduction (vph)	0	0	0	0	31	93	0	0	0	0	0	305
Lane Group Flow (vph)	0	0	0	228	709	278	522	1738	0	0	1591	371
Turn Type				Prot	NA	Perm	Prot	NA			NA	custom
Protected Phases				3	3 4		56	1256			12	
Permitted Phases						3 4						6
Actuated Green, G (s)				45.0	46.0	53.0	97.0	157.0			53.0	45.0
Effective Green, g (s)				45.0	46.0	53.0	97.0	157.0			53.0	45.0
Actuated g/C Ratio				0.20	0.21	0.24	0.43	0.70			0.24	0.20
Clearance Time (s)				7.0								7.0
Vehicle Extension (s)				2.0								2.0
Lane Grp Cap (vph)				323	699	340	1486	2480			1516	318
v/s Ratio Prot				0.14	c0.20		0.15	c0.49			c0.25	
v/s Ratio Perm					0.04	0.19						c0.23
v/c Ratio				0.71	1.01	0.82	0.35	0.70			1.05	1.17
Uniform Delay, d1				83.3	89.0	80.9	42.5	19.7			85.5	89.5
Progression Factor				1.00	1.00	1.00	0.20	0.66			1.00	1.00
Incremental Delay, d2				5.6	37.7	13.4	0.0	0.1			37.3	103.4
Delay (s)				89.0	126.7	94.3	8.6	13.1			122.8	192.9
Level of Service				F	F	F	Α	В			F	F
Approach Delay (s)		0.0			111.3			12.1			143.7	
Approach LOS		Α			F			В			F	
Intersection Summary												
HCM 2000 Control Delay			85.6	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capaci	ty ratio		1.08									
Actuated Cycle Length (s)			224.0	S	um of lost	t time (s)			42.0			
Intersection Capacity Utilizati	on		141.2%	IC	CU Level	of Service			Н			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	•	→	•	•	←	•	4	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	ĵ»		ሻ	₽		ă	ተተተ	7	ă	ተተኈ	
Traffic Volume (vph)	67	1	71	49	2	20	24	2138	142	13	2033	23
Future Volume (vph)	67	1	71	49	2	20	24	2138	142	13	2033	23
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		5.0	5.0	5.0	5.0	5.0	
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.91	1.00	1.00	0.91	
Frt	1.00	0.85		1.00	0.86		1.00	1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1770	1587		1770	1606		1770	5085	1583	1770	5077	
Flt Permitted	0.73	1.00		0.70	1.00		0.06	1.00	1.00	0.06	1.00	
Satd. Flow (perm)	1365	1587		1304	1606		110	5085	1583	119	5077	
Peak-hour factor, PHF	0.82	0.82	0.82	0.58	0.58	0.58	0.93	0.93	0.93	0.89	0.89	0.89
Adj. Flow (vph)	82	1	87	84	3	34	26	2299	153	15	2284	26
RTOR Reduction (vph)	0	78	0	0	5	0	0	0	34	0	1	0
Lane Group Flow (vph)	82	10	0	84	32	0	26	2299	119	15	2309	0
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	Perm	NA	
Protected Phases		4			8		5	2			6	
Permitted Phases	4			8			2		2	6		
Actuated Green, G (s)	9.2	9.2		9.2	9.2		69.8	69.8	69.8	62.8	62.8	
Effective Green, g (s)	9.2	9.2		9.2	9.2		69.8	69.8	69.8	62.8	62.8	
Actuated g/C Ratio	0.10	0.10		0.10	0.10		0.78	0.78	0.78	0.70	0.70	
Clearance Time (s)	6.0	6.0		6.0	6.0		5.0	5.0	5.0	5.0	5.0	
Vehicle Extension (s)	2.0	2.0		2.0	2.0		1.5	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)	139	162		133	164		122	3943	1227	83	3542	
v/s Ratio Prot		0.01			0.02		0.00	c0.45			c0.45	
v/s Ratio Perm	0.06			c0.06			0.16		0.07	0.13		
v/c Ratio	0.59	0.06		0.63	0.19		0.21	0.58	0.10	0.18	0.65	
Uniform Delay, d1	38.6	36.5		38.8	37.0		6.1	4.1	2.5	4.7	7.5	
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2	4.1	0.1		7.0	0.2		0.3	0.6	0.2	1.0	0.4	
Delay (s)	42.7	36.6		45.8	37.2		6.4	4.8	2.6	5.8	8.0	
Level of Service	D	D		D	D		Α	А	Α	Α	Α	
Approach Delay (s)		39.5			43.1			4.7			8.0	
Approach LOS		D			D			Α			Α	
Intersection Summary												
HCM 2000 Control Delay			8.2	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.67									
Actuated Cycle Length (s)			90.0		um of lost				16.0			
Intersection Capacity Utiliza	ition		60.9%	IC	U Level o	of Service	9		В			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group

	•	•	†	/	>	↓			
Movement	WBL	WBR	NBT	NBR	SBL	SBT			
Lane Configurations	ሽኘ	7	^	7	ሻሻ	^			
Traffic Volume (vph)	379	285	1676	549	520	1690			
Future Volume (vph)	379	285	1676	549	520	1690			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900			
Grade (%)	15%		0%			0%			
Total Lost time (s)	6.5	6.5	6.5	6.5	6.5	6.5			
Lane Util. Factor	0.97	1.00	0.91	1.00	0.97	0.91			
Frt	1.00	0.85	1.00	0.85	1.00	1.00			
Flt Protected	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (prot)	3176	1465	5085	1583	3433	5085			
Flt Permitted	0.95	1.00	1.00	1.00	0.95	1.00			
Satd. Flow (perm)	3176	1465	5085	1583	3433	5085			
Peak-hour factor, PHF	0.90	0.90	0.93	0.93	0.94	0.94			
Adj. Flow (vph)	421	317	1802	590	553	1798			
RTOR Reduction (vph)	0	1	0	221	0	0			
Lane Group Flow (vph)	421	316	1802	369	553	1798			
Turn Type	Prot	pt+ov	NA	Prot	Prot	NA			
Protected Phases	4	41	2	2	1	12			
Permitted Phases	•								
Actuated Green, G (s)	27.1	80.5	66.5	66.5	46.9	119.9			
Effective Green, g (s)	27.1	80.5	66.5	66.5	46.9	119.9			
Actuated g/C Ratio	0.17	0.50	0.42	0.42	0.29	0.75			
Clearance Time (s)	6.5		6.5	6.5	6.5				
Vehicle Extension (s)	2.0		3.0	3.0	1.5				
Lane Grp Cap (vph)	537	737	2113	657	1006	3810			
v/s Ratio Prot	c0.13	0.22	c0.35	0.23	c0.16	0.35			
v/s Ratio Perm	00.10	V.LL	00.00	0.20	00.10	0.00			
v/c Ratio	0.78	0.43	0.85	0.56	0.55	0.47			
Uniform Delay, d1	63.6	25.2	42.3	35.6	47.7	7.8			
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.36			
Incremental Delay, d2	6.8	0.1	4.6	3.4	1.5	0.3			
Delay (s)	70.5	25.3	46.9	39.1	49.4	10.9			
Level of Service	E	C	D	D	D	В			
Approach Delay (s)	51.1		45.0			19.9			
Approach LOS	D		D			В			
Intersection Summary									
HCM 2000 Control Delay			35.1	Н	CM 2000	Level of Service	e	D	
HCM 2000 Volume to Capac	city ratio		0.74						
Actuated Cycle Length (s)	•		160.0	S	um of lost	time (s)		19.5	
Intersection Capacity Utiliza	tion		74.3%			of Service		D	
Analysis Period (min)			15						
c Critical Lane Group									

	•	-	•	•	←	•	₹I	•	†	/	L	>
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	Ĭ	ĵ.		¥	f)			Ä	ተተተ	7		Ä
Traffic Volume (vph)	55	29	123	62	11	49	18	64	1620	260	6	159
Future Volume (vph)	55	29	123	62	11	49	18	64	1620	260	6	159
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0		6.0
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00	0.91	1.00		1.00
Frt	1.00	0.88		1.00	0.88			1.00	1.00	0.85		1.00
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00	1.00		0.95
Satd. Flow (prot)	1770	1636		1770	1633			1770	5085	1583		1770
Flt Permitted	0.70	1.00		0.54	1.00			0.95	1.00	1.00		0.95
Satd. Flow (perm)	1308	1636		1012	1633			1770	5085	1583		1770
Peak-hour factor, PHF	0.85	0.85	0.85	0.71	0.71	0.71	0.93	0.93	0.93	0.93	0.95	0.95
Adj. Flow (vph)	65	34	145	87	15	69	19	69	1742	280	6	167
RTOR Reduction (vph)	0	126	0	0	60	0	0	0	0	130	0	0
Lane Group Flow (vph)	65	53	0	87	24	0	0	88	1742	150	0	173
Turn Type	Perm	NA		Perm	NA		Prot	Prot	NA	Perm	Prot	Prot
Protected Phases		4			8		5	5	2		1	1
Permitted Phases	4			8						2		
Actuated Green, G (s)	10.6	10.6		10.6	10.6			7.0	39.9	39.9		11.5
Effective Green, g (s)	10.6	10.6		10.6	10.6			7.0	39.9	39.9		11.5
Actuated g/C Ratio	0.13	0.13		0.13	0.13			0.09	0.50	0.50		0.14
Clearance Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0		6.0
Vehicle Extension (s)	2.0	2.0		2.0	2.0			1.5	3.0	3.0		1.5
Lane Grp Cap (vph)	173	216		134	216			154	2536	789		254
v/s Ratio Prot		0.03			0.01			0.05	0.34			c0.10
v/s Ratio Perm	0.05			c0.09						0.09		
v/c Ratio	0.38	0.25		0.65	0.11			0.57	0.69	0.19		0.68
Uniform Delay, d1	31.7	31.1		32.9	30.6			35.1	15.3	11.1		32.5
Progression Factor	1.00	1.00		1.00	1.00			1.24	1.14	1.24		1.00
Incremental Delay, d2	0.5	0.2		7.9	0.1			1.9	0.9	0.3		5.9
Delay (s)	32.2	31.3		40.8	30.6			45.5	18.4	14.1		38.4
Level of Service	С	С		D	С			D	В	В		D
Approach Delay (s)		31.6			35.8				19.0			
Approach LOS		С			D				В			
Intersection Summary												
HCM 2000 Control Delay			19.4	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.77									
Actuated Cycle Length (s)			80.0		um of lost				18.0			
Intersection Capacity Utiliza	ition		78.0%	IC	U Level o	of Service			D			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	↓	4
Movement	SBT	SBR
Lane Configurations	**	ODIT
Traffic Volume (vph)	2008	24
Future Volume (vph)	2008	24
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	6.0	1000
Lane Util. Factor	0.91	
Frt	1.00	
Flt Protected	1.00	
Satd. Flow (prot)	5076	
Flt Permitted	1.00	
Satd. Flow (perm)	5076	
Peak-hour factor, PHF	0.95	0.95
Adj. Flow (vph)	2114	25
RTOR Reduction (vph)	1	0
Lane Group Flow (vph)	2138	0
Turn Type	NA	<u> </u>
Protected Phases	6	
Permitted Phases	U	
Actuated Green, G (s)	44.4	
Effective Green, g (s)	44.4	
Actuated g/C Ratio	0.55	
Clearance Time (s)	6.0	
Vehicle Extension (s)	3.0	
	2817	
Lane Grp Cap (vph) v/s Ratio Prot	c0.42	
v/s Ratio Prot v/s Ratio Perm	CU.42	
v/c Ratio Perm	0.76	
	13.7	
Uniform Delay, d1	1.00	
Progression Factor	2.0	
Incremental Delay, d2	15.7	
Delay (s)		
Level of Service	B 17.4	
Approach Delay (s) Approach LOS	17. 4	
Approach LOS	Б	
Intersection Summary		

	۶	-	•	•	←	•	₹I	•	†	/	>	ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations		ર્ન	7	7	₽			ሽኘ	↑ ↑₽		ነ	ተተተ
Traffic Volume (vph)	50	1	40	8	2	0	1	38	1846	3	0	2122
Future Volume (vph)	50	1	40	8	2	0	1	38	1846	3	0	2122
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)		6.0	6.0	6.0	6.0			7.0	10.0			7.0
Lane Util. Factor		1.00	1.00	1.00	1.00			0.97	0.91			0.91
Frpb, ped/bikes		1.00	0.99	1.00	1.00			1.00	1.00			1.00
Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00			1.00
Frt		1.00	0.85	1.00	1.00			1.00	1.00			1.00
Flt Protected		0.95	1.00	0.95	1.00			0.95	1.00			1.00
Satd. Flow (prot)		1693	1485	1639	1950			3334	5167			5219
Flt Permitted		0.73	1.00	0.95	1.00			0.95	1.00			1.00
Satd. Flow (perm)		1296	1485	1639	1950			3334	5167			5219
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	51	1	41	8	2	0	1	39	1884	3	0	2165
RTOR Reduction (vph)	0	0	39	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	52	2	8	2	0	0	40	1887	0	0	2165
Confl. Peds. (#/hr)			2									
Heavy Vehicles (%)	10%	0%	10%	13%	0%	0%	0%	8%	3%	0%	0%	2%
Turn Type	Perm	NA	Perm	Split	NA		Prot	Prot	NA		Prot	NA
Protected Phases		4		8	8		5	5	2		1	6
Permitted Phases	4		4									
Actuated Green, G (s)		9.6	9.6	2.6	2.6			5.1	128.8			116.7
Effective Green, g (s)		9.6	9.6	2.6	2.6			5.1	125.8			116.7
Actuated g/C Ratio		0.06	0.06	0.02	0.02			0.03	0.79			0.73
Clearance Time (s)		6.0	6.0	6.0	6.0			7.0	7.0			7.0
Vehicle Extension (s)		2.0	2.0	2.0	2.0			1.5	3.0			3.0
Lane Grp Cap (vph)		77	89	26	31			106	4062			3806
v/s Ratio Prot				c0.00	0.00			0.01	c0.37			c0.41
v/s Ratio Perm		c0.04	0.00									
v/c Ratio		0.68	0.03	0.31	0.06			0.38	0.46			0.57
Uniform Delay, d1		73.7	70.8	77.8	77.5			75.9	5.8			10.0
Progression Factor		1.00	1.00	1.00	1.00			0.92	3.60			0.90
Incremental Delay, d2		16.8	0.0	2.4	0.3			0.8	0.4			0.2
Delay (s)		90.5	70.9	80.3	77.8			70.8	21.1			9.2
Level of Service		F	Е	F	Е			Е	С			Α
Approach Delay (s)		81.8			79.8				22.1			9.1
Approach LOS		F			E				С			A
Intersection Summary												
HCM 2000 Control Delay			16.7	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	city ratio		0.60									
Actuated Cycle Length (s)			160.0		um of lost				29.0			
Intersection Capacity Utiliza	ition		67.4%	IC	U Level	of Service			С			
Analysis Period (min)			15									

c Critical Lane Group

Synchro 10 Report Page 9 02/25/2020 Baseline

Mayamant	CDD
Movement	SBR
Larte Configurations	7
Traffic Volume (vph)	86
Future Volume (vph)	86
Ideal Flow (vphpl)	1950
Total Lost time (s)	7.0
Lane Util. Factor	1.00
Frpb, ped/bikes	1.00
Flpb, ped/bikes	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1609
Flt Permitted	1.00
Satd. Flow (perm)	1609
Peak-hour factor, PHF	0.98
Adj. Flow (vph)	88
RTOR Reduction (vph)	24
Lane Group Flow (vph)	64
Confl. Peds. (#/hr)	O-T
Heavy Vehicles (%)	3%
Turn Type	Perm
Protected Phases	reiiii
Permitted Phases	6
	116.7
Actuated Green, G (s)	
Effective Green, g (s)	116.7
Actuated g/C Ratio	0.73
Clearance Time (s)	7.0
Vehicle Extension (s)	3.0
Lane Grp Cap (vph)	1173
v/s Ratio Prot	
v/s Ratio Perm	0.04
v/c Ratio	0.05
Uniform Delay, d1	6.1
Progression Factor	1.00
Incremental Delay, d2	0.0
Delay (s)	6.1
Level of Service	А
Approach Delay (s)	
Approach LOS	
Intersection Summary	

02/25/2020 Baseline Synchro 10 Report Page 10

	•	•	4	†	↓	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻሻ	7	ሻሻ	^	^	7		
Traffic Volume (vph)	6	25	39	1882	2098	37		
Future Volume (vph)	6	25	39	1882	2098	37		
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950		
Total Lost time (s)	6.0	6.0	7.0	7.0	7.0	7.0		
Lane Util. Factor	0.97	1.00	0.97	0.91	0.91	1.00		
Frpb, ped/bikes	1.00	0.96	1.00	1.00	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	3072	1536	3180	5168	5219	1658		
Flt Permitted	0.95	1.00	0.07	1.00	1.00	1.00		
Satd. Flow (perm)	3072	1536	230	5168	5219	1658		
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98		
Adj. Flow (vph)	6	26	40	1920	2141	38		
RTOR Reduction (vph)	0	25	0	1000	0	3		
Lane Group Flow (vph)	6	1	40	1920	2141	35		
Confl. Peds. (#/hr)	470/	2	400/	00/	00/	00/		
Heavy Vehicles (%)	17%	4%	13%	3%	2%	0%		
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm		
Protected Phases	4		5	2	6			
Permitted Phases		4	2			6		
Actuated Green, G (s)	3.9	3.9	143.1	143.1	132.1	132.1		
Effective Green, g (s)	3.9	3.9	143.1	143.1	132.1	132.1		
Actuated g/C Ratio	0.02	0.02	0.89	0.89	0.83	0.83		
Clearance Time (s)	6.0	6.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	2.0	2.0	2.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	74	37	279	4622	4308	1368		
v/s Ratio Prot	c0.00		0.00	c0.37	c0.41			
v/s Ratio Perm		0.00	0.12			0.02		
v/c Ratio	0.08	0.02	0.14	0.42	0.50	0.03		
Uniform Delay, d1	76.3	76.2	2.6	1.4	4.1	2.5		
Progression Factor	1.00	1.00	2.31	2.41	0.30	0.43		
Incremental Delay, d2	0.2	0.1	0.1	0.2	0.4	0.0		
Delay (s)	76.5	76.2	6.1	3.6	1.6	1.1		
Level of Service	Е	Е	Α	Α	A	Α		
Approach Delay (s)	76.3			3.7	1.6			
Approach LOS	E			Α	Α			
Intersection Summary								
HCM 2000 Control Delay			3.1	Н	CM 2000	Level of Service	Α	Α
HCM 2000 Control Delay	acity ratio		0.50	- 11	OW 2000	LOVE OF OUR		A
Actuated Cycle Length (s)			160.0	9	um of los	t time (s)		20.0
Intersection Capacity Utiliz			55.3%			of Service		20.0 B
Analysis Period (min)	-41011		15	IC.	O LEVEL	OI OCIVICE		U
Alialysis i Gilou (IIIII)			IJ					

c Critical Lane Group

Synchro 10 Report Page 11 02/25/2020 Baseline

	•	۶	→	•	F	•	-	•	•	†	/	L
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBU
Lane Configurations		ሽኘ	^	77		ሽኘ	^	7	ሻሻ	ተተተ	7	
Traffic Volume (vph)	7	144	474	362	1	651	573	314	266	1537	540	5
Future Volume (vph)	7	144	474	362	1	651	573	314	266	1537	540	5
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)		6.5	6.5	7.0		6.5	6.5	6.5	7.0	7.0	7.0	
Lane Util. Factor		0.97	0.95	0.88		0.97	0.95	1.00	0.97	0.91	1.00	
Frpb, ped/bikes		1.00	1.00	0.99		1.00	1.00	1.00	1.00	1.00	0.99	
Flpb, ped/bikes		1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Frt		1.00	1.00	0.85		1.00	1.00	0.85	1.00	1.00	0.85	
Flt Protected		0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (prot)		3494	3668	2864		3523	3597	1594	3523	5219	1573	
Flt Permitted		0.95	1.00	1.00		0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (perm)		3494	3668	2864		3523	3597	1594	3523	5219	1573	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	7	147	484	369	1	664	585	320	271	1568	551	5
RTOR Reduction (vph)	0	0	0	86	0	0	0	128	0	0	236	0
Lane Group Flow (vph)	0	154	484	283	0	665	585	192	271	1568	315	0
Confl. Peds. (#/hr)				1							1	
Heavy Vehicles (%)	0%	3%	1%	1%	0%	2%	3%	4%	2%	2%	4%	2%
Turn Type	Prot	Prot	NA	pm+ov	Prot	Prot	NA	Perm	Prot	NA	Perm	Prot
Protected Phases	7	7	4	5	3	3	8		5	2		1
Permitted Phases				4				8			2	
Actuated Green, G (s)		10.2	26.2	41.8		29.5	45.5	45.5	15.6	63.3	63.3	
Effective Green, g (s)		10.2	26.2	41.8		29.5	45.5	45.5	15.6	63.3	63.3	
Actuated g/C Ratio		0.06	0.16	0.26		0.18	0.28	0.28	0.10	0.40	0.40	
Clearance Time (s)		6.5	6.5	7.0		6.5	6.5	6.5	7.0	7.0	7.0	
Vehicle Extension (s)		1.5	2.0	1.5		1.5	2.0	2.0	1.5	3.0	3.0	
Lane Grp Cap (vph)		222	600	748		649	1022	453	343	2064	622	
v/s Ratio Prot		0.04	c0.13	0.04		c0.19	0.16		c0.08	0.30		
v/s Ratio Perm				0.06				0.12			0.20	
v/c Ratio		0.69	0.81	0.38		1.02	0.57	0.42	0.79	0.76	0.51	
Uniform Delay, d1		73.4	64.5	48.5		65.2	48.9	46.6	70.6	41.8	36.5	
Progression Factor		0.77	1.13	1.63		1.01	0.91	0.78	1.11	1.16	1.64	
Incremental Delay, d2		6.1	6.1	0.1		41.5	0.5	0.2	7.4	1.8	1.9	
Delay (s)		62.5	79.1	79.1		107.3	45.1	36.4	85.8	50.3	61.7	
Level of Service		Е	Е	Е		F	D	D	F	D	Е	
Approach Delay (s)			76.6				69.7			57.0		
Approach LOS			Е				Е			Е		
Intersection Summary												
HCM 2000 Control Delay			66.4	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.88									
Actuated Cycle Length (s)			160.0	S	um of los	t time (s)			27.0			
Intersection Capacity Utiliza	ition		93.7%			of Service	!		F			
Analysis Period (min)			15									
0 ''' 11 0												

	\	↓	4
Movement	SBL	SBT	SBR
Lane Configurations	አ ካ	^ ^	7
Traffic Volume (vph)	238	1714	77
Future Volume (vph)	238	1714	77
Ideal Flow (vphpl)	1950	1950	1950
Total Lost time (s)	7.0	7.0	7.0
Lane Util. Factor	0.97	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.98
Flpb, ped/bikes	1.00	1.00	1.00
Frt	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00
Satd. Flow (prot)	3523	5219	1584
Flt Permitted	0.95	1.00	1.00
Satd. Flow (perm)	3523	5219	1584
			0.98
Peak-hour factor, PHF	0.98	0.98	
Adj. Flow (vph)	243	1749	79
RTOR Reduction (vph)	0	1740	49
Lane Group Flow (vph)	248	1749	30
Confl. Peds. (#/hr)	00/	00/	3
Heavy Vehicles (%)	2%	2%	3%
Turn Type	Prot	NA	Perm
Protected Phases	1	6	
Permitted Phases			6
Actuated Green, G (s)	14.0	61.7	61.7
Effective Green, g (s)	14.0	61.7	61.7
Actuated g/C Ratio	0.09	0.39	0.39
Clearance Time (s)	7.0	7.0	7.0
Vehicle Extension (s)	1.5	3.0	3.0
Lane Grp Cap (vph)	308	2012	610
v/s Ratio Prot	0.07	c0.34	
v/s Ratio Perm			0.02
v/c Ratio	0.81	0.87	0.05
Uniform Delay, d1	71.7	45.4	30.8
Progression Factor	1.06	1.41	1.00
Incremental Delay, d2	12.2	4.9	0.1
Delay (s)	87.8	69.0	30.9
Level of Service	F	E	C
Approach Delay (s)		69.8	
Approach LOS		E	
Intersection Summary			

	۶	→	•	•	←	•	₹I	1	†	/	/	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations				7	4T+	7		ሽኘ	ተተተ			4111
Traffic Volume (vph)	0	0	0	831	48	1135	4	91	1469	0	0	1273
Future Volume (vph)	0	0	0	831	48	1135	4	91	1469	0	0	1273
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)				7.0	7.0	7.0		7.0	7.0			7.0
Lane Util. Factor				0.91	0.86	0.91		0.97	0.91			0.86
Frt				1.00	0.91	0.85		1.00	1.00			0.97
Flt Protected				0.95	0.98	1.00		0.95	1.00			1.00
Satd. Flow (prot)				1653	2917	1464		3493	5219			6324
Flt Permitted				0.95	0.98	1.00		0.95	1.00			1.00
Satd. Flow (perm)				1653	2917	1464		3493	5219			6324
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	0	0	0	848	49	1158	4	93	1499	0	0	1299
RTOR Reduction (vph)	0	0	0	0	30	87	0	0	0	0	0	25
Lane Group Flow (vph)	0	0	0	517	929	492	0	97	1499	0	0	1562
Heavy Vehicles (%)	0%	0%	0%	2%	6%	3%	0%	3%	2%	0%	0%	3%
Turn Type				Perm	NA	Perm	Prot	Prot	NA			NA
Protected Phases					12		10	10	2 4 10			2 4
Permitted Phases				12		12						
Actuated Green, G (s)				47.0	47.0	47.0		17.0	99.0			75.0
Effective Green, g (s)				47.0	47.0	47.0		17.0	99.0			75.0
Actuated g/C Ratio				0.29	0.29	0.29		0.11	0.62			0.47
Clearance Time (s)				7.0	7.0	7.0		7.0				
Vehicle Extension (s)				3.0	3.0	3.0		3.0				
Lane Grp Cap (vph)				485	856	430		371	3229			2964
v/s Ratio Prot								0.03	c0.29			c0.25
v/s Ratio Perm				0.31	0.32	c0.34						
v/c Ratio				1.07	1.26dr	1.14		0.26	0.46			0.53
Uniform Delay, d1				56.5	56.5	56.5		65.7	16.3			30.0
Progression Factor				1.00	1.00	1.00		0.79	0.52			0.90
Incremental Delay, d2				59.6	56.7	89.2		0.3	0.1			0.1
Delay (s)				116.1	113.2	145.7		52.0	8.6			27.1
Level of Service				F	F	F		D	Α			С
Approach Delay (s)		0.0			123.1				11.2			27.1
Approach LOS		Α			F				В			С
Intersection Summary												
HCM 2000 Control Delay			59.9	Н	ICM 2000	Level of S	Service		Ε			
HCM 2000 Volume to Capaci	ty ratio		0.78									
Actuated Cycle Length (s)			160.0	S	um of los	t time (s)			28.0			
Intersection Capacity Utilization	on		85.0%	IC	CU Level	of Service			Е			
Analysis Period (min)			15									
dr Defacto Right Lane. Red	code with	1 though	lane as a	right lan	e.							

Synchro 10 Report Page 14 02/25/2020 Baseline

Movement	SBR
Lane Configurations	
Traffic Volume (vph)	282
Future Volume (vph)	282
Ideal Flow (vphpl)	1950
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.98
Adj. Flow (vph)	288
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Heavy Vehicles (%)	4%
Turn Type	.,,
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

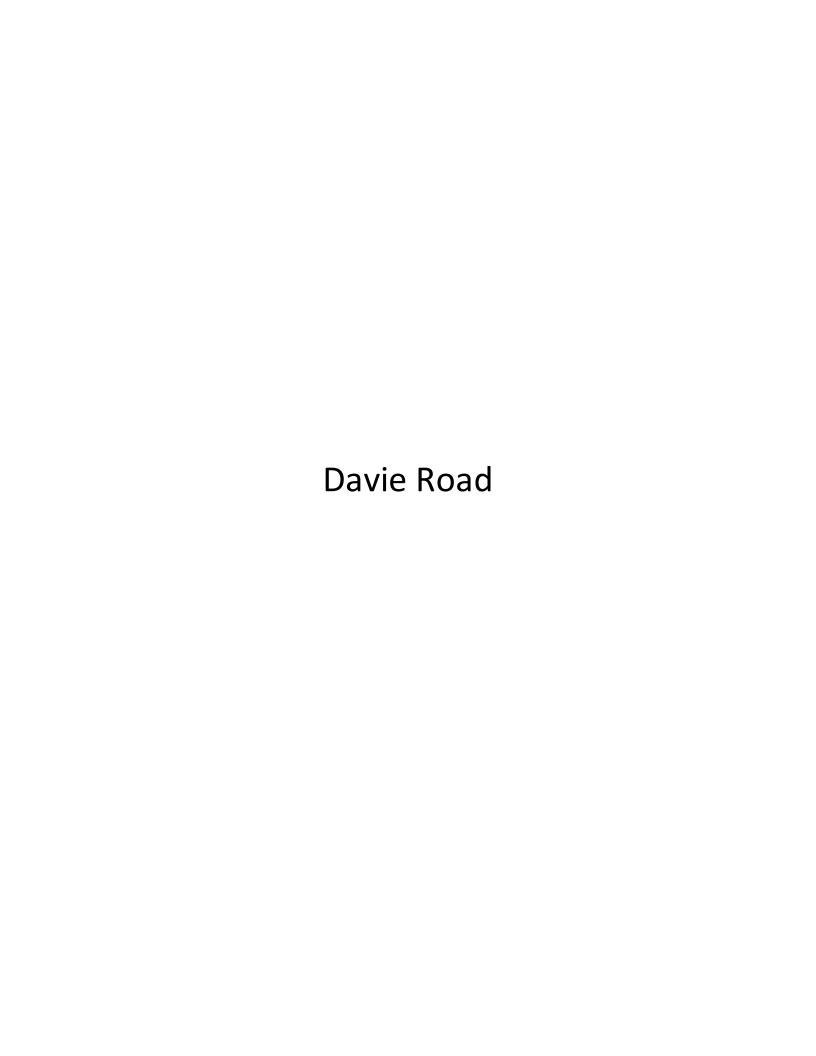
	۶	→	•	•	←	•	1	†	/	L	/	+
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ሻ	4î»	7					ተተተ	7		ሽኘ	ተተተ
Traffic Volume (vph)	349	350	634	0	0	0	0	1214	694	1	253	1854
Future Volume (vph)	349	350	634	0	0	0	0	1214	694	1	253	1854
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)	7.0	7.0	7.0					7.0	4.0		7.0	7.0
Lane Util. Factor	0.91	0.86	0.91					0.91	1.00		0.97	0.91
Frt	1.00	0.93	0.85					1.00	0.85		1.00	1.00
Flt Protected	0.95	1.00	1.00					1.00	1.00		0.95	1.00
Satd. Flow (prot)	1637	3057	1493					5168	1625		3268	5219
Flt Permitted	0.95	1.00	1.00					1.00	1.00		0.95	1.00
Satd. Flow (perm)	1637	3057	1493					5168	1625		3268	5219
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	356	357	647	0	0	0	0	1239	708	1	258	1892
RTOR Reduction (vph)	0	12	87	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	320	698	243	0	0	0	0	1239	708	0	259	1892
Heavy Vehicles (%)	3%	3%	1%	0%	0%	0%	0%	3%	2%	0%	10%	2%
Turn Type	Perm	NA	Perm					NA	Free	Prot	Prot	NA
Protected Phases		12						4 10		2	2	2 4 10
Permitted Phases	12		12						Free			
Actuated Green, G (s)	47.0	47.0	47.0					75.0	160.0		17.0	99.0
Effective Green, g (s)	47.0	47.0	47.0					75.0	160.0		17.0	99.0
Actuated g/C Ratio	0.29	0.29	0.29					0.47	1.00		0.11	0.62
Clearance Time (s)	7.0	7.0	7.0								7.0	
Vehicle Extension (s)	3.0	3.0	3.0								3.0	
Lane Grp Cap (vph)	480	897	438					2422	1625		347	3229
v/s Ratio Prot								0.24			c0.08	c0.36
v/s Ratio Perm	0.20	0.23	0.16						0.44			
v/c Ratio	0.67	0.78	0.56					0.51	0.44		0.75	0.59
Uniform Delay, d1	49.6	51.7	47.7					29.7	0.0		69.4	18.2
Progression Factor	1.00	1.00	1.00					1.26	1.00		1.03	1.16
Incremental Delay, d2	3.5	4.3	1.5					0.2	0.8		9.2	0.2
Delay (s)	53.1	56.0	49.2					37.6	0.8		80.6	21.3
Level of Service	D	E	D					D	Α		F	С
Approach Delay (s)		53.7			0.0			24.2				28.5
Approach LOS		D			Α			С				С
Intersection Summary												
HCM 2000 Control Delay			33.2	Н	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capac	city ratio		0.72									
Actuated Cycle Length (s)			160.0		um of lost				28.0			
Intersection Capacity Utilizat	tion		85.0%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

Movement	SBR
Lant Configurations	SDN
Traffic Volume (vph)	0
Future Volume (vph)	0
	1950
Ideal Flow (vphpl)	1950
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
FIt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.98
Adj. Flow (vph)	0
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Heavy Vehicles (%)	0%
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

	۶	→	*	•	←	•	₹î	1	†	~	/	Ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations	7	र्स	7	ň	4	77		Ä	4111		1,1	ተተተ
Traffic Volume (vph)	13	2	8	26	0	98	24	27	1795	34	88	2262
Future Volume (vph)	13	2	8	26	0	98	24	27	1795	34	88	2262
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		7.0	7.0		7.0	7.0
Lane Util. Factor	0.95	0.95	1.00	0.95	0.95	0.88		1.00	*0.70		0.97	0.91
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	1.00		1.00	1.00
Flt Protected	0.95	0.96	1.00	0.95	0.95	1.00		0.95	1.00		0.95	1.00
Satd. Flow (prot)	1630	1684	1658	1760	1760	2860		1852	5340		3489	5219
Flt Permitted	0.95	0.96	1.00	0.95	0.95	1.00		0.95	1.00		0.95	1.00
Satd. Flow (perm)	1630	1684	1658	1760	1760	2860		1852	5340		3489	5219
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	13	2	8	27	0	100	24	28	1832	35	90	2308
RTOR Reduction (vph)	0	0	8	0	0	87	0	0	1	0	0	0
Lane Group Flow (vph)	7	8	0	13	14	13	0	52	1866	0	90	2308
Heavy Vehicles (%)	8%	0%	0%	0%	0%	2%	0%	0%	2%	0%	3%	2%
Turn Type	Split	NA	Prot	Split	NA	pt+ov	Prot	Prot	NA		Prot	NA
Protected Phases	8	8	8	4	4	4 1	5	5	2		1	6
Permitted Phases												
Actuated Green, G (s)	3.8	3.8	3.8	6.5	6.5	20.6		7.5	115.6		8.1	116.2
Effective Green, g (s)	3.8	3.8	3.8	6.5	6.5	20.6		7.5	115.6		8.1	116.2
Actuated g/C Ratio	0.02	0.02	0.02	0.04	0.04	0.13		0.05	0.72		0.05	0.73
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0			7.0	7.0		7.0	7.0
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0			1.5	3.0		1.5	3.0
Lane Grp Cap (vph)	38	39	39	71	71	368		86	3858		176	3790
v/s Ratio Prot	0.00	c0.00	0.00	0.01	c0.01	0.00		c0.03	0.35		0.03	c0.44
v/s Ratio Perm												
v/c Ratio	0.18	0.21	0.00	0.18	0.20	0.03		0.60	0.48		0.51	0.61
Uniform Delay, d1	76.6	76.6	76.3	74.2	74.2	61.0		74.8	9.5		74.0	10.7
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		1.03	0.20		0.79	0.92
Incremental Delay, d2	0.9	1.0	0.0	0.5	0.5	0.0		7.0	0.4		0.8	0.6
Delay (s)	77.4	77.6	76.3	74.6	74.7	61.0		83.9	2.3		59.0	10.5
Level of Service	E	E	Ε	E	Ε	Е		F	Α		Е	В
Approach Delay (s)		77.1			63.9				4.5			12.3
Approach LOS		Е			Е				Α			В
Intersection Summary												
HCM 2000 Control Delay			10.7	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capac	ity ratio		0.58									
Actuated Cycle Length (s)			160.0		um of los				26.0			
Intersection Capacity Utilizat	ion		68.4%	IC	CU Level	of Service	1		С			
Analysis Period (min)			15									
c Critical Lane Group												

Movement	SBR
Lane Configurations	7 JUS
Traffic Volume (vph)	15
	15
Future Volume (vph)	
Ideal Flow (vphpl)	1950
Total Lost time (s)	7.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1658
Flt Permitted	1.00
Satd. Flow (perm)	1658
Peak-hour factor, PHF	0.98
Adj. Flow (vph)	15
RTOR Reduction (vph)	4
Lane Group Flow (vph)	11
Heavy Vehicles (%)	0%
Turn Type	Perm
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	116.2
Effective Green, g (s)	116.2
Actuated g/C Ratio	0.73
Clearance Time (s)	7.0
Vehicle Extension (s)	3.0
	1204
Lane Grp Cap (vph)	1204
v/s Ratio Prot	0.04
v/s Ratio Perm	0.01
v/c Ratio	0.01
Uniform Delay, d1	6.0
Progression Factor	1.00
Incremental Delay, d2	0.0
Delay (s)	6.0
Level of Service	Α
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection outlinary	

	۶	→	*	•	←	•	₹î	1	†	<i>></i>	L	>
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations		4Te		7	4	7		Ä	1111	7		ሽኘ
Traffic Volume (vph)	87	9	21	57	3	149	2	31	2168	112	55	86
Future Volume (vph)	87	9	21	57	3	149	2	31	2168	112	55	86
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)		7.0		7.0	7.0	7.0		7.0	7.0	7.0		7.0
Lane Util. Factor		0.95		0.95	0.91	0.95		1.00	0.86	1.00		0.97
Frt		0.97		1.00	0.87	0.85		1.00	1.00	0.85		1.00
Flt Protected		0.96		0.95	1.00	1.00		0.95	1.00	1.00		0.95
Satd. Flow (prot)		3368		1676	1487	1529		1852	6513	1625		3572
Flt Permitted		0.96		0.95	1.00	1.00		0.95	1.00	1.00		0.95
Satd. Flow (perm)		3368		1676	1487	1529		1852	6513	1625		3572
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	89	9	21	58	3	152	2	32	2212	114	56	88
RTOR Reduction (vph)	0	14	0	0	67	76	0	0	0	25	0	0
Lane Group Flow (vph)	0	105	0	52	13	5	0	34	2212	89	0	144
Heavy Vehicles (%)	1%	33%	0%	5%	0%	3%	0%	0%	3%	2%	0%	1%
Turn Type	Split	NA		Split	NA	Perm	Prot	Prot	NA	pm+ov	Prot	Prot
Protected Phases	8	8		4	4		5	5	2	4	1	1
Permitted Phases						4				2		
Actuated Green, G (s)		9.9		9.7	9.7	9.7		6.1	102.0	111.7		10.4
Effective Green, g (s)		9.9		9.7	9.7	9.7		6.1	102.0	111.7		10.4
Actuated g/C Ratio		0.06		0.06	0.06	0.06		0.04	0.64	0.70		0.07
Clearance Time (s)		7.0		7.0	7.0	7.0		7.0	7.0	7.0		7.0
Vehicle Extension (s)		2.5		2.0	2.0	2.0		1.5	3.0	2.0		1.5
Lane Grp Cap (vph)		208		101	90	92		70	4152	1134		232
v/s Ratio Prot		c0.03		c0.03	0.01			0.02	0.34	0.00		c0.04
v/s Ratio Perm						0.00				0.05		
v/c Ratio		0.50		0.51	0.15	0.05		0.49	0.53	0.08		0.62
Uniform Delay, d1		72.7		72.9	71.2	70.8		75.4	15.9	7.7		72.9
Progression Factor		1.00		1.00	1.00	1.00		1.17	0.33	0.26		1.08
Incremental Delay, d2		1.4		1.8	0.3	0.1		1.7	0.4	0.0		3.2
Delay (s)		74.1		74.7	71.5	70.9		89.9	5.6	2.0		81.8
Level of Service		Ε		Е	Е	Е		F	Α	Α		F
Approach Delay (s)		74.1			72.1				6.7			
Approach LOS		Е			E				Α			
Intersection Summary												
HCM 2000 Control Delay			19.8	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capacity	ratio		0.69									
Actuated Cycle Length (s)			160.0		um of lost				31.0			
Intersection Capacity Utilization			79.4%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												


	↓	4
Movement	SBT	SBR
Larie Configurations	↑ ↑↑	7 T
Traffic Volume (vph)	2330	44
Future Volume (vph)	2330	44
Ideal Flow (vphpl)	1950	1950
Total Lost time (s)	10.0	7.0
Lane Util. Factor	0.91	1.00
Frt	1.00	0.85
Flt Protected	1.00	1.00
Satd. Flow (prot)	5219	1658
Flt Permitted	1.00	1.00
Satd. Flow (perm)	5219	1658
Peak-hour factor, PHF	0.98	0.98
Adj. Flow (vph)	2378	45
RTOR Reduction (vph)	0	15
Lane Group Flow (vph)	2378	30
Heavy Vehicles (%)	2376	0%
Turn Type	NA	Perm
Protected Phases	NA 6	reiiii
Protected Phases Permitted Phases	U	6
Actuated Green, G (s)	106.3	106.3
Effective Green, g (s)	100.3	106.3
	0.65	0.66
Actuated g/C Ratio Clearance Time (s)	7.0	7.0
` '	3.0	3.0
Vehicle Extension (s)		
Lane Grp Cap (vph)	3369	1101
v/s Ratio Prot	c0.46	0.00
v/s Ratio Perm	0.74	0.02
v/c Ratio	0.71	0.03
Uniform Delay, d1	18.5	9.2
Progression Factor	1.12	1.00
Incremental Delay, d2	1.1	0.0
Delay (s)	21.8	9.2
Level of Service	C	Α
Approach Delay (s)	24.9	
Approach LOS	С	
Intersection Summary		

	۶	→	•	F	•	←	•	₹î	•	†	/	L
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU
Lane Configurations	ሻሻ	^	7		Ä	†	77		Ä	1111	7	
Traffic Volume (vph)	205	130	154	9	118	65	328	9	49	1773	129	7
Future Volume (vph)	205	130	154	9	118	65	328	9	49	1773	129	7
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)	7.0	7.0	7.0		7.0	7.0	7.0		7.0	7.0	7.0	
Lane Util. Factor	0.97	0.95	1.00		1.00	1.00	0.88		1.00	0.86	1.00	
Frt	1.00	1.00	0.85		1.00	1.00	0.85		1.00	1.00	0.85	
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00		0.95	1.00	1.00	
Satd. Flow (prot)	3594	3668	1641		1786	1857	2805		1735	6576	1625	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00		0.95	1.00	1.00	
Satd. Flow (perm)	3594	3668	1641		1786	1857	2805		1735	6576	1625	
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	209	133	157	9	120	66	335	9	50	1809	132	7
RTOR Reduction (vph)	0	0	66	0	0	0	63	0	0	0	54	0
Lane Group Flow (vph)	209	133	91	0	129	66	272	0	59	1809	78	0
Heavy Vehicles (%)	0%	1%	1%	0%	4%	5%	4%	0%	8%	2%	2%	0%
Turn Type	Prot	NA	pm+ov	Prot	Prot	NA	pm+ov	Prot	Prot	NA	Perm	Prot
Protected Phases	7	4	5!	3	3	8	1!	5!	5	2		1!
Permitted Phases			4				8				2	
Actuated Green, G (s)	11.9	10.5	19.8		12.7	11.3	25.8		9.3	94.3	94.3	
Effective Green, g (s)	11.9	10.5	19.8		12.7	11.3	25.8		9.3	94.3	94.3	
Actuated g/C Ratio	0.07	0.07	0.12		0.08	0.07	0.16		0.06	0.59	0.59	
Clearance Time (s)	7.0	7.0	7.0		7.0	7.0	7.0		7.0	7.0	7.0	
Vehicle Extension (s)	1.5	2.0	1.5		1.5	2.0	1.5		1.5	3.0	3.0	
Lane Grp Cap (vph)	267	240	274		141	131	575		100	3875	957	
v/s Ratio Prot	0.06	0.04	0.02		c0.07	0.04	c0.04		0.03	0.28		
v/s Ratio Perm			0.04				0.05				0.05	
v/c Ratio	0.78	0.55	0.33		0.91	0.50	0.47		0.59	0.47	0.08	
Uniform Delay, d1	72.8	72.5	64.1		73.1	71.6	60.9		73.5	18.6	14.2	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00		1.21	1.12	2.30	
Incremental Delay, d2	12.9	1.6	0.3		49.9	1.1	0.2		4.0	0.3	0.1	
Delay (s)	85.7	74.1	64.3		123.0	72.8	61.2		92.7	21.2	32.7	
Level of Service	F	Е	Е		F	Е	Е		F	С	С	
Approach Delay (s)		75.9				77.7				24.1		
Approach LOS		Е				Е				С		
Intersection Summary												
HCM 2000 Control Delay			29.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capac	city ratio		0.71									
Actuated Cycle Length (s)			160.0		um of lost				28.0			
Intersection Capacity Utilizat	tion		83.2%	IC	CU Level of	of Servic	е		Е			
Analysis Period (min)			15									
! Phase conflict between la	ane groups	5.										

Synchro 10 Report Page 22 02/25/2020 Baseline

	>	↓	1
Movement	SBL	SBT	SBR
Lane Configurations	ሽኘ	^	7
Traffic Volume (vph)	220	2101	83
Future Volume (vph)	220	2101	83
Ideal Flow (vphpl)	1950	1950	1950
Total Lost time (s)	7.0	7.0	7.0
Lane Util. Factor	0.97	0.91	1.00
Frt	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00
Satd. Flow (prot)	3559	5271	1564
Flt Permitted	0.95	1.00	1.00
Satd. Flow (perm)	3559	5271	1564
Peak-hour factor, PHF	0.98	0.98	0.98
Adj. Flow (vph)	224	2144	85
RTOR Reduction (vph)	0	0	32
Lane Group Flow (vph)	231	2144	53
Heavy Vehicles (%)	1%	1%	6%
Turn Type	Prot	NA	Perm
Protected Phases	1	6	. 51117
Permitted Phases	1		6
Actuated Green, G (s)	14.5	99.5	99.5
Effective Green, g (s)	14.5	99.5	99.5
Actuated g/C Ratio	0.09	0.62	0.62
Clearance Time (s)	7.0	7.0	7.0
Vehicle Extension (s)	1.5	3.0	3.0
Lane Grp Cap (vph)	322	3277	972
v/s Ratio Prot	c0.06	c0.41	312
v/s Ratio Prot v/s Ratio Perm	00.00	00.41	0.03
v/s Ratio Perm v/c Ratio	0.72	0.65	0.03
			11.8
Uniform Delay, d1	70.8	19.3	
Progression Factor	1.41	0.17	0.04
Incremental Delay, d2	4.6	0.8	0.1
Delay (s)	104.6	4.1	0.5
Level of Service	F	Α	Α
Approach Delay (s)		13.4	
Approach LOS		В	
Intersection Summary			

	۶	-	•	•	←	•	•	†	/	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ň	†	7	Ĭ	†	7	ķ	ተተተ	7	ሻሻ	ተተተ	7
Traffic Volume (vph)	115	341	62	111	43	245	32	1600	268	496	1735	89
Future Volume (vph)	115	341	62	111	43	245	32	1600	268	496	1735	89
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	0.97	0.91	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1799	1950	1625	1781	1950	1658	1700	5219	1641	3558	5219	1609
Flt Permitted	0.72	1.00	1.00	0.13	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1370	1950	1625	237	1950	1658	1700	5219	1641	3558	5219	1609
Peak-hour factor, PHF	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Adj. Flow (vph)	117	348	63	113	44	250	33	1633	273	506	1770	91
RTOR Reduction (vph)	0	0	50	0	0	201	0	0	117	0	0	43
Lane Group Flow (vph)	117	348	13	113	44	49	33	1633	156	506	1770	48
Heavy Vehicles (%)	3%	0%	2%	4%	0%	0%	9%	2%	1%	1%	2%	3%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2	_	1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)	43.4	31.8	31.8	43.0	31.6	31.6	6.3	65.6	65.6	25.2	84.5	84.5
Effective Green, g (s)	43.4	31.8	31.8	43.0	31.6	31.6	6.3	65.6	65.6	25.2	84.5	84.5
Actuated g/C Ratio	0.27	0.20	0.20	0.27	0.20	0.20	0.04	0.41	0.41	0.16	0.53	0.53
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	1.5	2.0	2.0	1.5	2.0	2.0	1.5	3.0	3.0	1.5	3.0	3.0
Lane Grp Cap (vph)	402	387	322	173	385	327	66	2139	672	560	2756	849
v/s Ratio Prot	0.02	c0.18		c0.05	0.02		0.02	c0.31		c0.14	0.34	
v/s Ratio Perm	0.06		0.01	0.13		0.03			0.10			0.03
v/c Ratio	0.29	0.90	0.04	0.65	0.11	0.15	0.50	0.76	0.23	0.90	0.64	0.06
Uniform Delay, d1	45.4	62.5	51.8	47.8	52.7	53.1	75.3	40.5	30.8	66.2	27.0	18.4
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.76	0.91	2.31
Incremental Delay, d2	0.1	22.3	0.0	6.6	0.0	0.1	2.2	2.6	0.8	14.1	0.9	0.1
Delay (s)	45.6	84.8	51.8	54.4	52.8	53.2	77.5	43.2	31.6	64.5	25.4	42.4
Level of Service	D	F	D	D	D	D	E	D	С	Е	С	D
Approach Delay (s)		72.2			53.5			42.1			34.4	
Approach LOS		E			D			D			С	
Intersection Summary												
HCM 2000 Control Delay			42.6	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	city ratio		0.81									
Actuated Cycle Length (s)			160.0		um of lost				26.0			
Intersection Capacity Utiliza	tion		89.1%	IC	U Level	of Service			Е			
Analysis Period (min)			15									
c Critical Lane Group												

	₾	۶	→	•	F	•	←	•	4	†	/	L
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBU
Lane Configurations		ă	f)			ă	†	7	ă	^	7	
Traffic Volume (vph)	5	126	37	149	1	78	79	163	188	924	66	28
Future Volume (vph)	5	126	37	149	1	78	79	163	188	924	66	28
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0	
Lane Util. Factor		1.00	1.00			1.00	1.00	1.00	1.00	0.95	1.00	
Frt		1.00	0.88			1.00	1.00	0.85	1.00	1.00	0.85	
Flt Protected		0.95	1.00			0.95	1.00	1.00	0.95	1.00	1.00	
Satd. Flow (prot)		1770	1639			1770	1863	1583	1770	3539	1583	
Flt Permitted		0.45	1.00			0.34	1.00	1.00	0.18	1.00	1.00	
Satd. Flow (perm)		836	1639			631	1863	1583	326	3539	1583	
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.94	0.94	0.94	0.94	0.91	0.91	0.91	0.86
Adj. Flow (vph)	5	137	40	162	1	83	84	173	207	1015	73	33
RTOR Reduction (vph)	0	0	104	0	0	0	0	160	0	0	27	0
Lane Group Flow (vph)	0	142	98	0	0	84	84	13	207	1015	46	0
Turn Type	custom	pm+pt	NA		custom	pm+pt	NA	Perm	pm+pt	NA	Perm	custom
Protected Phases		7	4			3	8		5	2		
Permitted Phases	7	4			3	8		8	2		2	1
Actuated Green, G (s)		31.6	16.5			22.2	11.8	11.8	115.1	100.1	100.1	
Effective Green, g (s)		31.6	16.5			22.2	11.8	11.8	115.1	100.1	100.1	
Actuated g/C Ratio		0.20	0.10			0.14	0.07	0.07	0.72	0.63	0.63	
Clearance Time (s)		6.0	6.0			6.0	6.0	6.0	6.0	6.0	6.0	
Vehicle Extension (s)		1.5	2.0			1.5	2.0	2.0	1.5	3.0	3.0	
Lane Grp Cap (vph)		253	169			161	137	116	373	2214	990	
v/s Ratio Prot		c0.05	c0.06			0.03	0.05		c0.05	0.29		
v/s Ratio Perm		0.06				0.04		0.01	c0.35		0.03	
v/c Ratio		0.56	0.58			0.52	0.61	0.11	0.55	0.46	0.05	
Uniform Delay, d1		56.1	68.4			62.5	71.9	69.2	12.7	15.7	11.5	
Progression Factor		1.00	1.00			1.00	1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		1.7	3.0			1.4	5.6	0.2	1.0	0.7	0.1	
Delay (s)		57.8	71.4			63.9	77.5	69.3	13.7	16.4	11.6	
Level of Service		Е	Е			Е	Е	Е	В	В	В	
Approach Delay (s)			65.8				70.0			15.7		
Approach LOS			Е				Е			В		
Intersection Summary												
HCM 2000 Control Delay			32.6	H	HCM 2000	Level of	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.59									
Actuated Cycle Length (s)			160.0	9	Sum of los	t time (s)			24.0			
Intersection Capacity Utiliz	ation		72.3%		CU Level	of Service)		С			
Analysis Period (min)			15									

c Critical Lane Group

	>	ļ	4
Movement	SBL	SBT	SBR
Lane Configurations	ă	^	7
Traffic Volume (vph)	77	954	456
Future Volume (vph)	77	954	456
Ideal Flow (vphpl)	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0
Lane Util. Factor	1.00	0.95	1.00
Frt	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583
Flt Permitted	0.24	1.00	1.00
Satd. Flow (perm)	454	3539	1583
Peak-hour factor, PHF	0.86	0.86	0.86
Adj. Flow (vph)	90	1109	530
RTOR Reduction (vph)	0	0	148
Lane Group Flow (vph)	123	1109	382
Turn Type	pm+pt	NA	Perm
Protected Phases	1	6	
Permitted Phases	6		6
Actuated Green, G (s)	102.7	93.7	93.7
Effective Green, g (s)	102.7	93.7	93.7
Actuated g/C Ratio	0.64	0.59	0.59
Clearance Time (s)	6.0	6.0	6.0
Vehicle Extension (s)	1.5	3.0	3.0
Lane Grp Cap (vph)	365	2072	927
v/s Ratio Prot	0.02	0.31	
v/s Ratio Perm	0.20		0.24
v/c Ratio	0.34	0.54	0.41
Uniform Delay, d1	11.7	20.0	18.1
Progression Factor	1.65	1.36	2.18
Incremental Delay, d2	0.2	0.9	1.2
Delay (s)	19.5	28.1	40.8
Level of Service	В	С	D
Approach Delay (s)		31.3	
Approach LOS		С	
Intersection Summary			
intersection outlinary			

	ᄼ	-	\rightarrow	•	←	•	₹I	•	†	~	L	>
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations		4		7		7		Ä	ተተተ	7		ሕ ጎ
Traffic Volume (vph)	0	0	1	155	0	334	41	6	1199	59	4	223
Future Volume (vph)	0	0	1	155	0	334	41	6	1199	59	4	223
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0		6.0		6.0	6.0	6.0		6.0
Lane Util. Factor		1.00		1.00		1.00		1.00	0.91	1.00		0.97
Frt		0.86		1.00		0.85		1.00	1.00	0.85		1.00
Flt Protected		1.00		0.95		1.00		0.95	1.00	1.00		0.95
Satd. Flow (prot)		1611		1770		1583		1770	5085	1583		3433
Flt Permitted		1.00		0.76		1.00		0.14	1.00	1.00		0.95
Satd. Flow (perm)		1611		1407		1583		259	5085	1583		3433
Peak-hour factor, PHF	0.25	0.25	0.25	0.88	0.88	0.88	0.89	0.89	0.89	0.89	0.89	0.89
Adj. Flow (vph)	0	0	4	176	0	380	46	7	1347	66	4	251
RTOR Reduction (vph)	0	3	0	0	0	147	0	0	0	23	0	0
Lane Group Flow (vph)	0	1	0	176	0	233	0	53	1347	43	0	255
Turn Type		NA		Perm		Perm	custom	pm+pt	NA	Perm	Prot	Prot
Protected Phases		4						5	2		1	1
Permitted Phases	4			8		8	5	2		2		
Actuated Green, G (s)		26.7		26.7		26.7		105.2	100.7	100.7		14.6
Effective Green, g (s)		26.7		26.7		26.7		105.2	100.7	100.7		14.6
Actuated g/C Ratio		0.17		0.17		0.17		0.66	0.63	0.63		0.09
Clearance Time (s)		6.0		6.0		6.0		6.0	6.0	6.0		6.0
Vehicle Extension (s)		2.0		2.0		2.0		1.5	3.0	3.0		2.0
Lane Grp Cap (vph)		268		234		264		212	3200	996		313
v/s Ratio Prot		0.00						0.01	0.26			c0.07
v/s Ratio Perm				0.13		c0.15		0.16		0.03		
v/c Ratio		0.00		0.75		0.88		0.25	0.42	0.04		0.81
Uniform Delay, d1		55.6		63.5		65.1		9.9	14.9	11.3		71.4
Progression Factor		1.00		1.00		1.00		0.79	0.74	0.25		1.00
Incremental Delay, d2		0.0		11.4		26.5		0.2	0.4	0.1		14.2
Delay (s)		55.6		74.9		91.6		8.0	11.4	2.9		85.6
Level of Service		Е		Е		F		Α	В	Α		F
Approach Delay (s)		55.6			86.3				10.9			
Approach LOS		Е			F				В			
Intersection Summary												
HCM 2000 Control Delay			27.0	H	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.57									
Actuated Cycle Length (s)			160.0		um of lost				18.0			
Intersection Capacity Utilization	on		75.3%	IC	U Level o	of Servic	е		D			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	↓	4
Movement	SBT	SBR
Lare Configurations	ተተኈ	
Traffic Volume (vph)	1397	4
Future Volume (vph)	1397	4
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	6.0	
Lane Util. Factor	0.91	
Frt	1.00	
Flt Protected	1.00	
Satd. Flow (prot)	5083	
Flt Permitted	1.00	
Satd. Flow (perm)	5083	
Peak-hour factor, PHF	0.89	0.89
Adj. Flow (vph)	1570	4
RTOR Reduction (vph)	0	0
Lane Group Flow (vph)	1574	0
Turn Type	NA	
Protected Phases	6	
Permitted Phases	•	
Actuated Green, G (s)	110.8	
Effective Green, g (s)	110.8	
Actuated g/C Ratio	0.69	
Clearance Time (s)	6.0	
Vehicle Extension (s)	3.0	
Lane Grp Cap (vph)	3519	
v/s Ratio Prot	c0.31	
v/s Ratio Perm		
v/c Ratio	0.45	
Uniform Delay, d1	11.0	
Progression Factor	1.00	
Incremental Delay, d2	0.4	
Delay (s)	11.4	
Level of Service	В	
Approach Delay (s)	21.7	
Approach LOS	С	
Intersection Summary		

	۶	→	\rightarrow	•	←	•	•	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413	7					∱ }	7	J.	^	
Traffic Volume (vph)	54	285	607	0	0	0	0	603	933	32	1020	0
Future Volume (vph)	54	285	607	0	0	0	0	603	933	32	1020	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0	7.0					7.0	7.0	7.0	7.0	
Lane Util. Factor		0.91	0.91					0.91	0.91	1.00	0.95	
Frt		0.93	0.85					0.94	0.85	1.00	1.00	
Flt Protected		1.00	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		3137	1441					3173	1441	1770	3539	
Flt Permitted		1.00	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)		3137	1441					3173	1441	1770	3539	
Peak-hour factor, PHF	0.97	0.97	0.97	0.92	0.92	0.92	0.96	0.96	0.96	0.95	0.95	0.95
Adj. Flow (vph)	56	294	626	0	0	0	0	628	972	34	1074	0
RTOR Reduction (vph)	0	95	160	0	0	0	0	75	316	0	0	0
Lane Group Flow (vph)	0	568	153	0	0	0	0	1020	189	34	1074	0
Turn Type	Perm	NA	Prot					NA	custom	Prot	NA	
Protected Phases		1	1					3 4	3 4 5	2	2345	
Permitted Phases	1											
Actuated Green, G (s)		23.5	23.5					34.0	62.5	60.0	129.5	
Effective Green, g (s)		23.5	23.5					34.0	62.5	60.0	129.5	
Actuated g/C Ratio		0.14	0.14					0.20	0.37	0.36	0.78	
Clearance Time (s)		7.0	7.0							7.0		
Vehicle Extension (s)		2.0	2.0							3.0		
Lane Grp Cap (vph)		441	202					646	539	635	2744	
v/s Ratio Prot			0.11					c0.32	0.13	0.02	c0.30	
v/s Ratio Perm		0.18										
v/c Ratio		1.29	0.76					1.58	0.35	0.05	0.39	
Uniform Delay, d1		71.8	69.0					66.5	37.6	35.0	6.0	
Progression Factor		1.00	1.00					1.00	1.00	0.40	0.00	
Incremental Delay, d2		146.3	13.4					268.0	0.1	0.1	0.0	
Delay (s)		218.0	82.5					334.5	37.8	14.2	0.0	
Level of Service		F	F					F	D	В	Α	
Approach Delay (s)		174.5			0.0			240.9			0.5	
Approach LOS		F			Α			F			Α	
Intersection Summary												
HCM 2000 Control Delay			151.0	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	ity ratio		0.90									
Actuated Cycle Length (s)			167.0		um of lost				35.0			
Intersection Capacity Utilizat	ion		100.9%	IC	U Level o	of Service			G			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	→	•	•	•	~	<i>></i>		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations			*	414	ሻሻ			
Traffic Volume (vph)	0	0	1052	501	657	0		
Future Volume (vph)	0	0	1052	501	657	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)			7.0	7.0	7.0			
Lane Util. Factor			0.91	0.91	0.97			
Frt			1.00	1.00	1.00			
Flt Protected			0.95	0.98	0.95			
Satd. Flow (prot)			1610	3306	3433			
Flt Permitted			0.95	0.98	0.95			
Satd. Flow (perm)			1610	3306	3433			
Peak-hour factor, PHF	0.92	0.92	0.94	0.94	0.91	0.91		
Adj. Flow (vph)	0.02	0.02	1119	533	722	0		
RTOR Reduction (vph)	0	0	0	0	0	0		
Lane Group Flow (vph)	0	0	559	1093	722	0		
Turn Type	<u> </u>		Split	NA	Prot			
Protected Phases			23	23	1 4 5			
Permitted Phases			20	20	1 7 0			
Actuated Green, G (s)			69.0	69.0	84.0			
Effective Green, g (s)			69.0	69.0	84.0			
Actuated g/C Ratio			0.41	0.41	0.50			
Clearance Time (s)			0	0	0.00			
Vehicle Extension (s)								
Lane Grp Cap (vph)			665	1365	1726			
v/s Ratio Prot			c0.35	0.33	c0.21			
v/s Ratio Perm			00.00	0.00	00.21			
v/c Ratio			0.84	0.80	0.42			
Uniform Delay, d1			44.1	43.0	26.1			
Progression Factor			1.00	1.00	0.33			
Incremental Delay, d2			9.0	3.3	0.0			
Delay (s)			53.1	46.2	8.6			
Level of Service			D	D	A			
Approach Delay (s)	0.0			48.6	8.6			
Approach LOS	А			D	Α			
Intersection Summary								
HCM 2000 Control Delay			36.4	Н	CM 2000	Level of Service	D	
HCM 2000 Volume to Capac	city ratio		0.71		2 2000			
Actuated Cycle Length (s)	,		167.0	S	um of lost	time (s)	35.0	
Intersection Capacity Utiliza	tion		110.7%		CU Level o		Н	
Analysis Period (min)			15		. 5 25 70 7 0	50, 1,00		
2 ::: 11			10					

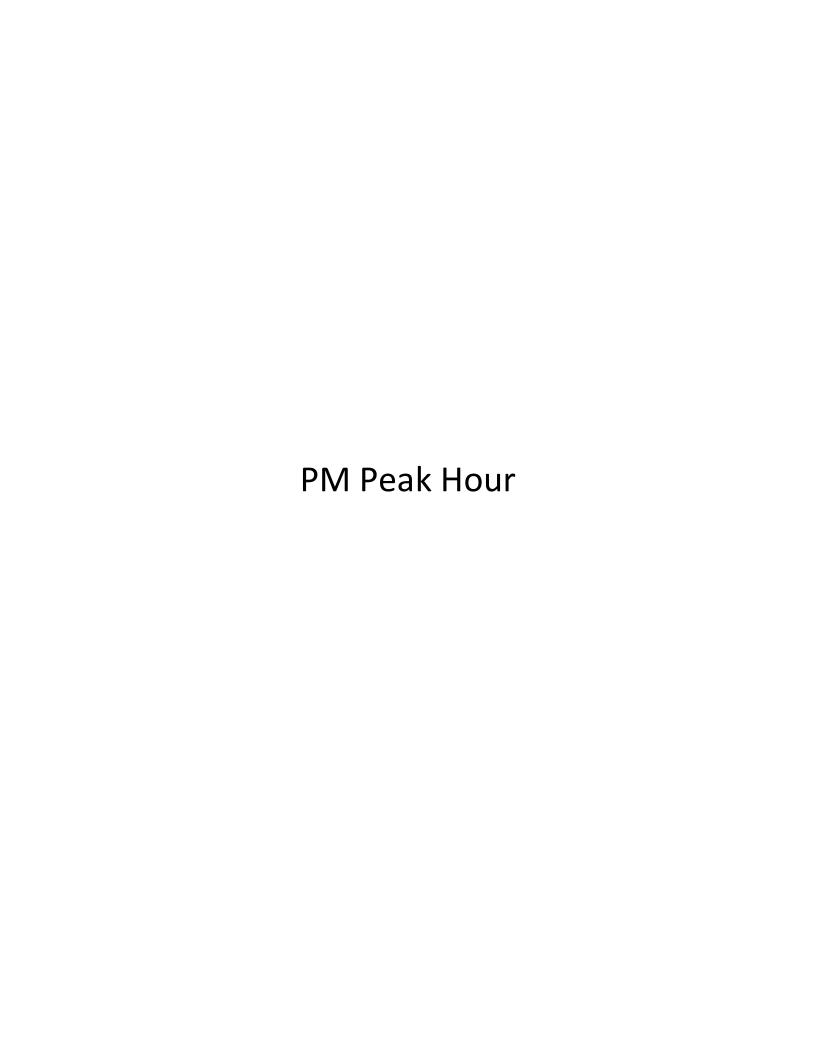
SR 7

→ → → ↑	↓	4	
Movement EBL EBR NBL NBT	SBT	SBR	
Lane Configurations 🥻 🏌 🌂 🛧	ተተተ	7	
Traffic Volume (vph) 323 89 76 1990	1908	522	
Future Volume (vph) 323 89 76 1990	1908	522	
Ideal Flow (vphpl) 1900 1900 1900 1900	1900	1900	
Total Lost time (s) 4.0 4.0 4.0 4.0	4.0	4.0	
Lane Util. Factor 1.00 1.00 0.91	0.91	1.00	
Frt 1.00 0.85 1.00 1.00	1.00	0.85	
Flt Protected 0.95 1.00 0.95 1.00	1.00	1.00	
Satd. Flow (prot) 1770 1583 1770 5085	5085	1583	
Flt Permitted 0.95 1.00 0.95 1.00	1.00	1.00	
Satd. Flow (perm) 1770 1583 1770 5085	5085	1583	
Peak-hour factor, PHF 0.93 0.93 0.99 0.99	0.96	0.96	
Adj. Flow (vph) 347 96 77 2010	1988	544	
RTOR Reduction (vph) 0 73 0 0	0	245	
Lane Group Flow (vph) 347 23 77 2010	1988	299	
Turn Type Prot Perm custom NA	NA	Perm	
Protected Phases 4 1 2	2		
Permitted Phases 4 1		2	
Actuated Green, G (s) 36.1 36.1 39.9 64.0	64.0	64.0	
Effective Green, g (s) 38.1 38.1 42.9 67.0	67.0	67.0	
Actuated g/C Ratio 0.24 0.24 0.27 0.42	0.42	0.42	
Clearance Time (s) 6.0 6.0 7.0 7.0	7.0	7.0	
Vehicle Extension (s) 2.0 2.0 1.5 3.0	3.0	3.0	
Lane Grp Cap (vph) 421 376 474 2129	2129	662	
v/s Ratio Prot c0.20 c0.04 c0.40	0.39		
v/s Ratio Perm 0.01		0.19	
v/c Ratio 0.82 0.06 0.16 0.94	0.93	0.45	
Uniform Delay, d1 57.8 47.1 44.8 44.7	44.4	33.3	
Progression Factor 1.00 1.00 1.00 1.00	1.00	1.00	
Incremental Delay, d2 11.8 0.0 0.7 10.2	9.1	2.2	
Delay (s) 69.6 47.1 45.5 54.9	53.5	35.5	
Level of Service E D D D	D	D	
Approach Delay (s) 64.7 54.5	49.6		
Approach LOS E D	D		
Intersection Summary			
HCM 2000 Control Delay 53.0	HCM 2000	Level of Service	
HCM 2000 Volume to Capacity ratio 0.69			
· •	Sum of los	t time (s)	
	CU Level		
Analysis Period (min) 15			

	₾	•	-	•	•	←	•	∳ I	•	†	/	L
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU
Lane Configurations		Ä	f)		Ä	र्स	7		ă	ተተተ	7	
Traffic Volume (vph)	2	123	62	282	643	53	59	43	163	1659	438	6
Future Volume (vph)	2	123	62	282	643	53	59	43	163	1659	438	6
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		4.0	4.0		4.0	4.0	4.0		4.0	4.0	4.0	
Lane Util. Factor		1.00	1.00		0.95	0.95	1.00		1.00	0.91	1.00	
Frt		1.00	0.88		1.00	1.00	0.85		1.00	1.00	0.85	
Flt Protected		0.95	1.00		0.95	0.97	1.00		0.95	1.00	1.00	
Satd. Flow (prot)		1770	1634		1681	1725	1583		1770	5085	1583	
Flt Permitted		0.95	1.00		0.95	0.97	1.00		0.05	1.00	1.00	
Satd. Flow (perm)		1770	1634		1681	1725	1583		91	5085	1583	
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.90	0.90	0.90	0.92	0.92	0.92	0.92	0.98
Adj. Flow (vph)	2	143	72	328	714	59	66	47	177	1803	476	6
RTOR Reduction (vph)	0	0	82	0	0	0	50	0	0	0	123	0
Lane Group Flow (vph)	0	145	318	0	650	123	16	0	224	1803	353	0
Turn Type	Split	Split	NA		Split	NA	Perm	custom	pm+pt	NA	custom	custom
Protected Phases	4	4	4		3	3			5	2		
Permitted Phases							3	5	2		23	1
Actuated Green, G (s)		31.0	31.0		46.0	46.0	46.0		104.0	92.2	145.2	
Effective Green, g (s)		33.0	33.0		48.0	48.0	48.0		107.0	95.2	148.2	
Actuated g/C Ratio		0.16	0.16		0.24	0.24	0.24		0.54	0.48	0.74	
Clearance Time (s)		6.0	6.0		6.0	6.0	6.0		7.0	7.0		
Vehicle Extension (s)		2.0	2.0		2.0	2.0	2.0		1.5	3.0		
Lane Grp Cap (vph)		292	269		403	414	379		261	2420	1173	
v/s Ratio Prot		0.08	c0.19		c0.39	0.07			c0.11	0.35		
v/s Ratio Perm							0.01		c0.35		0.22	
v/c Ratio		0.50	1.18		1.61	0.30	0.04		0.86	0.75	0.30	
Uniform Delay, d1		75.9	83.5		76.0	62.2	58.3		66.3	42.5	8.6	
Progression Factor		1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00	
Incremental Delay, d2		0.5	113.6		287.1	0.1	0.0		22.5	2.1	0.1	
Delay (s)		76.4	197.1		363.1	62.3	58.4		88.8	44.7	8.7	
Level of Service		Е	F		F	Е	Е		F	D	Α	
Approach Delay (s)			165.0			295.0				41.8		
Approach LOS			F			F				D		
Intersection Summary												
HCM 2000 Control Delay			97.0	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	ity ratio		1.12									
Actuated Cycle Length (s)			200.0		um of los				16.0			
Intersection Capacity Utilizati	on		95.3%	IC	CU Level	of Service			F			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	>	ļ	4
Movement	SBL	SBT	SBR
Lane Configurations	ă	^ ^	7
Traffic Volume (vph)	24	1587	21
Future Volume (vph)	24	1587	21
Ideal Flow (vphpl)	1900	1900	1900
Total Lost time (s)	4.0	4.0	4.0
Lane Util. Factor	1.00	0.91	1.00
Frt	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00
Satd. Flow (prot)	1770	5085	1583
Flt Permitted	0.06	1.00	1.00
Satd. Flow (perm)	108	5085	1583
Peak-hour factor, PHF	0.98	0.98	0.98
Adj. Flow (vph)	24	1619	21
RTOR Reduction (vph)	0	0	13
Lane Group Flow (vph)	30	1619	8
Turn Type	pm+pt	NA	Perm
Protected Phases	1	6	
Permitted Phases	6		6
Actuated Green, G (s)	79.5	74.7	74.7
Effective Green, g (s)	85.5	77.7	77.7
Actuated g/C Ratio	0.43	0.39	0.39
Clearance Time (s)	7.0	7.0	7.0
Vehicle Extension (s)	1.5	3.0	3.0
Lane Grp Cap (vph)	110	1975	614
v/s Ratio Prot	0.01	0.32	
v/s Ratio Perm	0.10		0.01
v/c Ratio	0.27	0.82	0.01
Uniform Delay, d1	37.8	54.9	37.6
Progression Factor	1.00	1.00	1.00
Incremental Delay, d2	0.5	4.0	0.0
Delay (s)	38.3	58.8	37.6
Level of Service	D	E	D
Approach Delay (s)		58.2	
Approach LOS		Е	
Interpostion Commen			
Intersection Summary			



	₾	۶	-	\rightarrow	F	•	←	•	•	†	/	>
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		Ä	^	7		Ä	^	7		र्स	7	
Traffic Volume (vph)	4	75	848	97	1	19	627	276	0	1	11	127
Future Volume (vph)	4	75	848	97	1	19	627	276	0	1	11	127
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0		6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor		1.00	0.95	1.00		1.00	0.95	1.00		1.00	1.00	
Frt		1.00	1.00	0.85		1.00	1.00	0.85		1.00	0.85	
Flt Protected		0.95	1.00	1.00		0.95	1.00	1.00		1.00	1.00	
Satd. Flow (prot)		1770	3539	1583		1770	3539	1583		1863	1583	
Flt Permitted		0.34	1.00	1.00		0.25	1.00	1.00		1.00	1.00	
Satd. Flow (perm)		625	3539	1583		466	3539	1583		1863	1583	
Peak-hour factor, PHF	0.83	0.83	0.83	0.83	0.86	0.86	0.86	0.86	0.45	0.45	0.45	0.67
Adj. Flow (vph)	5	90	1022	117	1	22	729	321	0	2	24	190
RTOR Reduction (vph)	0	0	0	31	0	0	0	105	0	0	20	0
Lane Group Flow (vph)	0	95	1022	86	0	23	729	216	0	2	4	0
Turn Type	custom	pm+pt	NA	Perm	custom	pm+pt	NA	Perm		NA	custom	pm+pt
Protected Phases		1	6			5	2		7	4	4	3
Permitted Phases	1	6		6	5	2		2	4		4	8
Actuated Green, G (s)		117.4	110.9	110.9		110.6	107.5	107.5		28.0	28.0	
Effective Green, g (s)		117.4	110.9	110.9		110.6	107.5	107.5		28.0	28.0	
Actuated g/C Ratio		0.73	0.69	0.69		0.69	0.67	0.67		0.18	0.18	
Clearance Time (s)		6.0	6.0	6.0		6.0	6.0	6.0		6.0	6.0	
Vehicle Extension (s)		1.5	3.0	3.0		1.5	3.0	3.0		2.5	2.5	
Lane Grp Cap (vph)		505	2452	1097		347	2377	1063		326	277	
v/s Ratio Prot		c0.01	c0.29			0.00	0.21			0.00	0.00	
v/s Ratio Perm		0.13		0.05		0.04		0.14				
v/c Ratio		0.19	0.42	0.08		0.07	0.31	0.20		0.01	0.02	
Uniform Delay, d1		6.5	10.6	8.0		8.2	10.8	10.0		54.5	54.6	
Progression Factor		1.00	1.00	1.00		1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2		0.1	0.1	0.0		0.0	0.3	0.4		0.0	0.0	
Delay (s)		6.5	10.7	8.0		8.2	11.2	10.4		54.5	54.6	
Level of Service		Α	В	Α		Α	В	В		D	D	
Approach Delay (s)			10.1				10.9			54.6		
Approach LOS			В				В			D		
Intersection Summary												
HCM 2000 Control Delay			17.5	ŀ	HCM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.52									
Actuated Cycle Length (s)			160.0		Sum of los				24.0			
Intersection Capacity Utiliza	ation		60.0%	I	CU Level	of Service)		В			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	↓	✓
Movement	SBT	SBR
Lane Configurations	र्स	7
Traffic Volume (vph)	6	33
Future Volume (vph)	6	33
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	6.0	6.0
Lane Util. Factor	1.00	1.00
Frt	1.00	0.85
Flt Protected	0.95	1.00
Satd. Flow (prot)	1778	1583
FIt Permitted	0.73	1.00
Satd. Flow (perm)	1369	1583
Peak-hour factor, PHF	0.67	0.67
Adj. Flow (vph)	9	49
RTOR Reduction (vph)	0	40
Lane Group Flow (vph)	199	9
Turn Type	NA	Perm
Protected Phases	8	I CIIII
Permitted Phases	U	8
Actuated Green, G (s)	28.0	28.0
Effective Green, g (s)	28.0	28.0
Actuated g/C Ratio	0.18	0.18
	6.0	6.0
Clearance Time (s)		
Vehicle Extension (s)	2.5	2.5
Lane Grp Cap (vph)	239	277
v/s Ratio Prot		
v/s Ratio Perm	c0.15	0.01
v/c Ratio	0.83	0.03
Uniform Delay, d1	63.7	54.7
Progression Factor	1.00	1.00
Incremental Delay, d2	20.9	0.0
Delay (s)	84.7	54.8
Level of Service	F	D
Approach Delay (s)	78.8	
Approach LOS	Е	
Intersection Summary		

Movement EBT EBR WBL WBT NBL NBR Lane Configurations ↑↑
Traffic Volume (veh/h)
Traffic Volume (veh/h) 1113 59 0 0 0 270 Future Volume (Veh/h) 1113 59 0 0 0 0 270 Sign Control Free Free Stop Grade 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 1210 64 0 0 0 293 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1274 1242 637 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Future Volume (Veh/h) 1113 59 0 0 0 270 Sign Control Free Free Stop Grade 0% 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 1210 64 0 0 0 293 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1274 1242 637 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Sign Control Free Free Stop Grade 0% 0% 0% Peak Hour Factor 0.92 0.92 0.92 0.92 0.92 Hourly flow rate (vph) 1210 64 0 0 0 293 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1274 1242 637 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Grade 0% 0% 0% Peak Hour Factor 0.92
Peak Hour Factor 0.92
Hourly flow rate (vph) 1210 64 0 0 0 293 Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1274 1242 637 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Pedestrians Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Lane Width (ft) Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Walking Speed (ft/s) Percent Blockage Right turn flare (veh) Median type None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1274 1242 637 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Percent Blockage Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1274 1242 637 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Right turn flare (veh) Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1274 1242 637 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Median type None None Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume 1274 1242 637 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Median storage veh) Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
Upstream signal (ft) pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
pX, platoon unblocked vC, conflicting volume vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
vC, conflicting volume 1274 1242 637 vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
vC1, stage 1 conf vol vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
vC2, stage 2 conf vol vCu, unblocked vol 1274 1242 637
vCu, unblocked vol 1274 1242 637
,
tC, single (s) 4.1 6.8 6.9
tC, 2 stage (s)
tF (s) 2.2 3.5 3.3
p0 queue free % 100 100 30
cM capacity (veh/h) 541 167 420
Direction, Lane # EB 1 EB 2 NB 1
Volume Total 807 467 293
Volume Left 0 0 0
Volume Right 0 64 293
cSH 1700 1700 420
Volume to Capacity 0.47 0.27 0.70
Queue Length 95th (ft) 0 0 130
Control Delay (s) 0.0 0.0 31.1
Lane LOS D
Approach Delay (s) 0.0 31.1
Approach LOS D
Intersection Summary
Average Delay 5.8
Intersection Capacity Utilization 56.0% ICU Level of Service
Analysis Period (min) 15

NW/SW 136th Avenue

	•	-	•	•	←	•	•	†	~	L	>	ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	*	†	7	¥	f)		Ä	↑ ↑			¥	^
Traffic Volume (vph)	218	6	21	8	7	65	44	560	19	35	78	589
Future Volume (vph)	218	6	21	8	7	65	44	560	19	35	78	589
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0		5.0	5.0			5.0	5.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00		1.00	0.95			1.00	0.95
Frt	1.00	1.00	0.85	1.00	0.86		1.00	1.00			1.00	1.00
Flt Protected	0.95	1.00	1.00	0.95	1.00		0.95	1.00			0.95	1.00
Satd. Flow (prot)	1770	1863	1583	1770	1610		1770	3522			1770	3539
Flt Permitted	0.37	1.00	1.00	0.75	1.00		0.39	1.00			0.39	1.00
Satd. Flow (perm)	683	1863	1583	1403	1610		721	3522			718	3539
Peak-hour factor, PHF	0.89	0.89	0.89	0.77	0.77	0.77	0.91	0.91	0.91	0.93	0.93	0.93
Adj. Flow (vph)	245	7	24	10	9	84	48	615	21	38	84	633
RTOR Reduction (vph)	0	0	18	0	79	0	0	1	0	0	0	0
Lane Group Flow (vph)	245	7	6	10	14	0	48	635	0	0	122	633
Turn Type	pm+pt	NA	Perm	Perm	NA		Perm	NA		Perm	Perm	NA
Protected Phases	7	4			8			2				6
Permitted Phases	4		4	8			2			6	6	
Actuated Green, G (s)	31.8	31.8	31.8	7.2	7.2		79.2	79.2			79.2	79.2
Effective Green, g (s)	31.8	31.8	31.8	7.2	7.2		79.2	79.2			79.2	79.2
Actuated g/C Ratio	0.26	0.26	0.26	0.06	0.06		0.65	0.65			0.65	0.65
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0		5.0	5.0			5.0	5.0
Vehicle Extension (s)	2.2	2.0	2.0	2.0	2.0		3.0	3.0			3.0	3.0
Lane Grp Cap (vph)	343	485	412	82	95		468	2286			466	2297
v/s Ratio Prot	c0.11	0.00			0.01			0.18				0.18
v/s Ratio Perm	c0.08		0.00	0.01			0.07				0.17	
v/c Ratio	0.71	0.01	0.02	0.12	0.15		0.10	0.28			0.26	0.28
Uniform Delay, d1	38.9	33.5	33.5	54.4	54.5		8.0	9.2			9.0	9.1
Progression Factor	1.00	1.00	1.00	1.00	1.00		1.00	1.00			1.00	1.00
Incremental Delay, d2	6.0	0.0	0.0	0.2	0.3		0.4	0.3			1.4	0.3
Delay (s)	44.9	33.5	33.5	54.6	54.7		8.5	9.5			10.4	9.4
Level of Service	D	С	С	D	D		Α	Α			В	Α
Approach Delay (s)		43.7			54.7			9.4				10.3
Approach LOS		D			D			Α				В
Intersection Summary												
HCM 2000 Control Delay			15.7	H	CM 2000	Level of S	Service		В			
HCM 2000 Volume to Capa	acity ratio		0.49									
Actuated Cycle Length (s)			122.0		um of lost				17.0			
Intersection Capacity Utiliza	ation		70.1%	IC	U Level o	of Service			С			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

Movement	SBR
Lar t Configurations	7
Traffic Volume (vph)	567
Future Volume (vph)	567
Ideal Flow (vphpl)	1900
Total Lost time (s)	5.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1583
Flt Permitted	1.00
Satd. Flow (perm)	1583
Peak-hour factor, PHF	0.93
Adj. Flow (vph)	610
RTOR Reduction (vph)	214
Lane Group Flow (vph)	396
Turn Type	Perm
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	79.2
Effective Green, g (s)	79.2
Actuated g/C Ratio	0.65
Clearance Time (s)	5.0
Vehicle Extension (s)	3.0
Lane Grp Cap (vph)	1027
v/s Ratio Prot	,,,,,,
v/s Ratio Perm	c0.25
v/c Ratio	0.39
Uniform Delay, d1	10.0
Progression Factor	1.00
Incremental Delay, d2	1.1
Delay (s)	11.1
Level of Service	В
Approach Delay (s)	
Approach LOS	
• •	
Intersection Summary	

	۶	-	\rightarrow	•	•	•	•	†	~	L	\	ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ሻሻ	^	7					^	7		ሽኘ	^
Traffic Volume (vph)	431	624	122	0	0	0	0	372	506	1	575	1147
Future Volume (vph)	431	624	122	0	0	0	0	372	506	1	575	1147
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.5	7.5	7.5					7.0	7.0		7.0	7.0
Lane Util. Factor	0.97	0.95	1.00					0.95	1.00		0.97	0.95
Frt	1.00	1.00	0.85					1.00	0.85		1.00	1.00
Flt Protected	0.95	1.00	1.00					1.00	1.00		0.95	1.00
Satd. Flow (prot)	3433	3539	1583					3539	1583		3433	3539
Flt Permitted	0.95	1.00	1.00					1.00	1.00		0.95	1.00
Satd. Flow (perm)	3433	3539	1583					3539	1583		3433	3539
Peak-hour factor, PHF	0.95	0.95	0.95	0.92	0.92	0.92	0.90	0.90	0.90	0.96	0.96	0.96
Adj. Flow (vph)	454	657	128	0	0	0	0	413	562	1	599	1195
RTOR Reduction (vph)	0	0	104	0	0	0	0	0	171	0	0	0
Lane Group Flow (vph)	454	657	24	0	0	0	0	413	391	0	600	1195
Turn Type	Split	NA	Prot					NA	Perm	Prot	Prot	NA
Protected Phases	4	4	4					1		23	23	123
Permitted Phases									1			
Actuated Green, G (s)	18.0	18.0	18.0					27.0	27.0		28.7	62.7
Effective Green, g (s)	18.0	18.0	18.0					27.0	27.0		28.7	62.7
Actuated g/C Ratio	0.19	0.19	0.19					0.28	0.28		0.30	0.66
Clearance Time (s)	7.5	7.5	7.5					7.0	7.0			
Vehicle Extension (s)	3.0	3.0	3.0					3.0	3.0			
Lane Grp Cap (vph)	649	669	299					1003	448		1034	2330
v/s Ratio Prot	0.13	c0.19	0.02					0.12			c0.17	c0.34
v/s Ratio Perm									c0.25			
v/c Ratio	0.70	0.98	0.08					0.41	0.87		0.58	0.51
Uniform Delay, d1	36.1	38.4	31.8					27.7	32.5		28.2	8.4
Progression Factor	1.00	1.00	1.00					1.00	1.00		1.30	1.35
Incremental Delay, d2	3.3	30.1	0.1					1.3	20.3		0.4	0.1
Delay (s)	39.4	68.6	31.9					28.9	52.7		36.9	11.4
Level of Service	D	Е	С					С	D		D	В
Approach Delay (s)		54.1			0.0			42.6				19.9
Approach LOS		D			Α			D				В
Intersection Summary												
HCM 2000 Control Delay			36.0	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.87									
Actuated Cycle Length (s)			95.2		um of lost				28.5			
Intersection Capacity Utiliza	tion		103.5%	IC	U Level o	of Service	!		G			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

Movement	SBR
Lart Configurations	
Traffic Volume (vph)	0
Future Volume (vph)	0
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.96
Adj. Flow (vph)	0
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection outlindry	

	۶	→	•	•	+	•	1	†	/	/	+	√
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				¥	414	7	Ä	ተተተ			ተተ _ጉ	
Traffic Volume (vph)	0	0	0	820	160	454	68	736	0	0	903	78
Future Volume (vph)	0	0	0	820	160	454	68	736	0	0	903	78
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				7.5	7.5	7.5	7.0	7.0			7.0	
Lane Util. Factor				0.91	0.86	0.91	1.00	0.91			0.91	
Frt				1.00	0.97	0.85	1.00	1.00			0.99	
Flt Protected				0.95	0.97	1.00	0.95	1.00			1.00	
Satd. Flow (prot)				1610	3023	1441	1770	5085			5024	
Flt Permitted				0.95	0.97	1.00	0.95	1.00			1.00	
Satd. Flow (perm)				1610	3023	1441	1770	5085			5024	
Peak-hour factor, PHF	0.92	0.92	0.92	0.96	0.96	0.96	0.96	0.96	0.96	0.91	0.91	0.91
Adj. Flow (vph)	0	0	0	854	167	473	71	767	0	0	992	86
RTOR Reduction (vph)	0	0	0	0	22	188	0	0	0	0	10	0
Lane Group Flow (vph)	0	0	0	427	714	143	71	767	0	0	1068	0
Turn Type				Split	NA	Prot	Prot	NA			NA	
Protected Phases				8	8	8	3	123			12	
Permitted Phases												
Actuated Green, G (s)				18.0	18.0	18.0	14.7	62.7			41.0	
Effective Green, g (s)				18.0	18.0	18.0	14.7	62.7			41.0	
Actuated g/C Ratio				0.19	0.19	0.19	0.15	0.66			0.43	
Clearance Time (s)				7.5	7.5	7.5	7.0					
Vehicle Extension (s)				3.0	3.0	3.0	2.0					
Lane Grp Cap (vph)				304	571	272	273	3349			2163	
v/s Ratio Prot				c0.27	0.24	0.10	0.04	c0.15			c0.21	
v/s Ratio Perm												
v/c Ratio				1.40	1.31dl	0.53	0.26	0.23			0.49	
Uniform Delay, d1				38.6	38.6	34.8	35.5	6.5			19.6	
Progression Factor				1.00	1.00	1.00	1.41	1.33			1.00	
Incremental Delay, d2				200.7	126.8	1.8	0.2	0.0			0.2	
Delay (s)				239.3	165.4	36.6	50.3	8.7			19.8	
Level of Service				F	F	D	D	Α			В	
Approach Delay (s)		0.0			158.0			12.2			19.8	
Approach LOS		Α			F			В			В	
Intersection Summary												
HCM 2000 Control Delay			78.5	Н	ICM 2000	Level of S	Service		Е			
HCM 2000 Volume to Capacity	ratio		0.74									
Actuated Cycle Length (s)			95.2	S	um of lost	time (s)			28.5			
Intersection Capacity Utilization	1		103.5%	10	CU Level	of Service			G			
Analysis Period (min)			15									
dl Defacto Left Lane. Recode	e with 1	though la	ne as a l	eft lane.								
c Critical Lane Group												

I-595 ACS: SW 136 Ave PM 5:00 pm 04/17/2020 Existing PM

	۶	•	₹I	4	†	ļ	4	
Movement	EBL	EBR	NBU	NBL	NBT	SBT	SBR	
Lane Configurations	ሕ ኻ	7		ă	ተተተ	ተተተ	7	
Traffic Volume (vph)	263	145	5	98	1087	831	281	
Future Volume (vph)	263	145	5	98	1087	831	281	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)	6.0	6.0		5.5	5.5	5.5	5.5	
Lane Util. Factor	0.97	1.00		1.00	0.91	0.91	1.00	
Frt	1.00	0.85		1.00	1.00	1.00	0.85	
Flt Protected	0.95	1.00		0.95	1.00	1.00	1.00	
Satd. Flow (prot)	3433	1583		1770	5085	5085	1583	
Flt Permitted	0.95	1.00		0.28	1.00	1.00	1.00	
Satd. Flow (perm)	3433	1583		522	5085	5085	1583	
Peak-hour factor, PHF	0.87	0.87	0.92	0.92	0.92	0.94	0.94	
Adj. Flow (vph)	302	167	5	107	1182	884	299	
RTOR Reduction (vph)	0	146	0	0	0	0	94	
Lane Group Flow (vph)	302	21	0	112	1182	884	205	
Turn Type	Prot	Prot	custom	pm+pt	NA	NA	Perm	
Protected Phases	4	4		5	2	6		
Permitted Phases			5	2			6	
Actuated Green, G (s)	15.0	15.0		93.5	93.5	82.2	82.2	
Effective Green, g (s)	15.0	15.0		93.5	93.5	82.2	82.2	
Actuated g/C Ratio	0.12	0.12		0.78	0.78	0.69	0.69	
Clearance Time (s)	6.0	6.0		5.5	5.5	5.5	5.5	
Vehicle Extension (s)	2.0	2.0		1.5	3.0	3.0	3.0	
Lane Grp Cap (vph)	429	197		467	3962	3483	1084	
v/s Ratio Prot	c0.09	0.01		0.01	c0.23	0.17		
v/s Ratio Perm				0.18			0.13	
v/c Ratio	0.70	0.11		0.24	0.30	0.25	0.19	
Uniform Delay, d1	50.4	46.6		3.5	3.8	7.2	6.8	
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	
Incremental Delay, d2	4.3	0.1		0.1	0.2	0.2	0.4	
Delay (s)	54.6	46.6		3.6	4.0	7.4	7.2	
Level of Service	D	D		Α	Α	Α	Α	
Approach Delay (s)	51.8				4.0	7.3		
Approach LOS	D				Α	Α		
Intersection Summary								
HCM 2000 Control Delay			12.9	Н	CM 2000	Level of S	Service	
HCM 2000 Volume to Capacit	ty ratio		0.37					
Actuated Cycle Length (s)			120.0	S	um of lost	time (s)		
Intersection Capacity Utilization	on		44.9%		U Level o			
Analysis Period (min)			15					

c Critical Lane Group

	۶	→	←	4	>	4
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			↑ ↑			7
Traffic Volume (veh/h)	0	0	1198	339	0	302
Future Volume (Veh/h)	0	0	1198	339	0	302
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	1302	368	0	328
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	1670				1486	835
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol	1670				1486	835
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)						
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	0
cM capacity (veh/h)	381				115	311
Direction, Lane #	WB 1	WB 2	SB 1			
Volume Total	868	802	328			
Volume Left	000	002	0			
	0	368	328			
Volume Right cSH	1700	1700	311			
	0.51	0.47	1.06			
Volume to Capacity			305			
Queue Length 95th (ft)	0	0				
Control Delay (s)	0.0	0.0	104.1			
Lane LOS	0.0		F			
Approach LOS	0.0		104.1			
Approach LOS			F			
Intersection Summary						
Average Delay			17.1			
Intersection Capacity Utiliz	zation		69.3%	IC	U Level c	f Service
Analysis Period (min)			15			

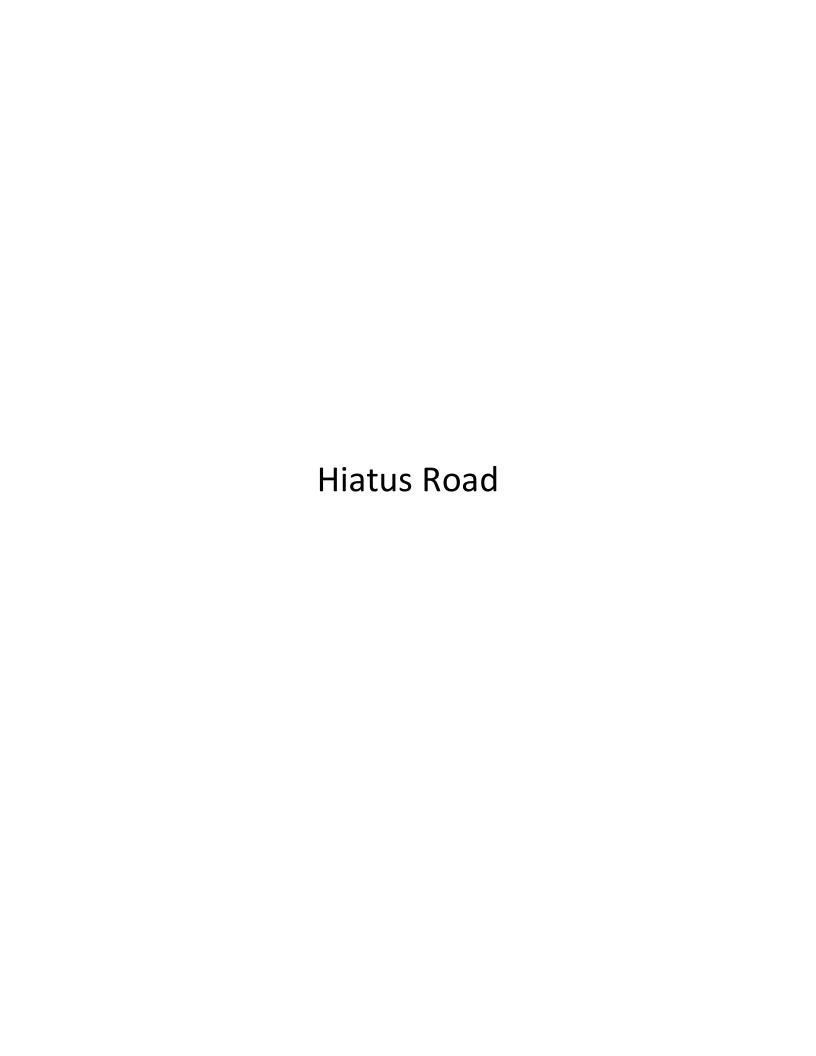
	۶	•	₹ī	4	†	L	↓	4		
Movement	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR		
Lane Configurations	ሻ	7		ă	ተተተ	Ð	ተተተ	7		
Traffic Volume (vph)	90	38	1	115	1424	12	1581	435		
Future Volume (vph)	90	38	1	115	1424	12	1581	435		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0		7.5	7.5	7.5	7.5	7.5		
Lane Util. Factor	1.00	1.00		1.00	0.91	1.00	0.91	1.00		
Frt	1.00	0.85		1.00	1.00	1.00	1.00	0.85		
FIt Protected	0.95	1.00		0.95	1.00	0.95	1.00	1.00		
Satd. Flow (prot)	1770	1583		1770	5085	1770	5085	1583		
Flt Permitted	0.95	1.00		0.10	1.00	0.14	1.00	1.00		
Satd. Flow (perm)	1770	1583		179	5085	255	5085	1583		
Peak-hour factor, PHF	0.82	0.82	0.88	0.88	0.88	0.88	0.88	0.88		
Adj. Flow (vph)	110	46	1	131	1618	14	1797	494		
RTOR Reduction (vph)	0	42	0	0	0	0	0	109		
_ane Group Flow (vph)	110	4	0	132	1618	14	1797	385		
Turn Type	Prot	Prot	custom	pm+pt	NA	pm+pt	NA	Perm		
Protected Phases	4	4		5	2	1	6	-		
Permitted Phases			5	2		6		6		
Actuated Green, G (s)	14.4	14.4		130.3	122.8	118.9	117.1	117.1		
Effective Green, g (s)	14.4	14.4		130.3	122.8	118.9	117.1	117.1		
Actuated g/C Ratio	0.09	0.09		0.81	0.77	0.74	0.73	0.73		
Clearance Time (s)	6.0	6.0		7.5	7.5	7.5	7.5	7.5		
Vehicle Extension (s)	2.0	2.0		1.5	3.0	1.5	3.0	3.0		
ane Grp Cap (vph)	159	142		220	3902	206	3721	1158		
//s Ratio Prot	c0.06	0.00		c0.03	c0.32	0.00	0.35			
//s Ratio Perm				c0.46		0.05		0.24		
//c Ratio	0.69	0.03		0.60	0.41	0.07	0.48	0.33		
Jniform Delay, d1	70.6	66.4		7.1	6.3	5.4	8.9	7.6		
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		
ncremental Delay, d2	10.0	0.0		2.9	0.3	0.1	0.5	0.8		
Delay (s)	80.6	66.5		10.0	6.7	5.5	9.3	8.4		
_evel of Service	F	Е		В	Α	А	Α	Α		
Approach Delay (s)	76.5				6.9		9.1			
Approach LOS	E				Α		Α			
ntersection Summary										
HCM 2000 Control Delay			10.7	Н	CM 2000	Level of	Service		В	
HCM 2000 Volume to Capa	city ratio		0.63							
Actuated Cycle Length (s)			160.0	S	um of los	t time (s)			21.0	
ntersection Capacity Utiliza	ation		59.5%			of Service			В	
Analysis Period (min)			15							

c Critical Lane Group

	•	→	•	•	•	•	4	†	/	-	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4₽	7					11111	7	14.54	^ ^	
Traffic Volume (vph)	505	423	464	0	0	0	0	918	532	710	1691	0
Future Volume (vph)	505	423	464	0	0	0	0	918	532	710	1691	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.5	7.5	7.5					7.5	7.5	8.5	8.5	
Lane Util. Factor	0.91	0.91	1.00					0.81	1.00	0.97	0.91	
Frt	1.00	1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95	0.98	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1610	3336	1583					7544	1583	3433	5085	
Flt Permitted	0.95	0.98	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1610	3336	1583					7544	1583	3433	5085	
Peak-hour factor, PHF	0.89	0.89	0.89	0.92	0.92	0.92	0.96	0.96	0.96	0.89	0.89	0.89
Adj. Flow (vph)	567	475	521	0	0	0	0	956	554	798	1900	0
RTOR Reduction (vph)	0	0	166	0	0	0	0	0	147	0	0	0
Lane Group Flow (vph)	340	702	355	0	0	0	0	956	407	798	1900	0
Turn Type	Split	NA	Perm					NA	Perm	Prot	NA	
Protected Phases	16	16						4 5		23	2345	
Permitted Phases			16						4 5			
Actuated Green, G (s)	35.0	35.0	35.0					39.5	39.5	63.5	111.0	
Effective Green, g (s)	27.0	27.0	27.0					39.5	39.5	63.5	95.5	
Actuated g/C Ratio	0.17	0.17	0.17					0.24	0.24	0.39	0.59	
Clearance Time (s)												
Vehicle Extension (s)												
Lane Grp Cap (vph)	268	556	263					1839	385	1345	2997	
v/s Ratio Prot	0.21	0.21						0.13		0.23	c0.37	
v/s Ratio Perm			c0.22						c0.26			
v/c Ratio	1.27	1.26	1.35					0.52	1.06	0.59	0.63	
Uniform Delay, d1	67.5	67.5	67.5					53.0	61.2	39.0	21.8	
Progression Factor	1.00	1.00	1.00					1.00	1.00	0.29	0.35	
Incremental Delay, d2	147.0	132.1	180.7					0.1	61.4	0.1	0.0	
Delay (s)	214.5	199.6	248.2					53.1	122.6	11.4	7.7	
Level of Service	F	F	F					D	F	В	Α	
Approach Delay (s)		219.0			0.0			78.6			8.8	
Approach LOS		F			Α			Е			Α	
Intersection Summary												
HCM 2000 Control Delay			84.0	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capa	acity ratio		1.04									
Actuated Cycle Length (s)			162.0	S	um of lost	time (s)			48.0			
Intersection Capacity Utiliza	ation		90.4%		U Level o				Е			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	۶	→	•	•	←	•	•	†	<i>></i>	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				Ţ	4₽	7	1,1	ተተተ			11111	7
Traffic Volume (vph)	0	0	0	651	150	524	258	1165	0	0	1750	473
Future Volume (vph)	0	0	0	651	150	524	258	1165	0	0	1750	473
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				8.0	8.0	8.0	8.5	7.5			7.5	7.5
Lane Util. Factor				0.91	0.91	1.00	0.97	0.91			0.81	1.00
Frt				1.00	1.00	0.85	1.00	1.00			1.00	0.85
Flt Protected				0.95	0.97	1.00	0.95	1.00			1.00	1.00
Satd. Flow (prot)				1610	3278	1583	3433	5085			7544	1583
Flt Permitted				0.95	0.97	1.00	0.95	1.00			1.00	1.00
Satd. Flow (perm)				1610	3278	1583	3433	5085			7544	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.87	0.87	0.87	0.96	0.96	0.96	0.89	0.89	0.89
Adj. Flow (vph)	0	0	0	748	172	602	269	1214	0	0	1966	531
RTOR Reduction (vph)	0	0	0	0	0	156	0	0	0	0	0	323
Lane Group Flow (vph)	0	0	0	374	546	446	269	1214	0	0	1966	208
Turn Type				Split	NA	Perm	Prot	NA			NA	Perm
Protected Phases				3 4	3 4	1 01111	5 6	1256			12	. 0
Permitted Phases					<u> </u>	3 4					· -	12
Actuated Green, G (s)				35.0	35.0	35.0	63.5	111.0			39.5	39.5
Effective Green, g (s)				35.0	35.0	35.0	63.5	94.5			39.5	39.5
Actuated g/C Ratio				0.22	0.22	0.22	0.39	0.58			0.24	0.24
Clearance Time (s)				V	V	V	0.00	0.00			V	Ü. <u>.</u>
Vehicle Extension (s)												
Lane Grp Cap (vph)				347	708	342	1345	2966			1839	385
v/s Ratio Prot				0.23	0.17	· · · · ·	0.08	c0.24			c0.26	
v/s Ratio Perm						c0.28						0.13
v/c Ratio				1.08	1.05dl	1.30	0.20	0.41			1.07	0.54
Uniform Delay, d1				63.5	59.7	63.5	32.5	18.5			61.2	53.3
Progression Factor				1.00	1.00	1.00	0.46	0.31			1.00	1.00
Incremental Delay, d2				70.6	5.2	156.6	0.2	0.3			42.2	5.4
Delay (s)				134.1	64.9	220.1	15.2	5.9			103.5	58.7
Level of Service				F	Е	F	В	Α			F	Е
Approach Delay (s)		0.0			143.3			7.6			94.0	_
Approach LOS		А			F			Α			F	
Intersection Summary												
HCM 2000 Control Delay			84.3	Н	CM 2000	Level of S	Service		F			
HCM 2000 Volume to Capacity	ratio		0.97				2					
Actuated Cycle Length (s)			162.0	S	um of los	t time (s)			48.0			
Intersection Capacity Utilization	1		90.4%			of Service			E			
Analysis Period (min)			15		2 20.01	2. 20. 1100			_			
dl Defacto Left Lane. Recode	with 1	though la		eft lane.								


c Critical Lane Group

		۶	→	•	F	•	•	•	₹I	4	†	/
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR
Lane Configurations		Ä	^	7		ሕ ሽ	^	7		Ä	ተተተ	7
Traffic Volume (vph)	2	29	99	179	1	413	157	258	23	71	1171	490
Future Volume (vph)	2	29	99	179	1	413	157	258	23	71	1171	490
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0	7.0	7.0		7.0	7.0	7.0		7.0	7.0	7.0
Lane Util. Factor		1.00	0.95	1.00		0.97	0.95	1.00		1.00	0.91	1.00
Frt		1.00	1.00	0.85		1.00	1.00	0.85		1.00	1.00	0.85
Flt Protected		0.95	1.00	1.00		0.95	1.00	1.00		0.95	1.00	1.00
Satd. Flow (prot)		1770	3539	1583		3433	3539	1583		1770	5085	1583
Flt Permitted		0.95	1.00	1.00		0.95	1.00	1.00		0.95	1.00	1.00
Satd. Flow (perm)		1770	3539	1583		3433	3539	1583		1770	5085	1583
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.85	0.85	0.85	0.85	0.95	0.95	0.95	0.95
Adj. Flow (vph)	2	32	108	195	1	486	185	304	24	75	1233	516
RTOR Reduction (vph)	0	0	0	179	0	0	0	254	0	0	0	257
Lane Group Flow (vph)	0	34	108	16	0	487	185	50	0	99	1233	259
Turn Type	Prot	Prot	NA	Perm	Prot	Prot	NA	Perm	Prot	Prot	NA	Perm
Protected Phases	7	7	4		3	3	8		5	5	2	
Permitted Phases				4				8				2
Actuated Green, G (s)		6.2	11.6	11.6		21.0	26.4	26.4		12.8	80.2	80.2
Effective Green, g (s)		6.2	11.6	11.6		21.0	26.4	26.4		12.8	80.2	80.2
Actuated g/C Ratio		0.04	0.07	0.07		0.13	0.16	0.16		0.08	0.50	0.50
Clearance Time (s)		7.0	7.0	7.0		7.0	7.0	7.0		7.0	7.0	7.0
Vehicle Extension (s)		1.5	2.5	2.5		1.5	2.5	2.5		1.5	3.0	3.0
Lane Grp Cap (vph)		68	256	114		450	583	261		141	2548	793
v/s Ratio Prot		0.02	c0.03			c0.14	0.05			0.06	0.24	
v/s Ratio Perm				0.01				0.03				0.16
v/c Ratio		0.50	0.42	0.14		1.08	0.32	0.19		0.70	0.48	0.33
Uniform Delay, d1		75.4	71.0	69.5		69.5	58.9	57.6		71.7	26.3	23.8
Progression Factor		1.00	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00
Incremental Delay, d2		2.1	0.8	0.4		66.4	0.2	0.3		12.1	0.7	1.1
Delay (s)		77.5	71.8	69.9		135.9	59.1	57.9		83.9	26.9	24.9
Level of Service		E	Е	Е		F	Е	Е		F	С	С
Approach Delay (s)			71.3				97.0				29.4	
Approach LOS			Е				F				С	
Intersection Summary												
HCM 2000 Control Delay			46.6	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	ity ratio		0.74									
Actuated Cycle Length (s)			160.0	S	um of lost	t time (s)			28.0			
Intersection Capacity Utilizat	ion		84.7%	IC	CU Level	of Service	!		Е			
Analysis Period (min)			15									

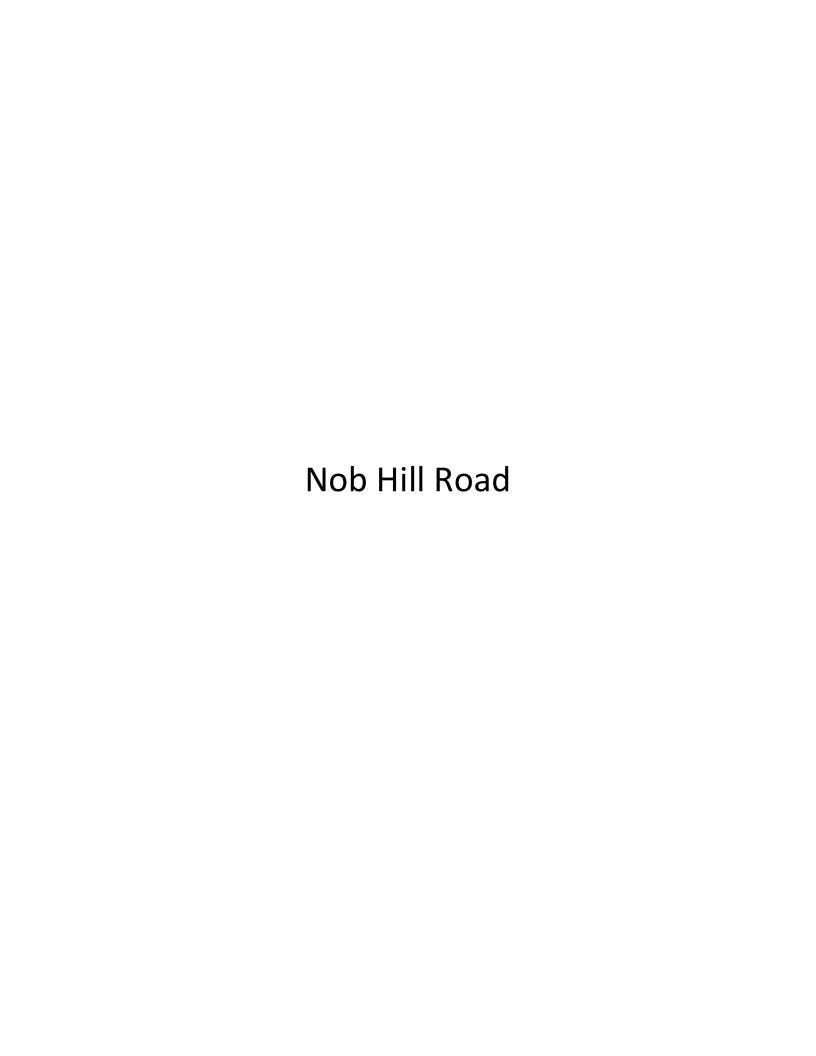
c Critical Lane Group

	L	-	↓	4
Movement	SBU	SBL	SBT	SBR
LaneConfigurations		ሽሽ	ተተተ	7
Traffic Volume (vph)	1	317	1724	57
Future Volume (vph)	1	317	1724	57
Ideal Flow (vphpl)	1900	1900	1900	1900
Total Lost time (s)		7.0	7.0	7.0
Lane Util. Factor		0.97	0.91	1.00
Frt		1.00	1.00	0.85
Flt Protected		0.95	1.00	1.00
Satd. Flow (prot)		3433	5085	1583
Flt Permitted		0.95	1.00	1.00
Satd. Flow (perm)		3433	5085	1583
Peak-hour factor, PHF	0.96	0.96	0.96	0.96
Adj. Flow (vph)	0.90	330	1796	59
RTOR Reduction (vph)	0	0	0	27
Lane Group Flow (vph)	0	331	1796	32
			NA	
Turn Type	Prot	Prot		Perm
Protected Phases	1	1	6	•
Permitted Phases		40.0	00.0	6
Actuated Green, G (s)		19.2	86.6	86.6
Effective Green, g (s)		19.2	86.6	86.6
Actuated g/C Ratio		0.12	0.54	0.54
Clearance Time (s)		7.0	7.0	7.0
Vehicle Extension (s)		1.5	3.0	3.0
Lane Grp Cap (vph)		411	2752	856
v/s Ratio Prot		c0.10	c0.35	
v/s Ratio Perm				0.02
v/c Ratio		0.81	0.65	0.04
Uniform Delay, d1		68.6	26.0	17.2
Progression Factor		1.00	1.00	1.00
Incremental Delay, d2		10.4	1.2	0.1
Delay (s)		78.9	27.3	17.3
Level of Service		Е	С	В
Approach Delay (s)			34.8	
Approach LOS			С	
•				
Intersection Summary				

	۶	→	←	•	\	1
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations			↑ ↑			7
Traffic Volume (veh/h)	0	0	1241	43	0	81
Future Volume (Veh/h)	0	0	1241	43	0	81
Sign Control		Free	Free		Stop	
Grade		0%	0%		0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	0	0	1349	47	0	88
Pedestrians	•					
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type		None	None			
Median storage veh)		110110	140110			
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume	1396				1372	698
vC1, stage 1 conf vol	1000				1012	000
vC2, stage 2 conf vol						
vCu, unblocked vol	1396				1372	698
tC, single (s)	4.1				6.8	6.9
tC, 2 stage (s)	7.1				0.0	0.5
tF (s)	2.2				3.5	3.3
p0 queue free %	100				100	77
cM capacity (veh/h)	486				137	383
					107	300
Direction, Lane #	WB 1	WB 2	SB 1			
Volume Total	899	497	88			
Volume Left	0	0	0			
Volume Right	0	47	88			
cSH	1700	1700	383			
Volume to Capacity	0.53	0.29	0.23			
Queue Length 95th (ft)	0	0	22			
Control Delay (s)	0.0	0.0	17.2			
Lane LOS			С			
Approach Delay (s)	0.0		17.2			
Approach LOS			С			
Intersection Summary						
Average Delay			1.0			
Intersection Capacity Utiliza	tion		47.4%	IC	ULevelo	of Service
Analysis Period (min)			15		2 20.010	300

	۶	→	*	•	←	4	1	†	<i>></i>	/	+	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	ሻ	4∱	7					ተተተ	7	14.54	^	
Traffic Volume (vph)	621	423	218	0	0	0	0	347	244	525	917	0
Future Volume (vph)	621	423	218	0	0	0	0	347	244	525	917	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0					7.0	7.5	7.0	7.0	
Lane Util. Factor	0.91	0.91	1.00					0.91	1.00	0.97	0.95	
Frt	1.00	1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95	0.98	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1610	3324	1583					5085	1583	3433	3539	
Flt Permitted	0.95	0.98	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1610	3324	1583					5085	1583	3433	3539	
Peak-hour factor, PHF	0.96	0.96	0.96	0.92	0.92	0.92	0.90	0.90	0.90	0.86	0.86	0.86
Adj. Flow (vph)	647	441	227	0	0	0	0	386	271	610	1066	0
RTOR Reduction (vph)	0	0	124	0	0	0	0	0	69	0	0	0
Lane Group Flow (vph)	356	732	103	0	0	0	0	386	202	610	1066	0
Turn Type	Perm	NA	Perm					NA	custom	Prot	NA	
Protected Phases		16						4 5		2	2345	
Permitted Phases	16		16						3 4 5			
Actuated Green, G (s)	44.5	44.5	44.5					34.0	76.5	35.0	118.5	
Effective Green, g (s)	37.0	37.0	37.0					34.0	69.5	35.0	111.0	
Actuated g/C Ratio	0.21	0.21	0.21					0.19	0.39	0.20	0.63	
Clearance Time (s)										7.0		
Lane Grp Cap (vph)	336	694	330					976	621	678	2219	
v/s Ratio Prot								0.08		c0.18	c0.30	
v/s Ratio Perm	c0.22	0.22	0.06						0.13			
v/c Ratio	1.06	1.05	0.31					0.40	0.32	0.90	0.48	
Uniform Delay, d1	70.0	70.0	59.2					62.5	37.4	69.3	17.6	
Progression Factor	1.00	1.00	1.00					1.00	1.00	0.79	0.30	
Incremental Delay, d2	65.7	49.5	2.4					1.2	1.4	14.4	0.6	
Delay (s)	135.7	119.5	61.7					63.7	38.8	68.8	5.9	
Level of Service	F	F	Е					Е	D	Е	Α	
Approach Delay (s)		113.9			0.0			53.4			28.8	
Approach LOS		F			Α			D			С	
Intersection Summary												
HCM 2000 Control Delay			63.9	H	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.78									
Actuated Cycle Length (s)			177.0	Sı	um of lost	time (s)			43.0			
Intersection Capacity Utiliza	ition		142.7%	IC	U Level	of Service	!		Н			
Analysis Period (min)			15									
c Critical Lane Group												

	۶	→	•	•	←	4	₹I	1	†	~	/	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations				ሻ	4₽	7		ă	^			1111
Traffic Volume (vph)	0	0	0	536	90	753	5	120	843	0	0	901
Future Volume (vph)	0	0	0	536	90	753	5	120	843	0	0	901
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				7.5	7.5	7.5		7.0	7.0			7.0
Lane Util. Factor				0.91	0.91	1.00		1.00	0.95			0.86
Frt				1.00	1.00	0.85		1.00	1.00			1.00
Flt Protected				0.95	0.96	1.00		0.95	1.00			1.00
Satd. Flow (prot)				1610	3268	1583		1770	3539			6408
Flt Permitted				0.95	0.96	1.00		0.25	1.00			1.00
Satd. Flow (perm)				1610	3268	1583		468	3539			6408
Peak-hour factor, PHF	0.92	0.92	0.92	0.91	0.91	0.91	0.90	0.90	0.90	0.90	0.88	0.88
Adj. Flow (vph)	0	0	0	589	99	827	6	133	937	0	0	1024
RTOR Reduction (vph)	0	0	0	0	0	130	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	294	394	697	0	139	937	0	0	1024
Turn Type				Perm	NA	Perm	custom	Prot	NA			NA
Protected Phases					3 4			56	1256			12
Permitted Phases				3 4		3 4	56					
Actuated Green, G (s)				44.5	44.5	44.5		67.0	118.5			44.0
Effective Green, g (s)				44.5	44.5	44.5		67.0	111.0			44.0
Actuated g/C Ratio				0.25	0.25	0.25		0.38	0.63			0.25
Clearance Time (s)												
Lane Grp Cap (vph)				404	821	397		177	2219			1592
v/s Ratio Prot									0.26			c0.16
v/s Ratio Perm				0.18	0.12	c0.44		c0.30				
v/c Ratio				0.73	0.48	1.76		0.79	0.42			0.64
Uniform Delay, d1				60.7	56.4	66.2		48.6	16.7			59.5
Progression Factor				1.00	1.00	1.00		0.46	0.18			1.00
Incremental Delay, d2				10.9	2.0	350.0		22.2	0.4			2.0
Delay (s)				71.6	58.4	416.2		44.7	3.4			61.5
Level of Service				Е	Е	F		D	Α			E
Approach Delay (s)		0.0			256.3				8.7			187.0
Approach LOS		Α			F				Α			F
Intersection Summary												
HCM 2000 Control Delay			167.5	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capacit	y ratio		1.37									
Actuated Cycle Length (s)			177.0		um of los				43.0			
Intersection Capacity Utilization	on		142.7%	IC	CU Level	of Servic	e		Н			
Analysis Period (min)			15									
c Critical Lane Group												



Movement	SBR
La ner Configurations	7
Traffic Volume (vph)	731
Future Volume (vph)	731
Ideal Flow (vphpl)	1900
Total Lost time (s)	7.5
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1583
Flt Permitted	1.00
Satd. Flow (perm)	1583
Peak-hour factor, PHF	0.88
Adj. Flow (vph)	831
RTOR Reduction (vph)	340
Lane Group Flow (vph)	491
Turn Type	custom
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	35.0
Effective Green, g (s)	35.0
Actuated g/C Ratio	0.20
Clearance Time (s)	7.5
Lane Grp Cap (vph)	313
v/s Ratio Prot	
v/s Ratio Perm	c0.31
v/c Ratio	1.57
Uniform Delay, d1	71.0
Progression Factor	1.00
Incremental Delay, d2	270.7
Delay (s)	341.7
Level of Service	F
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection outlinary	

		۶	-	•	•	←	•	₽l	•	†	~	-
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL
Lane Configurations		Ä	^	7	Ä	^	7		ă	ተተተ	7	Ä
Traffic Volume (vph)	1	165	646	273	486	615	140	1	235	1072	288	135
Future Volume (vph)	1	165	646	273	486	615	140	1	235	1072	288	135
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0	7.0	7.0
Lane Util. Factor		1.00	0.95	1.00	1.00	0.95	1.00		1.00	0.91	1.00	1.00
Frt		1.00	1.00	0.85	1.00	1.00	0.85		1.00	1.00	0.85	1.00
Flt Protected		0.95	1.00	1.00	0.95	1.00	1.00		0.95	1.00	1.00	0.95
Satd. Flow (prot)		1770	3539	1583	1770	3539	1583		1770	5085	1583	1770
Flt Permitted		0.32	1.00	1.00	0.09	1.00	1.00		0.12	1.00	1.00	0.11
Satd. Flow (perm)		601	3539	1583	169	3539	1583		218	5085	1583	203
Peak-hour factor, PHF	0.86	0.86	0.86	0.86	0.85	0.85	0.85	0.86	0.86	0.86	0.86	0.89
Adj. Flow (vph)	1	192	751	317	572	724	165	1	273	1247	335	152
RTOR Reduction (vph)	0	0	0	177	0	0	110	0	0	0	218	0
Lane Group Flow (vph)	0	193	751	140	572	724	55	0	274	1247	117	152
Turn Type	custom	pm+pt	NA	Perm	pm+pt	NA	Perm	custom	pm+pt	NA	Perm	pm+pt
Protected Phases		7	4		3	8			5	2		1
Permitted Phases	7	4		4	8		8	5	2		2	6
Actuated Green, G (s)		50.9	37.2	37.2	74.2	53.5	53.5		71.8	51.9	51.9	56.0
Effective Green, g (s)		50.9	37.2	37.2	74.2	53.5	53.5		71.8	51.9	51.9	56.0
Actuated g/C Ratio		0.32	0.23	0.23	0.46	0.33	0.33		0.45	0.32	0.32	0.35
Clearance Time (s)		7.0	7.0	7.0	7.0	7.0	7.0		7.0	7.0	7.0	7.0
Vehicle Extension (s)		1.5	2.0	2.0	1.5	2.0	2.0		3.0	3.0	3.0	3.0
Lane Grp Cap (vph)		291	822	368	378	1183	529		308	1649	513	197
v/s Ratio Prot		0.06	0.21		c0.28	0.20			c0.12	c0.25		0.06
v/s Ratio Perm		0.15		0.09	c0.42		0.03		c0.28		0.07	0.21
v/c Ratio		0.66	0.91	0.38	1.51	0.61	0.10		0.89	0.76	0.23	0.77
Uniform Delay, d1		41.9	59.8	51.7	52.0	44.6	36.7		40.7	48.4	39.4	39.2
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00
Incremental Delay, d2		4.4	14.2	0.2	244.2	0.7	0.0		25.2	3.3	1.0	16.9
Delay (s)		46.2	74.0	52.0	296.2	45.2	36.8		65.9	51.7	40.5	56.1
Level of Service		D	Е	D	F	D	D		Е	D	D	Е
Approach Delay (s)			64.2			142.5				51.8		
Approach LOS			E			F				D		
Intersection Summary												
HCM 2000 Control Delay			77.9	H	ICM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.26									
Actuated Cycle Length (s)			160.0	S	um of los	t time (s)			28.0			
Intersection Capacity Utiliza	ition		98.0%	10	CU Level	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

Movement SBT SBR Lane onfigurations ↑ ↑ ↑ ✓ Traffic Volume (vph) 872 110 Future Volume (vph) 1900 1900 Total Lost time (s) 7.0 7.0 Lane Util. Factor 0.91 1.00 Frt 1.00 0.85 Flt Protected 1.00 1.00 Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated Green, G (s) 43.1 43.1 Actuated Green, G (s) 3.0 <th></th> <th>↓</th> <th>✓</th>		↓	✓
Traffic Volume (vph) 872 110 Future Volume (vph) 872 110 Ideal Flow (vphpl) 1900 1900 Total Lost time (s) 7.0 7.0 Lane Util. Factor 0.91 1.00 Frt 1.00 0.85 Flt Protected 1.00 1.00 Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Actuated Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3	Movement	SBT	SBR
Traffic Volume (vph) 872 110 Future Volume (vph) 872 110 Ideal Flow (vphpl) 1900 1900 Total Lost time (s) 7.0 7.0 Lane Util. Factor 0.91 1.00 Frt 1.00 0.85 Flt Protected 1.00 1.00 Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated Green, G (s) 43.1 43.1	Lanesconfigurations	^	7
Future Volume (vph) 872 110 Ideal Flow (vphpl) 1900 1900 Total Lost time (s) 7.0 7.0 Lane Util. Factor 0.91 1.00 Frt 1.00 0.85 Flt Protected 1.00 1.00 Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 6 Permitted Phases 6 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0			
Ideal Flow (vphpl) 1900 1900 Total Lost time (s) 7.0 7.0 Lane Util. Factor 0.91 1.00 Frt 1.00 0.85 Flt Protected 1.00 1.00 Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated Green, G (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Rati		872	110
Total Lost time (s) 7.0 7.0 Lane Util. Factor 0.91 1.00 Frt 1.00 0.85 Flt Protected 1.00 1.00 Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated Green, G (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Perm 0.02 0.2 v/c Ratio <td></td> <td>1900</td> <td>1900</td>		1900	1900
Lane Util. Factor 0.91 1.00 Frt 1.00 0.85 Flt Protected 1.00 1.00 Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.22 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9		7.0	7.0
Flt Protected 1.00 1.00 Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2		0.91	1.00
Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.22 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56	Frt	1.00	0.85
Satd. Flow (prot) 5085 1583 Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.22 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56	Flt Protected		
Flt Permitted 1.00 1.00 Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level			
Satd. Flow (perm) 5085 1583 Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach			
Peak-hour factor, PHF 0.89 0.89 Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.19 v/s Ratio Perm 0.02 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach LOS D </td <td></td> <td></td> <td></td>			
Adj. Flow (vph) 980 124 RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach LOS D			
RTOR Reduction (vph) 0 91 Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.02 v/s Ratio Perm 0.02 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach LOS D	•		
Lane Group Flow (vph) 980 33 Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.19 v/s Ratio Perm 0.02 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach LOS D			
Turn Type NA Perm Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.19 v/s Ratio Perm 0.02 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach LOS D			
Protected Phases 6 Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 0.02 v/s Ratio Perm 0.02 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach LOS D			
Permitted Phases 6 Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach LOS D			1 Cilli
Actuated Green, G (s) 43.1 43.1 Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D		U	6
Effective Green, g (s) 43.1 43.1 Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D		∆ 3 1	
Actuated g/C Ratio 0.27 0.27 Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D			
Clearance Time (s) 7.0 7.0 Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D			
Vehicle Extension (s) 3.0 3.0 Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D			
Lane Grp Cap (vph) 1369 426 v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D			
v/s Ratio Prot 0.19 v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D			
v/s Ratio Perm 0.02 v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D			426
v/c Ratio 0.72 0.08 Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D		0.19	0.00
Uniform Delay, d1 52.9 43.6 Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D		0.70	
Progression Factor 1.00 1.00 Incremental Delay, d2 3.2 0.4 Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D			
Incremental Delay, d2 3.2 0.4			
Delay (s) 56.1 44.0 Level of Service E D Approach Delay (s) 54.9 Approach LOS D			
Level of Service E D Approach Delay (s) 54.9 Approach LOS D			
Approach Delay (s) 54.9 Approach LOS D			
Approach LOS D			D
Intersection Summary	Approach LOS	D	
	Intersection Summary		

	•	-	•	•	←	•	•	†	~	L	>	ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	ħ	f)		ň	f)		Ä	^	7		Ä	^
Traffic Volume (vph)	14	0	6	18	0	47	7	895	9	134	40	1317
Future Volume (vph)	14	0	6	18	0	47	7	895	9	134	40	1317
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0		7.0	7.0	7.0		7.0	7.0
Lane Util. Factor	1.00	1.00		1.00	1.00		1.00	0.95	1.00		1.00	0.95
Frt	1.00	0.85		1.00	0.85		1.00	1.00	0.85		1.00	1.00
Flt Protected	0.95	1.00		0.95	1.00		0.95	1.00	1.00		0.95	1.00
Satd. Flow (prot)	1770	1583		1770	1583		1770	3539	1583		1770	3539
Flt Permitted	0.72	1.00		0.75	1.00		0.18	1.00	1.00		0.27	1.00
Satd. Flow (perm)	1347	1583		1398	1583		328	3539	1583		494	3539
Peak-hour factor, PHF	0.56	0.56	0.56	0.90	0.90	0.90	0.93	0.93	0.93	0.92	0.92	0.92
Adj. Flow (vph)	25	0	11	20	0	52	8	962	10	146	43	1432
RTOR Reduction (vph)	0	11	0	0	50	0	0	0	2	0	0	0
Lane Group Flow (vph)	25	0	0	20	2	0	8	962	8	0	189	1432
Turn Type	Perm	NA		Perm	NA		pm+pt	NA	Perm	custom	pm+pt	NA
Protected Phases		4			8		5	2			1	6
Permitted Phases	4			8			2		2	1	6	
Actuated Green, G (s)	6.4	6.4		6.4	6.4		112.9	112.0	112.0		126.3	118.7
Effective Green, g (s)	6.4	6.4		6.4	6.4		112.9	112.0	112.0		126.3	118.7
Actuated g/C Ratio	0.04	0.04		0.04	0.04		0.77	0.77	0.77		0.87	0.81
Clearance Time (s)	6.0	6.0		6.0	6.0		7.0	7.0	7.0		7.0	7.0
Vehicle Extension (s)	2.0	2.0		2.0	2.0		1.5	3.0	3.0		1.5	3.0
Lane Grp Cap (vph)	59	69		61	69		262	2714	1214		493	2877
v/s Ratio Prot		0.00			0.00		0.00	0.27			c0.02	c0.40
v/s Ratio Perm	c0.02			0.01			0.02		0.00		0.31	
v/c Ratio	0.42	0.01		0.33	0.03		0.03	0.35	0.01		0.38	0.50
Uniform Delay, d1	68.0	66.8		67.7	66.8		3.9	5.4	4.0		2.4	4.3
Progression Factor	1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00	1.00
Incremental Delay, d2	1.8	0.0		1.1	0.1		0.0	0.4	0.0		0.2	0.6
Delay (s)	69.8	66.8		68.9	66.9		3.9	5.8	4.0		2.5	4.9
Level of Service	E	Е		Е	E		Α	Α	Α		Α	Α
Approach Delay (s)		68.9			67.5			5.8				4.6
Approach LOS		Е			Е			Α				Α
Intersection Summary												
HCM 2000 Control Delay			7.6	H	CM 2000	Level of	Service		Α			
HCM 2000 Volume to Capa	city ratio		0.51									
Actuated Cycle Length (s)			146.0		um of lost				20.0			
Intersection Capacity Utiliza	ation		64.1%	IC	CU Level of	of Service	-		С			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

Movement SB Lart Configurations Traffic Volume (vph)
Traffic Volume (vph)
Future Volume (vph)
Ideal Flow (vphpl) 190
Total Lost time (s) 7.
Lane Util. Factor 1.0
Frt 0.8
Flt Protected 1.0
Satd. Flow (prot) 158
Flt Permitted 1.0
Satd. Flow (perm) 158
Peak-hour factor, PHF 0.9
Adj. Flow (vph)
RTOR Reduction (vph)
Lane Group Flow (vph)
Turn Type Per
Protected Phases
Permitted Phases
Actuated Green, G (s) 118
Effective Green, g (s) 118
Actuated g/C Ratio 0.8
Clearance Time (s) 7
Vehicle Extension (s) 3
Lane Grp Cap (vph) 128
v/s Ratio Prot
v/s Ratio Perm 0.0
v/c Ratio 0.0
Uniform Delay, d1 2
Progression Factor 1.0
Incremental Delay, d2 0
Delay (s) 2
Level of Service
Approach Delay (s)
Approach Delay (s) Approach LOS
Approach Delay (s) Approach LOS Intersection Summary

	۶	→	•	•	←	•	₹I	4	†	~	L	/
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	Ä	₽		Ä	₽			ă	^	7		15
Traffic Volume (vph)	143	1	117	9	2	41	14	58	1016	2	45	
Future Volume (vph)	143	1	117	9	2	41	14	58	1016	2	45	15
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			7.0	7.0	7.0		7.0
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00	0.95	1.00		1.00
Frt	1.00	0.85		1.00	0.86			1.00	1.00	0.85		1.00
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00	1.00		0.95
Satd. Flow (prot)	1770	1585		1770	1596			1770	3539	1583		1770
Flt Permitted	0.71	1.00		0.59	1.00			0.14	1.00	1.00		0.22
Satd. Flow (perm)	1329	1585		1093	1596			254	3539	1583		418
Peak-hour factor, PHF	0.70	0.70	0.70	0.64	0.64	0.64	0.92	0.92	0.92	0.92	0.94	0.94
Adj. Flow (vph)	204	1	167	14	3	64	15	63	1104	2	48	16
RTOR Reduction (vph)	0	25	0	0	51	0	0	0	0	1	0	0
Lane Group Flow (vph)	204	143	0	14	16	0	0	78	1104	1	0	64
Turn Type	Perm	NA		Perm	NA		Perm	Perm	NA	Perm	Perm	Perm
Protected Phases		4			8				2			
Permitted Phases	4			8			2	2		2	6	6
Actuated Green, G (s)	19.3	19.3		19.3	19.3			63.7	63.7	63.7		63.7
Effective Green, g (s)	19.3	19.3		19.3	19.3			63.7	63.7	63.7		63.7
Actuated g/C Ratio	0.20	0.20		0.20	0.20			0.66	0.66	0.66		0.66
Clearance Time (s)	6.0	6.0		6.0	6.0			7.0	7.0	7.0		7.0
Vehicle Extension (s)	2.0	2.0		2.0	2.0			3.0	3.0	3.0		3.0
Lane Grp Cap (vph)	267	318		219	320			168	2348	1050		277
v/s Ratio Prot		0.09			0.01				0.31			
v/s Ratio Perm	c0.15			0.01				0.31		0.00		0.15
v/c Ratio	0.76	0.45		0.06	0.05			0.46	0.47	0.00		0.23
Uniform Delay, d1	36.2	33.7		31.0	30.9			7.9	7.9	5.4		6.4
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00		1.00
Incremental Delay, d2	11.1	0.4		0.0	0.0			9.0	0.7	0.0		1.9
Delay (s)	47.3	34.1		31.1	31.0			16.8	8.6	5.4		8.4
Level of Service	D	С		С	С			В	Α	Α		Α
Approach Delay (s)		41.3			31.0				9.1			
Approach LOS		D			С				Α			
Intersection Summary												
HCM 2000 Control Delay			14.0	Н	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.65									
Actuated Cycle Length (s)			96.0		um of lost				13.0			
Intersection Capacity Utiliza	ition		78.7%	IC	U Level o	of Service)		D			
Analysis Period (min)			15									

c Critical Lane Group

	↓	4
Movement	SBT	SBR
Lanesconfigurations	^	7
Traffic Volume (vph)	1354	17
Future Volume (vph)	1354	17
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	7.0	7.0
Lane Util. Factor	0.95	1.00
Frt	1.00	0.85
Flt Protected	1.00	1.00
Satd. Flow (prot)	3539	1583
Flt Permitted	1.00	1.00
Satd. Flow (perm)	3539	1583
Peak-hour factor, PHF	0.94	0.94
Adj. Flow (vph)	1440	18
RTOR Reduction (vph)	0	6
Lane Group Flow (vph)	1440	12
Turn Type	NA	Perm
Protected Phases	6	7 01111
Permitted Phases		6
Actuated Green, G (s)	63.7	63.7
Effective Green, g (s)	63.7	63.7
Actuated g/C Ratio	0.66	0.66
Clearance Time (s)	7.0	7.0
Vehicle Extension (s)	3.0	3.0
Lane Grp Cap (vph)	2348	1050
v/s Ratio Prot	c0.41	1030
v/s Ratio Perm	U. 4 1	0.01
v/c Ratio	0.61	0.01
Uniform Delay, d1	9.2	5.5
Progression Factor	1.00	1.00
Incremental Delay, d2	1.00	0.0
Delay (s)	10.4	5.5
Level of Service	10.4 B	5.5 A
Approach Delay (s)	10.2	A
Approach LOS	10.2 B	
Appluacii LUO	D	
Intersection Summary		

	۶	→	•	•	—	•	•	†	/	/	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	¥	414	7					ተተተ	7	1,1	^	
Traffic Volume (vph)	254	482	273	0	0	0	0	696	549	638	1158	0
Future Volume (vph)	254	482	273	0	0	0	0	696	549	638	1158	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0					7.0	7.0	7.0	7.0	
Lane Util. Factor	0.91	0.91	1.00					0.91	1.00	0.97	0.95	
Frt	1.00	1.00	0.85					1.00	0.85	1.00	1.00	
Flt Protected	0.95	1.00	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)	1610	3382	1583					5085	1583	3433	3539	
Flt Permitted	0.95	1.00	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)	1610	3382	1583					5085	1583	3433	3539	
Peak-hour factor, PHF	0.86	0.86	0.86	0.92	0.92	0.92	0.91	0.91	0.91	0.94	0.94	0.94
Adj. Flow (vph)	295	560	317	0	0	0	0	765	603	679	1232	0
RTOR Reduction (vph)	0	0	91	0	0	0	0	0	89	0	0	0
Lane Group Flow (vph)	265	590	226	0	0	0	0	765	514	679	1232	0
Turn Type	Split	NA	Prot					NA	Prot	Prot	NA	
Protected Phases	16	16	16					4 5	4 5	23	2345	
Permitted Phases												
Actuated Green, G (s)	59.5	59.5	59.5					60.0	60.0	97.0	164.5	
Effective Green, g (s)	52.0	52.0	52.0					60.0	60.0	97.0	157.0	
Actuated g/C Ratio	0.22	0.22	0.22					0.25	0.25	0.41	0.66	
Clearance Time (s)												
Vehicle Extension (s)												
Lane Grp Cap (vph)	351	738	345					1281	399	1399	2334	
v/s Ratio Prot	0.16	c0.17	0.14					0.15	c0.32	0.20	c0.35	
v/s Ratio Perm												
v/c Ratio	0.75	0.80	0.65					0.60	1.29	0.49	0.53	
Uniform Delay, d1	87.0	88.1	84.8					78.4	89.0	52.1	21.1	
Progression Factor	1.00	1.00	1.00					1.00	1.00	0.23	0.39	
Incremental Delay, d2	8.0	5.7	3.4					0.5	147.4	0.0	0.0	
Delay (s)	95.0	93.7	88.2					78.9	236.4	12.0	8.4	
Level of Service	F	F	F					Е	F	В	Α	
Approach Delay (s)		92.5			0.0			148.3			9.7	
Approach LOS		F			Α			F			Α	
Intersection Summary												
HCM 2000 Control Delay			74.1	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capac	ity ratio		0.87									
Actuated Cycle Length (s)			238.0	Sı	um of lost	time (s)			43.0			
Intersection Capacity Utilizat	ion		123.0%			of Service			Н			
Analysis Period (min)			15									

c Critical Lane Group

	۶	→	*	•	←	4	₹î	1	†	/	/	ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations				7	414	7		Ä	^			1111
Traffic Volume (vph)	0	0	0	588	100	877	2	274	674	0	0	1206
Future Volume (vph)	0	0	0	588	100	877	2	274	674	0	0	1206
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				7.5	7.5	7.5		7.0	7.0			7.0
Lane Util. Factor				0.91	0.86	0.91		1.00	0.95			0.86
Frt				1.00	0.91	0.85		1.00	1.00			1.00
Flt Protected				0.95	0.99	1.00		0.95	1.00			1.00
Satd. Flow (prot)				1610	2878	1441		1770	3539			6408
Flt Permitted				0.95	0.99	1.00		0.95	1.00			1.00
Satd. Flow (perm)				1610	2878	1441		1770	3539			6408
Peak-hour factor, PHF	0.92	0.92	0.92	0.93	0.93	0.93	0.86	0.86	0.86	0.86	0.91	0.91
Adj. Flow (vph)	0	0	0	632	108	943	2	319	784	0	0	1325
RTOR Reduction (vph)	0	0	0	0	113	198	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	423	676	273	0	321	784	0	0	1325
Turn Type				Split	NA	Perm	Prot	Prot	NA			NA
Protected Phases				3 4	3 4		5 6	56	1256			1 2
Permitted Phases						3 4						
Actuated Green, G (s)				55.5	55.5	55.5		106.1	168.5			54.9
Effective Green, g (s)				55.5	55.5	55.5		106.1	161.0			54.9
Actuated g/C Ratio				0.23	0.23	0.23		0.45	0.68			0.23
Clearance Time (s)												
Vehicle Extension (s)												
Lane Grp Cap (vph)				375	671	336		789	2394			1478
v/s Ratio Prot				c0.26	0.23			c0.18	0.22			c0.21
v/s Ratio Perm						0.19						
v/c Ratio				1.13	1.06dr	0.81		0.41	0.33			0.90
Uniform Delay, d1				91.2	91.2	86.3		44.6	16.0			88.8
Progression Factor				1.00	1.00	1.00		0.16	0.35			1.00
Incremental Delay, d2				85.9	36.7	13.2		0.2	0.0			7.3
Delay (s)				177.2	127.9	99.6		7.2	5.7			96.1
Level of Service				F	F	F		Α	Α			F
Approach Delay (s)		0.0			132.4				6.1			94.4
Approach LOS		Α			F				Α			F
Intersection Summary												
HCM 2000 Control Delay			86.8	ŀ	ICM 2000	Level of S	Service		F			
HCM 2000 Volume to Capac	ity ratio		0.83									
Actuated Cycle Length (s)			238.0	S	Sum of los	t time (s)			43.0			
Intersection Capacity Utilizat	ion		123.0%	10	CU Level	of Service			Н			
Analysis Period (min)			15									_
dr Defacto Right Lane. Re	code with	1 though	lane as a	a right lan	ne.							
c Critical Lane Group												

Movement	SBR
La ne C onfigurations	7
Traffic Volume (vph)	308
Future Volume (vph)	308
Ideal Flow (vphpl)	1900
Total Lost time (s)	7.5
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1583
Flt Permitted	1.00
Satd. Flow (perm)	1583
Peak-hour factor, PHF	0.91
Adj. Flow (vph)	338
RTOR Reduction (vph)	147
Lane Group Flow (vph)	191
Turn Type	custom
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	49.1
Effective Green, g (s)	49.1
Actuated g/C Ratio	0.21
Clearance Time (s)	7.5
Vehicle Extension (s)	2.5
Lane Grp Cap (vph)	326
v/s Ratio Prot	
v/s Ratio Perm	c0.12
v/c Ratio	0.59
Uniform Delay, d1	85.3
Progression Factor	1.00
Incremental Delay, d2	2.2
Delay (s)	87.5
Level of Service	F
Approach Delay (s)	
Approach LOS	
• •	
Intersection Summary	

	₾	۶	\rightarrow	₹ì	4	†	L	ļ	4	
Movement	EBU	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR	
Lane Configurations		ă	7		ă	^	Ð	^	7	
Traffic Volume (vph)	3	73	99	4	101	1446	1	1411	135	
Future Volume (vph)	3	73	99	4	101	1446	1	1411	135	
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	
Total Lost time (s)		6.0	6.0		7.0	7.0	7.0	7.0	7.0	
Lane Util. Factor		1.00	1.00		1.00	0.95	1.00	0.95	1.00	
Frt		1.00	0.85		1.00	1.00	1.00	1.00	0.85	
Fit Protected		0.95	1.00		0.95	1.00	0.95	1.00	1.00	
Satd. Flow (prot)		1770	1583		1770	3539	1770	3539	1583	
Flt Permitted		0.95	1.00		0.12	1.00	0.17	1.00	1.00	
Satd. Flow (perm)		1770	1583		215	3539	316	3539	1583	
Peak-hour factor, PHF	0.82	0.82	0.82	0.95	0.95	0.95	0.96	0.96	0.96	
Adj. Flow (vph)	4	89	121	4	106	1522	1	1470	141	
RTOR Reduction (vph)	0	0	110	0	0	0	0	0	43	
Lane Group Flow (vph)	0	93	11	0	110	1522	1	1470	98	
Turn Type	Prot	Prot	Perm	Perm	pm+pt	NA	Perm	NA	Perm	
Protected Phases	4	4			5	2		6		
Permitted Phases			4	2	2		6		6	
Actuated Green, G (s)		10.1	10.1		83.9	83.9	70.6	70.6	70.6	
Effective Green, g (s)		10.1	10.1		83.9	83.9	70.6	70.6	70.6	
Actuated g/C Ratio		0.09	0.09		0.78	0.78	0.66	0.66	0.66	
Clearance Time (s)		6.0	6.0		7.0	7.0	7.0	7.0	7.0	
Vehicle Extension (s)		2.0	2.0		1.5	3.0	3.0	3.0	3.0	
Lane Grp Cap (vph)		167	149		260	2774	208	2335	1044	
v/s Ratio Prot		c0.05			0.02	c0.43		c0.42		
v/s Ratio Perm			0.01		0.31		0.00		0.06	
v/c Ratio		0.56	0.08		0.42	0.55	0.00	0.63	0.09	
Uniform Delay, d1		46.3	44.2		7.9	4.4	6.2	10.6	6.6	
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00	1.00	
Incremental Delay, d2		2.3	0.1		0.4	0.8	0.0	1.3	0.2	
Delay (s)		48.6	44.3		8.3	5.2	6.3	11.9	6.8	
Level of Service		D	D		Α	Α	Α	В	Α	
Approach Delay (s)		46.2				5.4		11.4		
Approach LOS		D				Α		В		
Intersection Summary										
HCM 2000 Control Delay			10.7	F	ICM 2000	Level of	Service		В	
HCM 2000 Volume to Capacit	y ratio		0.64							
Actuated Cycle Length (s)			107.0	S	Sum of lost	t time (s)			20.0	
Intersection Capacity Utilization	n		71.6%		CU Level		!		С	
Analysis Period (min)			15							

c Critical Lane Group

		۶	-	\rightarrow	•	←	•	₹I	4	†	/	L
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU
Lane Configurations		ă	ተተተ	7	1,1	^	7		Ä	^	77	
Traffic Volume (vph)	1	131	800	100	506	1006	232	2	118	1134	266	21
Future Volume (vph)	1	131	800	100	506	1006	232	2	118	1134	266	21
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0	7.0	7.0	7.0	7.0	7.0		6.5	6.5	6.5	
Lane Util. Factor		1.00	0.91	1.00	0.97	0.95	1.00		1.00	0.95	0.88	
Frt		1.00	1.00	0.85	1.00	1.00	0.85		1.00	1.00	0.85	
Flt Protected		0.95	1.00	1.00	0.95	1.00	1.00		0.95	1.00	1.00	
Satd. Flow (prot)		1770	5085	1583	3433	3539	1583		1770	3539	2787	
Flt Permitted		0.09	1.00	1.00	0.95	1.00	1.00		0.07	1.00	1.00	
Satd. Flow (perm)		173	5085	1583	3433	3539	1583		139	3539	2787	
Peak-hour factor, PHF	0.87	0.87	0.87	0.87	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.87
Adj. Flow (vph)	1	151	920	115	538	1070	247	2	126	1206	283	24
RTOR Reduction (vph)	0	0	0	84	0	0	168	0	0	0	38	0
Lane Group Flow (vph)	0	152	920	31	538	1070	79	0	128	1206	245	0
Turn Type	custom	pm+pt	NA	Perm	Prot	NA	Perm	custom	pm+pt	NA	custom	Prot
Protected Phases		1	6		5	2			7	4		3
Permitted Phases	1	6		6			2	7	4		4 5	
Actuated Green, G (s)		57.0	43.0	43.0	22.0	51.0	51.0		65.7	53.7	82.2	
Effective Green, g (s)		57.0	43.0	43.0	22.0	51.0	51.0		65.7	53.7	82.2	
Actuated g/C Ratio		0.36	0.27	0.27	0.14	0.32	0.32		0.41	0.34	0.51	
Clearance Time (s)		7.0	7.0	7.0	7.0	7.0	7.0		6.5	6.5		
Vehicle Extension (s)		2.0	3.0	3.0	2.0	3.0	3.0		2.0	2.5		
Lane Grp Cap (vph)		201	1366	425	472	1128	504		179	1187	1431	
v/s Ratio Prot		0.07	0.18		c0.16	c0.30			0.05	c0.34		
v/s Ratio Perm		0.20		0.02			0.05		0.24		0.09	
v/c Ratio		0.76	0.67	0.07	1.14	0.95	0.16		0.72	1.02	0.17	
Uniform Delay, d1		40.8	52.2	43.6	69.0	53.2	39.1		36.3	53.1	20.7	
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	
Incremental Delay, d2		13.4	2.7	0.3	85.7	17.0	0.7		10.7	30.2	0.0	
Delay (s)		54.2	54.9	44.0	154.7	70.2	39.8		47.1	83.3	20.8	
Level of Service		D	D	D	F	E	D		D	F	С	
Approach Delay (s)			53.7			90.7				69.5		
Approach LOS			D			F				Е		
Intersection Summary												
HCM 2000 Control Delay			70.3	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		1.01									
Actuated Cycle Length (s)			160.0		um of lost				27.0			
Intersection Capacity Utiliza	ition		94.3%	IC	CU Level	of Service			F			
Analysis Period (min)			15									

c Critical Lane Group

Movement SBL SBT SBR Lane Configurations ♣ ♠ ✔		>	ļ	4
Traffic Volume (vph)	Movement	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	ሕ ኝ	^	7
Future Volume (vph)				
Ideal Flow (vphpl)				
Total Lost time (s) 6.5 6.5 6.5 Lane Util. Factor 0.97 0.95 1.00 Frt 1.00 1.00 0.85 Flt Protected 0.95 1.00 1.00 Satd. Flow (prot) 3433 3539 1583 Flt Permitted 0.95 1.00 1.00 Satd. Flow (perm) 3433 3539 1583 Peak-hour factor, PHF 0.87 0.87 0.87 Adj. Flow (vph) 190 1079 116 RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Clearance Time (s) 6.5 6.5 <td></td> <td></td> <td></td> <td>1900</td>				1900
Lane Util. Factor 0.97 0.95 1.00 Frt 1.00 1.00 0.85 Flt Protected 0.95 1.00 1.00 Satd. Flow (prot) 3433 3539 1583 Flt Permitted 0.95 1.00 1.00 Satd. Flow (perm) 3433 3539 1583 Peak-hour factor, PHF 0.87 0.87 0.87 Adj. Flow (vph) 190 1079 116 RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5			6.5	6.5
Fit Protected 0.95 1.00 1.00 Satd. Flow (prot) 3433 3539 1583 Fit Permitted 0.95 1.00 1.00 Satd. Flow (perm) 3433 3539 1583 Peak-hour factor, PHF 0.87 0.87 0.87 Adj. Flow (vph) 190 1079 116 RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Effective Green, g (s) 6.5 6.5 6.5 6.5 Vehicle Extensio		0.97	0.95	1.00
Satd. Flow (prot) 3433 3539 1583 Flt Permitted 0.95 1.00 1.00 Satd. Flow (perm) 3433 3539 1583 Peak-hour factor, PHF 0.87 0.87 0.87 Adj. Flow (vph) 190 1079 116 RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Perm 0.03	Frt	1.00	1.00	0.85
Fit Permitted 0.95 1.00 1.00 Satd. Flow (perm) 3433 3539 1583 Peak-hour factor, PHF 0.87 0.87 0.87 Adj. Flow (vph) 190 1079 116 RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Perm 0.03 0.03 0.03 v/s Ratio Perm 0.03 0.07 0.87 <td>Flt Protected</td> <td>0.95</td> <td>1.00</td> <td>1.00</td>	Flt Protected	0.95	1.00	1.00
Fit Permitted 0.95 1.00 1.00 Satd. Flow (perm) 3433 3539 1583 Peak-hour factor, PHF 0.87 0.87 0.87 Adj. Flow (vph) 190 1079 116 RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Perm 0.03 0.03 0.03 v/s Ratio Perm 0.03 0.07 0.87 <td>Satd. Flow (prot)</td> <td>3433</td> <td>3539</td> <td>1583</td>	Satd. Flow (prot)	3433	3539	1583
Peak-hour factor, PHF 0.87 0.87 0.87 Adj. Flow (vph) 190 1079 116 RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 co.06 0.30 v/s Ratio Perm 0.03 0.07 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Increm		0.95	1.00	1.00
Peak-hour factor, PHF 0.87 0.87 0.87 Adj. Flow (vph) 190 1079 116 RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 co.06 0.30 v/s Ratio Perm 0.03 0.07 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Increm	Satd. Flow (perm)	3433	3539	1583
Adj. Flow (vph) 190 1079 116 RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 0.07 V/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9	Peak-hour factor, PHF	0.87	0.87	0.87
RTOR Reduction (vph) 0 0 75 Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 0.07 v/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9	•			116
Lane Group Flow (vph) 214 1079 41 Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 co.06 co.03 v/s Ratio Perm 0.03 co.07 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach LOS <td></td> <td></td> <td></td> <td></td>				
Turn Type Prot NA Perm Protected Phases 3 8 Permitted Phases 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 0.07 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach LOS E E C	\ , , ,	214	1079	41
Protected Phases 3 8 Permitted Phases 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 0.03 v/s Ratio Perm 0.03 0.07 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach LOS E E C				Perm
Permitted Phases 8 Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 0.07 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E E				
Actuated Green, G (s) 14.3 56.0 56.0 Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 v/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS				8
Effective Green, g (s) 14.3 56.0 56.0 Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 0.07 v/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E		14.3	56.0	
Actuated g/C Ratio 0.09 0.35 0.35 Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 v/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS				
Clearance Time (s) 6.5 6.5 6.5 Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 0.07 v/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E				
Vehicle Extension (s) 2.0 2.5 2.5 Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 0.07 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E				
Lane Grp Cap (vph) 306 1238 554 v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 v/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E				
v/s Ratio Prot c0.06 0.30 v/s Ratio Perm 0.03 v/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E		306		554
v/s Ratio Perm 0.03 v/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E				
v/c Ratio 0.70 0.87 0.07 Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E				0.03
Uniform Delay, d1 70.8 48.6 34.7 Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E		0.70	0.87	
Progression Factor 1.00 1.00 1.00 Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E				
Incremental Delay, d2 5.5 8.6 0.3 Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 E Approach LOS E E	•			
Delay (s) 76.3 57.2 34.9 Level of Service E E C Approach Delay (s) 58.3 Approach LOS E				
Level of Service E E C Approach Delay (s) 58.3 Approach LOS E				
Approach Delay (s) 58.3 Approach LOS E			-	
Approach LOS E				
Intersection Summary			Е	
	Intersection Summary			

		۶	→	\rightarrow	•	←	•	∳ 1	4	†	~	L
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU
Lane Configurations		ă	ĵ∍		Ä	₽			Ä	^	7	
Traffic Volume (vph)	1	123	77	109	225	125	163	1	138	1000	196	4
Future Volume (vph)	1	123	77	109	225	125	163	1	138	1000	196	4
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0	6.0			7.0	7.0	7.0	
Lane Util. Factor		1.00	1.00		1.00	1.00			1.00	0.95	1.00	
Frt		1.00	0.91		1.00	0.92			1.00	1.00	0.85	
Flt Protected		0.95	1.00		0.95	1.00			0.95	1.00	1.00	
Satd. Flow (prot)		1770	1699		1770	1705			1770	3539	1583	
Flt Permitted		0.22	1.00		0.27	1.00			0.09	1.00	1.00	
Satd. Flow (perm)		413	1699		495	1705			161	3539	1583	
Peak-hour factor, PHF	0.91	0.91	0.91	0.91	0.90	0.90	0.90	0.88	0.88	0.88	0.88	0.94
Adj. Flow (vph)	1	135	85	120	250	139	181	1	157	1136	223	4
RTOR Reduction (vph)	0	0	36	0	0	31	0	0	0	0	114	0
Lane Group Flow (vph)	0	136	169	0	250	289	0	0	158	1136	109	0
Turn Type	custom	pm+pt	NA		pm+pt	NA		custom	pm+pt	NA	Perm	custom
Protected Phases		7	4		3	8			5	2		
Permitted Phases	7	4			8			5	2		2	1
Actuated Green, G (s)		37.5	24.2		50.6	31.3			76.0	62.8	62.8	
Effective Green, g (s)		37.5	24.2		50.6	31.3			76.0	62.8	62.8	
Actuated g/C Ratio		0.23	0.15		0.32	0.20			0.48	0.39	0.39	
Clearance Time (s)		6.0	6.0		6.0	6.0			7.0	7.0	7.0	
Vehicle Extension (s)		1.5	2.0		1.5	2.0			1.5	3.0	3.0	
Lane Grp Cap (vph)		209	256		319	333			209	1389	621	
v/s Ratio Prot		0.05	0.10		c0.10	c0.17			0.06	0.32		
v/s Ratio Perm		0.10			0.15				0.30		0.07	
v/c Ratio		0.65	0.66		0.78	0.87			0.76	0.82	0.18	
Uniform Delay, d1		51.6	64.0		44.8	62.3			31.1	43.5	31.7	
Progression Factor		1.00	1.00		1.00	1.00			1.00	1.00	1.00	
Incremental Delay, d2		5.4	4.9		11.0	19.8			12.9	5.5	0.6	
Delay (s)		57.0	68.9		55.8	82.1			44.0	48.9	32.3	
Level of Service		Е	Е		Е	F			D	D	С	
Approach Delay (s)			64.2			70.6				46.0		
Approach LOS			Е			E				D		
Intersection Summary												
HCM 2000 Control Delay			48.0	H	ICM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.85									
Actuated Cycle Length (s)			160.0		Sum of los				26.0			
Intersection Capacity Utiliza	ation		88.3%	IC	CU Level	of Service)		Е			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	>	↓	4
Movement	SBL	SBT	SBR
Lane Configurations	ă	^	7
Traffic Volume (vph)	228	1286	165
Future Volume (vph)	228	1286	165
Ideal Flow (vphpl)	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0
Lane Util. Factor	1.00	0.95	1.00
Frt	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00
Satd. Flow (prot)	1770	3539	1583
FIt Permitted	0.08	1.00	1.00
Satd. Flow (perm)	143	3539	1583
Peak-hour factor, PHF	0.94	0.94	0.94
Adj. Flow (vph)	243	1368	176
RTOR Reduction (vph)	0	0	57
Lane Group Flow (vph)	247	1368	119
Turn Type	pm+pt	NA	Perm
Protected Phases	1	6	
Permitted Phases	6		6
Actuated Green, G (s)	96.4	76.2	76.2
Effective Green, g (s)	96.4	76.2	76.2
Actuated g/C Ratio	0.60	0.48	0.48
Clearance Time (s)	7.0	7.0	7.0
Vehicle Extension (s)	1.5	3.0	3.0
Lane Grp Cap (vph)	356	1685	753
v/s Ratio Prot	c0.12	c0.39	
v/s Ratio Perm	0.30		0.08
v/c Ratio	0.69	0.81	0.16
Uniform Delay, d1	41.2	35.8	23.7
Progression Factor	1.00	1.00	1.00
Incremental Delay, d2	4.7	4.4	0.4
Delay (s)	45.9	40.2	24.2
Level of Service	D	D	C
Approach Delay (s)	_	39.4	
Approach LOS		D	
Intersection Summary			

	ၨ	•	₹I	4	†	L♣	ļ	4		
Movement	EBL	EBR	NBU	NBL	NBT	SBU	SBT	SBR		
Lane Configurations	ă	7		ă	^	Ð	^	7		
Traffic Volume (vph)	107	45	4	64	1282	88	1664	198		
Future Volume (vph)	107	45	4	64	1282	88	1664	198		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		
Lane Util. Factor	1.00	1.00		1.00	0.91	1.00	0.91	1.00		
Frt	1.00	0.85		1.00	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00		0.95	1.00	0.95	1.00	1.00		
Satd. Flow (prot)	1770	1583		1770	5085	1770	5085	1583		
Flt Permitted	0.95	1.00		0.10	1.00	0.15	1.00	1.00		
Satd. Flow (perm)	1770	1583		191	5085	277	5085	1583		
Peak-hour factor, PHF	0.84	0.84	0.89	0.89	0.89	0.97	0.97	0.97		
Adj. Flow (vph)	127	54	4	72	1440	91	1715	204		
RTOR Reduction (vph)	0	48	0	0	0	0	0	75		
Lane Group Flow (vph)	127	6	0	76	1440	91	1715	129		
Turn Type	Prot	Perm	custom	pm+pt	NA	pm+pt	NA	Perm		
Protected Phases	4			5	2	1	6			
Permitted Phases		4	5	2		6		6		
Actuated Green, G (s)	10.8	10.8		61.0	56.7	61.4	56.9	56.9		
Effective Green, g (s)	10.8	10.8		61.0	56.7	61.4	56.9	56.9		
Actuated g/C Ratio	0.12	0.12		0.68	0.63	0.68	0.63	0.63		
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0	6.0	6.0		
Vehicle Extension (s)	2.0	2.0		1.5	3.0	1.5	3.0	3.0		
Lane Grp Cap (vph)	212	189		204	3203	263	3214	1000		
v/s Ratio Prot	c0.07			c0.02	0.28	0.02	c0.34			
v/s Ratio Perm		0.00		0.23		0.22		0.08		
v/c Ratio	0.60	0.03		0.37	0.45	0.35	0.53	0.13		
Uniform Delay, d1	37.5	35.0		6.0	8.6	5.3	9.2	6.6		
Progression Factor	1.00	1.00		1.00	1.00	1.00	1.00	1.00		
Incremental Delay, d2	3.0	0.0		0.4	0.5	0.3	0.6	0.3		
Delay (s)	40.6	35.0		6.4	9.1	5.6	9.8	6.9		
Level of Service	D	D		Α	Α	Α	Α	Α		
Approach Delay (s)	38.9				8.9		9.3			
Approach LOS	D				Α		Α			
Intersection Summary										
HCM 2000 Control Delay			10.6	Н	CM 2000	Level of	Service		В	
HCM 2000 Volume to Capac	city ratio		0.53							
Actuated Cycle Length (s)	,		90.0	S	um of los	t time (s)			18.0	
Intersection Capacity Utilizat	tion		56.8%			of Service			В	
Analysis Period (min)			15							

c Critical Lane Group

	۶	-	•	•	←	•	•	†	/	L	\	ţ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	7	41∱	7					1111	7		ሽኘ	^
Traffic Volume (vph)	652	438	516	0	0	0	0	1185	278	2	402	1344
Future Volume (vph)	652	438	516	0	0	0	0	1185	278	2	402	1344
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	7.0	7.0	7.0					7.0	7.0		7.0	7.0
Lane Util. Factor	0.91	0.91	1.00					0.86	1.00		0.97	0.95
Frt	1.00	1.00	0.85					1.00	0.85		1.00	1.00
Flt Protected	0.95	0.98	1.00					1.00	1.00		0.95	1.00
Satd. Flow (prot)	1610	3324	1583					6408	1583		3433	3539
Flt Permitted	0.95	0.98	1.00					1.00	1.00		0.95	1.00
Satd. Flow (perm)	1610	3324	1583					6408	1583		3433	3539
Peak-hour factor, PHF	0.97	0.97	0.97	0.92	0.92	0.92	0.91	0.91	0.91	0.98	0.98	0.98
Adj. Flow (vph)	672	452	532	0	0	0	0	1302	305	2	410	1371
RTOR Reduction (vph)	0	0	93	0	0	0	0	0	153	0	0	0
Lane Group Flow (vph)	370	754	439	0	0	0	0	1302	152	0	412	1371
Turn Type	Split	NA	Prot					NA	Prot	Prot	Prot	NA
Protected Phases	16	16	16					4 5	4 5	23	23	2345
Permitted Phases												
Actuated Green, G (s)	53.0	53.0	53.0					53.0	53.0		97.0	157.0
Effective Green, g (s)	53.0	53.0	53.0					53.0	53.0		97.0	157.0
Actuated g/C Ratio	0.24	0.24	0.24					0.24	0.24		0.43	0.70
Clearance Time (s)												
Vehicle Extension (s)												
Lane Grp Cap (vph)	380	786	374					1516	374		1486	2480
v/s Ratio Prot	0.23	0.23	c0.28					c0.20	0.10		0.12	c0.39
v/s Ratio Perm												
v/c Ratio	0.97	0.96	1.17					0.86	0.41		0.28	0.55
Uniform Delay, d1	84.8	84.4	85.5					81.9	72.2		40.9	16.4
Progression Factor	1.00	1.00	1.00					1.00	1.00		0.13	0.39
Incremental Delay, d2	38.8	22.2	102.8					4.9	0.3		0.0	0.0
Delay (s)	123.6	106.6	188.3					86.8	72.5		5.2	6.3
Level of Service	F	F	F					F	Е		Α	Α
Approach Delay (s)		136.7			0.0			84.1				6.1
Approach LOS		F			Α			F				А
Intersection Summary												
HCM 2000 Control Delay			73.8	Н	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capa	city ratio		0.90									
Actuated Cycle Length (s)			224.0		um of lost				42.0			
Intersection Capacity Utiliza	ation		132.8%	IC	U Level	of Service	!		Н			
Analysis Period (min)			15									

Analysis Period (min) c Critical Lane Group

Movement	SBR
Lar t Configurations	
Traffic Volume (vph)	0
Future Volume (vph)	0
Ideal Flow (vphpl)	1900
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
Flt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.98
Adj. Flow (vph)	0
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	
intersection Summary	

	۶	→	\rightarrow	•	←	•	₹I	\blacktriangleleft	†	/	>	ļ
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations				Ť	414	7		ሽኘ	† †			1111
Traffic Volume (vph)	0	0	0	601	582	715	4	376	1459	0	0	1143
Future Volume (vph)	0	0	0	601	582	715	4	376	1459	0	0	1143
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)				7.0	7.0	7.0		7.0	7.0			7.0
Lane Util. Factor				0.91	0.86	0.91		0.97	0.95			0.86
Frt				1.00	0.96	0.85		1.00	1.00			1.00
Flt Protected				0.95	0.99	1.00		0.95	1.00			1.00
Satd. Flow (prot)				1610	3049	1441		3433	3539			6408
Flt Permitted				0.95	0.99	1.00		0.95	1.00			1.00
Satd. Flow (perm)				1610	3049	1441		3433	3539			6408
Peak-hour factor, PHF	0.92	0.92	0.92	0.88	0.88	0.88	0.93	0.93	0.93	0.93	0.94	0.94
Adj. Flow (vph)	0	0	0	683	661	812	4	404	1569	0	0	1216
RTOR Reduction (vph)	0	0	0	0	16	93	0	0	0	0	0	0
Lane Group Flow (vph)	0	0	0	553	1092	403	0	408	1569	0	0	1216
Turn Type				Prot	NA	Perm	Prot	Prot	NA			NA
Protected Phases				3	3 4		56	56	1256			12
Permitted Phases						3 4						
Actuated Green, G (s)				45.0	46.0	53.0		97.0	157.0			53.0
Effective Green, g (s)				45.0	46.0	53.0		97.0	157.0			53.0
Actuated g/C Ratio				0.20	0.21	0.24		0.43	0.70			0.24
Clearance Time (s)				7.0								
Vehicle Extension (s)				2.0								
Lane Grp Cap (vph)				323	721	340		1486	2480			1516
v/s Ratio Prot				c0.34	c0.30			0.12	c0.44			c0.19
v/s Ratio Perm					0.05	0.28						
v/c Ratio				1.71	1.51	1.18		0.27	0.63			0.80
Uniform Delay, d1				89.5	89.0	85.5		40.9	18.0			80.6
Progression Factor				1.00	1.00	1.00		0.20	0.55			1.00
Incremental Delay, d2				333.3	238.7	109.1		0.0	0.2			3.0
Delay (s)				422.8	327.7	194.6		8.2	10.0			83.5
Level of Service				F	F	F		Α	Α			F
Approach Delay (s)		0.0			321.5				9.6			93.7
Approach LOS		Α			F				Α			F
Intersection Summary												
HCM 2000 Control Delay			147.7	Н	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	ity ratio		1.08									
Actuated Cycle Length (s)			224.0		um of los				42.0			
Intersection Capacity Utilizati	on		132.8%	IC	CU Level	of Service	!		Н			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

Movement	SBR
Laner Configurations	7
Traffic Volume (vph)	627
Future Volume (vph)	627
Ideal Flow (vphpl)	1900
Total Lost time (s)	7.0
Lane Util. Factor	1.00
Frt	0.85
Flt Protected	1.00
Satd. Flow (prot)	1583
Flt Permitted	1.00
Satd. Flow (perm)	1583
Peak-hour factor, PHF	0.94
Adj. Flow (vph)	667
RTOR Reduction (vph)	383
Lane Group Flow (vph)	284
Turn Type	custom
Protected Phases	Custom
Permitted Phases	6
Actuated Green, G (s)	45.0
Effective Green, g (s)	45.0
Actuated g/C Ratio	0.20
Clearance Time (s)	7.0
Vehicle Extension (s)	2.0
Lane Grp Cap (vph)	318
v/s Ratio Prot	-0.40
v/s Ratio Perm	c0.18
v/c Ratio	0.89
Uniform Delay, d1	87.2
Progression Factor	1.00
Incremental Delay, d2	25.1
Delay (s)	112.2
Level of Service	F
Approach Delay (s)	
Approach LOS	
Intersection Summary	

	•	→	\rightarrow	•	←	•	₹I	•	†	/	L	>
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ň	f)		ħ	4Î			ă	ተተተ	7		8
Traffic Volume (vph)	29	1	47	272	24	23	3	57	2062	52	1	
Future Volume (vph)	29	1	47	272	24	23	3	57	2062	52	1	8
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			5.0	5.0	5.0		5.0
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00	0.91	1.00		1.00
Frt	1.00	0.85		1.00	0.93			1.00	1.00	0.85		1.00
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00	1.00		0.95
Satd. Flow (prot)	1770	1588		1770	1728			1770	5085	1583		1770
Flt Permitted	0.72	1.00		0.72	1.00			0.08	1.00	1.00		0.09
Satd. Flow (perm)	1342	1588		1340	1728			145	5085	1583		161
Peak-hour factor, PHF	0.82	0.82	0.82	0.84	0.84	0.84	0.95	0.95	0.95	0.95	0.89	0.89
Adj. Flow (vph)	35	1	57	324	29	27	3	60	2171	55	1	9
RTOR Reduction (vph)	0	42	0	0	6	0	0	0	0	21	0	0
Lane Group Flow (vph)	35	16	0	324	50	0	0	63	2171	34	0	10
Turn Type	Perm	NA		Perm	NA		custom	pm+pt	NA	Perm	Perm	Perm
Protected Phases		4			8			5	2			
Permitted Phases	4			8			5	2		2	6	6
Actuated Green, G (s)	23.2	23.2		23.2	23.2			55.8	55.8	55.8		46.3
Effective Green, g (s)	23.2	23.2		23.2	23.2			55.8	55.8	55.8		46.3
Actuated g/C Ratio	0.26	0.26		0.26	0.26			0.62	0.62	0.62		0.51
Clearance Time (s)	6.0	6.0		6.0	6.0			5.0	5.0	5.0		5.0
Vehicle Extension (s)	2.0	2.0		2.0	2.0			1.5	3.0	3.0		3.0
Lane Grp Cap (vph)	345	409		345	445			171	3152	981		82
v/s Ratio Prot		0.01			0.03			0.02	c0.43			
v/s Ratio Perm	0.03			c0.24				0.21		0.02		0.06
v/c Ratio	0.10	0.04		0.94	0.11			0.37	0.69	0.03		0.12
Uniform Delay, d1	25.5	25.0		32.7	25.5			10.4	11.3	6.6		11.3
Progression Factor	1.00	1.00		1.00	1.00			1.00	1.00	1.00		1.00
Incremental Delay, d2	0.0	0.0		32.3	0.0			0.5	1.3	0.1		0.7
Delay (s)	25.5	25.1		65.0	25.6			10.9	12.6	6.7		12.0
Level of Service	С	С		Е	С			В	В	Α		В
Approach Delay (s)		25.2			59.2				12.4			
Approach LOS		С			E				В			
Intersection Summary												
HCM 2000 Control Delay			18.1	H	CM 2000	Level of	Service		В			
HCM 2000 Volume to Capa	city ratio		0.81									
Actuated Cycle Length (s)			90.0		um of lost				16.0			
Intersection Capacity Utiliza	ition		80.8%	IC	U Level o	of Service	e		D			
Analysis Period (min)			15									

Analysis Period (min)
c Critical Lane Group

	¥	4
Movement	SBT	SBR
Lane onfigurations	ተተጉ	
Traffic Volume (vph)	1448	30
Future Volume (vph)	1448	30
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	5.0	
Lane Util. Factor	0.91	
Frt	1.00	
Flt Protected	1.00	
Satd. Flow (prot)	5070	
Flt Permitted	1.00	
Satd. Flow (perm)	5070	
Peak-hour factor, PHF	0.89	0.89
Adj. Flow (vph)	1627	34
RTOR Reduction (vph)	2	0
Lane Group Flow (vph)	1659	0
Turn Type	NA	
Protected Phases	6	
Permitted Phases		
Actuated Green, G (s)	46.3	
Effective Green, g (s)	46.3	
Actuated g/C Ratio	0.51	
Clearance Time (s)	5.0	
Vehicle Extension (s)	3.0	
Lane Grp Cap (vph)	2608	
v/s Ratio Prot	0.33	
v/s Ratio Perm		
v/c Ratio	0.64	
Uniform Delay, d1	15.8	
Progression Factor	1.00	
Incremental Delay, d2	0.5	
Delay (s)	16.3	
Level of Service	В	
Approach Delay (s)	16.3	
Approach LOS	В	
Intersection Summary		
intersection Summary		

	F	•	•	†	/	>	ļ		
Movement	WBU	WBL	WBR	NBT	NBR	SBL	SBT		
Lane Configurations		ሕ ካ	7	^ ^	7	ሻሻ	^ ^		
Traffic Volume (vph)	1	355	401	1778	448	543	1139		
Future Volume (vph)	1	355	401	1778	448	543	1139		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900		
Grade (%)		15%		0%			0%		
Total Lost time (s)		6.5	6.5	6.5	6.5	6.5	6.5		
Lane Util. Factor		0.97	1.00	0.91	1.00	0.97	0.91		
Frt		1.00	0.85	1.00	0.85	1.00	1.00		
Flt Protected		0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (prot)		3176	1465	5085	1583	3433	5085		
Flt Permitted		0.95	1.00	1.00	1.00	0.95	1.00		
Satd. Flow (perm)		3176	1465	5085	1583	3433	5085		
Peak-hour factor, PHF	0.84	0.84	0.84	0.96	0.96	0.95	0.95		
Adj. Flow (vph)	1	423	477	1852	467	572	1199		
RTOR Reduction (vph)	0	0	2	0	170	0	0		
Lane Group Flow (vph)	0	424	475	1852	297	572	1199		
Turn Type	Prot	Prot	pt+ov	NA	Prot	Prot	NA		
Protected Phases	4	4	4 1	2	2	1	12		
Permitted Phases									
Actuated Green, G (s)		37.4	75.5	71.5	71.5	31.6	109.6		
Effective Green, g (s)		37.4	75.5	71.5	71.5	31.6	109.6		
Actuated g/C Ratio		0.23	0.47	0.45	0.45	0.20	0.68		
Clearance Time (s)		6.5		6.5	6.5	6.5			
Vehicle Extension (s)		2.0		3.0	3.0	1.5			
Lane Grp Cap (vph)		742	691	2272	707	678	3483		
v/s Ratio Prot		0.13	c0.32	c0.36	0.19	c0.17	0.24		
v/s Ratio Perm									
v/c Ratio		0.57	0.69	0.82	0.42	0.84	0.34		
Uniform Delay, d1		54.2	33.0	38.5	30.1	61.8	10.4		
Progression Factor		1.00	1.00	1.00	1.00	1.21	0.63		
Incremental Delay, d2		0.7	2.3	3.4	1.8	10.0	0.2		
Delay (s)		54.9	35.3	41.9	32.0	84.8	6.8		
Level of Service		D	D	D	С	F	Α		
Approach Delay (s)		44.5		39.9			32.0		
Approach LOS		D		D			С		
Intersection Summary									
HCM 2000 Control Delay			37.9	H	CM 2000	Level of	Service	D	
HCM 2000 Volume to Capac	city ratio		0.81						
Actuated Cycle Length (s)			160.0		um of lost			19.5	
Intersection Capacity Utilizat	tion		76.3%	IC	U Level	of Service		D	
Analysis Period (min)			15						
c Critical Lane Group									

	•	-	•	•	•	•	₹I	4	†	/	L	-
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	¥	ĵ.		¥	ĵ»			Ä	ተተተ	7		Ž
Traffic Volume (vph)	33	23	55	237	37	238	22	102	2018	150	8	111
Future Volume (vph)	33	23	55	237	37	238	22	102	2018	150	8	111
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0		6.0
Lane Util. Factor	1.00	1.00		1.00	1.00			1.00	0.91	1.00		1.00
Frt	1.00	0.89		1.00	0.87			1.00	1.00	0.85		1.00
Flt Protected	0.95	1.00		0.95	1.00			0.95	1.00	1.00		0.95
Satd. Flow (prot)	1770	1666		1770	1621			1770	5085	1583		1770
Flt Permitted	0.14	1.00		0.66	1.00			0.95	1.00	1.00		0.95
Satd. Flow (perm)	265	1666		1228	1621			1770	5085	1583		1770
Peak-hour factor, PHF	0.76	0.76	0.76	0.77	0.77	0.77	0.82	0.82	0.82	0.82	0.93	0.93
Adj. Flow (vph)	43	30	72	308	48	309	27	124	2461	183	9	119
RTOR Reduction (vph)	0	54	0	0	139	0	0	0	0	35	0	0
Lane Group Flow (vph)	43	48	0	308	218	0	0	151	2461	148	0	128
Turn Type	Perm	NA		Perm	NA		Prot	Prot	NA	Perm	Prot	Prot
Protected Phases		4			8		5	5	2		1	1
Permitted Phases	4			8						2		
Actuated Green, G (s)	34.0	34.0		34.0	34.0			16.4	93.1	93.1		14.9
Effective Green, g (s)	34.0	34.0		34.0	34.0			16.4	93.1	93.1		14.9
Actuated g/C Ratio	0.21	0.21		0.21	0.21			0.10	0.58	0.58		0.09
Clearance Time (s)	6.0	6.0		6.0	6.0			6.0	6.0	6.0		6.0
Vehicle Extension (s)	2.0	2.0		2.0	2.0			1.5	3.0	3.0		1.5
Lane Grp Cap (vph)	56	354		260	344			181	2958	921		164
v/s Ratio Prot		0.03			0.13			c0.09	c0.48			0.07
v/s Ratio Perm	0.16			c0.25						0.09		
v/c Ratio	0.77	0.13		1.18	0.63			0.83	0.83	0.16		0.78
Uniform Delay, d1	59.3	51.1		63.0	57.3			70.5	27.1	15.4		71.0
Progression Factor	1.00	1.00		1.00	1.00			0.89	1.07	1.61		1.00
Incremental Delay, d2	42.4	0.1		115.1	2.8			20.4	2.2	0.3		19.5
Delay (s)	101.6	51.1		178.1	60.2			83.3	31.3	25.1		90.5
Level of Service	F	D		F	Е			F	С	С		F
Approach Delay (s)		66.1			114.8				33.7			
Approach LOS		Е			F				С			
Intersection Summary												
HCM 2000 Control Delay			42.9	Н	CM 2000	Level of S	Service		D			
HCM 2000 Volume to Capacity ratio		0.92										
Actuated Cycle Length (s)		160.0		um of lost				18.0				
Intersection Capacity Utiliza	ition		87.2%	IC	CU Level of	of Service			E			
Analysis Period (min)			15									

c Critical Lane Group

	↓	4
Movement	SBT	SBR
Lane onfigurations	ተተጉ	
Traffic Volume (vph)	1286	50
Future Volume (vph)	1286	50
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	6.0	
Lane Util. Factor	0.91	
Frt	0.99	
Flt Protected	1.00	
Satd. Flow (prot)	5057	
FIt Permitted	1.00	
Satd. Flow (perm)	5057	
Peak-hour factor, PHF	0.93	0.93
Adj. Flow (vph)	1383	54
RTOR Reduction (vph)	3	0
Lane Group Flow (vph)	1434	0
Turn Type	NA	
Protected Phases	6	
Permitted Phases	•	
Actuated Green, G (s)	91.6	
Effective Green, g (s)	91.6	
Actuated g/C Ratio	0.57	
Clearance Time (s)	6.0	
Vehicle Extension (s)	3.0	
Lane Grp Cap (vph)	2895	
v/s Ratio Prot	0.28	
v/s Ratio Perm	7.20	
v/c Ratio	0.50	
Uniform Delay, d1	20.4	
Progression Factor	1.00	
Incremental Delay, d2	0.6	
Delay (s)	21.0	
Level of Service	C	
Approach Delay (s)	26.7	
Approach LOS	С	
Intersection Summary		

	۶	→	\rightarrow	•	←	•	•	†	/	>	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7		7	*		7	ሻ	^	7	ሻሻ	^	7
Traffic Volume (vph)	144	132	63	141	151	569	127	2017	105	209	1665	145
Future Volume (vph)	144	132	63	141	151	569	127	2017	105	209	1665	145
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0	7.0	7.0	7.0	7.0
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0.91	1.00	0.97	0.91	1.00
Frpb, ped/bikes	1.00	1.00	0.98	1.00	1.00	0.99	1.00	1.00	0.97	1.00	1.00	0.97
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (prot)	1852	1931	1620	1816	1950	1636	1834	5219	1522	3594	5271	1606
Flt Permitted	0.53	1.00	1.00	0.61	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00
Satd. Flow (perm)	1029	1931	1620	1171	1950	1636	1834	5219	1522	3594	5271	1606
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	145	133	64	142	153	575	128	2037	106	211	1682	146
RTOR Reduction (vph)	0	0	50	0	0	231	0	0	57	0	0	60
Lane Group Flow (vph)	145	133	14	142	153	344	128	2037	49	211	1682	86
Confl. Peds. (#/hr)			9			1			9			4
Heavy Vehicles (%)	0%	1%	0%	2%	0%	0%	1%	2%	6%	0%	1%	0%
Turn Type	pm+pt	NA	Perm	pm+pt	NA	Perm	Prot	NA	Perm	Prot	NA	Perm
Protected Phases	7	4		3	8		5	2		1	6	
Permitted Phases	4		4	8		8			2			6
Actuated Green, G (s)	48.1	34.3	34.3	45.9	33.2	33.2	15.0	73.7	73.7	13.3	72.0	72.0
Effective Green, g (s)	48.1	34.3	34.3	45.9	33.2	33.2	15.0	73.7	73.7	13.3	72.0	72.0
Actuated g/C Ratio	0.30	0.21	0.21	0.29	0.21	0.21	0.09	0.46	0.46	0.08	0.45	0.45
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0	6.0	7.0	7.0	7.0	7.0	7.0	7.0
Vehicle Extension (s)	1.5	2.0	2.0	1.5	2.0	2.0	1.5	3.0	3.0	1.5	3.0	3.0
Lane Grp Cap (vph)	380	413	347	387	404	339	171	2404	701	298	2371	722
v/s Ratio Prot	c0.03	0.07		0.03	0.08		c0.07	c0.39		0.06	0.32	
v/s Ratio Perm	0.08		0.01	0.08		c0.21			0.03			0.05
v/c Ratio	0.38	0.32	0.04	0.37	0.38	1.01	0.75	0.85	0.07	0.71	0.71	0.12
Uniform Delay, d1	42.6	53.0	49.8	44.2	54.5	63.4	70.7	38.2	24.0	71.5	35.5	25.6
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.02	0.89	1.16
Incremental Delay, d2	0.2	0.2	0.0	0.2	0.2	52.4	14.4	3.9	0.2	4.4	1.3	0.2
Delay (s)	42.9	53.2	49.8	44.4	54.7	115.8	85.1	42.1	24.2	77.1	33.0	29.9
Level of Service	D	D	D	D	D	F	F	D	С	Е	С	С
Approach Delay (s)		48.2			93.4			43.7			37.3	
Approach LOS		D			F			D			D	
Intersection Summary												
HCM 2000 Control Delay	•				CM 2000	Level of	Service		D			
ICM 2000 Volume to Capacity ratio 0.84												
Actuated Cycle Length (s)	ctuated Cycle Length (s) 160.0			Sı	um of los	t time (s)			26.0			
Intersection Capacity Utiliz	· /			ICU Level of Service					F			
Analysis Period (min)			15									

	۶	→	•	F	•	•	•	₹I	•	†	/	L
Movement	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU
Lane Configurations	75	^	7		Ä	†	77		Ä	1111	7	
Traffic Volume (vph)	200	192	109	40	213	157	585	12	95	2389	202	3
Future Volume (vph)	200	192	109	40	213	157	585	12	95	2389	202	3
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)	7.0	7.0	7.0		7.0	7.0	7.0		7.0	7.0	7.0	
Lane Util. Factor	0.97	0.95	1.00		1.00	1.00	0.88		1.00	0.86	1.00	
Frt	1.00	1.00	0.85		1.00	1.00	0.85		1.00	1.00	0.85	
Flt Protected	0.95	1.00	1.00		0.95	1.00	1.00		0.95	1.00	1.00	
Satd. Flow (prot)	3558	3632	1625		1852	1912	2888		1820	6642	1641	
Flt Permitted	0.95	1.00	1.00		0.95	1.00	1.00		0.95	1.00	1.00	
Satd. Flow (perm)	3558	3632	1625		1852	1912	2888		1820	6642	1641	
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	202	194	110	40	215	159	591	12	96	2413	204	3
RTOR Reduction (vph)	0	0	61	0	0	0	59	0	0	0	92	0
Lane Group Flow (vph)	202	194	49	0	255	159	532	0	108	2413	112	0
Heavy Vehicles (%)	1%	2%	2%	0%	0%	2%	1%	0%	2%	1%	1%	0%
Turn Type	Prot	NA	pm+ov	Prot	Prot	NA	pm+ov	Prot	Prot	NA	Perm	Prot
Protected Phases	7	4	5!	3	3	8	1!	5!	5	2		1!
Permitted Phases			4				8				2	
Actuated Green, G (s)	11.9	17.0	30.8		13.0	18.1	33.4		13.8	86.7	86.7	
Effective Green, g (s)	11.9	17.0	30.8		13.0	18.1	33.4		13.8	86.7	86.7	
Actuated g/C Ratio	0.07	0.11	0.19		0.08	0.11	0.21		0.09	0.54	0.54	
Clearance Time (s)	7.0	7.0	7.0		7.0	7.0	7.0		7.0	7.0	7.0	
Vehicle Extension (s)	1.5	2.0	1.5		1.5	2.0	1.5		1.5	3.0	3.0	
Lane Grp Cap (vph)	264	385	383		150	216	729		156	3599	889	
v/s Ratio Prot	0.06	0.05	0.01		c0.14	0.08	c0.07		0.06	c0.36		
v/s Ratio Perm			0.02				0.11				0.07	
v/c Ratio	0.77	0.50	0.13		1.70	0.74	0.73		0.69	0.67	0.13	
Uniform Delay, d1	72.7	67.5	53.5		73.5	68.6	59.1		71.0	26.4	18.0	
Progression Factor	1.00	1.00	1.00		1.00	1.00	1.00		1.08	0.99	1.69	
Incremental Delay, d2	11.2	0.4	0.1		341.9	10.7	3.1		5.2	0.5	0.1	
Delay (s)	83.9	67.9	53.5		415.4	79.3	62.2		81.9	26.5	30.6	
Level of Service	F	Е	D		F	Е	Е		F	С	С	
Approach Delay (s)		71.2				154.5				29.0		
Approach LOS		E				F				С		
Intersection Summary												
HCM 2000 Control Delay			49.9	Н	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.85									
Actuated Cycle Length (s)			160.0		um of los				31.0			
Intersection Capacity Utiliza	ition		88.6%	IC	CU Level	of Servic	е		Е			
Analysis Period (min)			15									
! Phase conflict between la	ane groups											

	>	ļ	4
Movement	SBL	SBT	SBR
Lane Configurations	ሕ ች	^ ^	7
Traffic Volume (vph)	215	1714	261
Future Volume (vph)	215	1714	261
Ideal Flow (vphpl)	1950	1950	1950
Total Lost time (s)	7.0	10.0	7.0
Lane Util. Factor	0.97	0.91	1.00
Frt	1.00	1.00	0.85
Flt Protected	0.95	1.00	1.00
Satd. Flow (prot)	3559	5324	1658
Flt Permitted	0.95	1.00	1.00
Satd. Flow (perm)	3559	5324	1658
Peak-hour factor, PHF	0.99	0.99	0.99
Adj. Flow (vph)	217	1731	264
RTOR Reduction (vph)	0	0	77
Lane Group Flow (vph)	220	1731	187
Heavy Vehicles (%)	1%	0%	0%
Turn Type	Prot	NA	Perm
Protected Phases	1	1NA 6	reiiii
Permitted Phases		U	6
	15.3	88.2	88.2
Actuated Green, G (s)		85.2	88.2
Effective Green, g (s)	15.3		
Actuated g/C Ratio	0.10	0.53	0.55
Clearance Time (s)	7.0	7.0	7.0
Vehicle Extension (s)	1.5	3.0	3.0
Lane Grp Cap (vph)	340	2835	913
v/s Ratio Prot	0.06	0.33	
v/s Ratio Perm			0.11
v/c Ratio	0.65	0.61	0.20
Uniform Delay, d1	69.7	25.9	18.2
Progression Factor	1.06	0.67	0.66
Incremental Delay, d2	2.1	0.7	0.3
Delay (s)	76.2	18.1	12.4
Level of Service	E	В	В
Approach Delay (s)		23.2	
Approach LOS		С	
Intersection Summary			

	۶	-	•	•	—	•	₹I	•	†	<i>></i>	L	/
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations		4Te		ă	4	7		Ä	1111	7		ሕ ኘ
Traffic Volume (vph)	62	17	21	309	11	404	2	46	2765	364	87	228
Future Volume (vph)	62	17	21	309	11	404	2	46	2765	364	87	228
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)		7.0		7.0	7.0	7.0		7.0	7.0	7.0		7.0
Lane Util. Factor		0.95		0.95	0.91	0.95		1.00	0.86	1.00		0.97
Frt		0.97		1.00	0.89	0.85		1.00	1.00	0.85		1.00
Flt Protected		0.97		0.95	0.99	1.00		0.95	1.00	1.00		0.95
Satd. Flow (prot)		3379		1760	1566	1575		1818	6576	1658		3594
Flt Permitted		0.97		0.95	0.99	1.00		0.95	1.00	1.00		0.95
Satd. Flow (perm)		3379		1760	1566	1575		1818	6576	1658		3594
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	63	17	21	312	11	408	2	46	2793	368	88	230
RTOR Reduction (vph)	0	19	0	0	48	180	0	0	0	74	0	0
Lane Group Flow (vph)	0	82	0	253	193	57	0	48	2793	294	0	318
Heavy Vehicles (%)	0%	18%	0%	0%	0%	0%	0%	2%	2%	0%	0%	0%
Turn Type	Split	NA		Split	NA	Perm	Prot	Prot	NA	pm+ov	Prot	Prot
Protected Phases	8	8		4	4		5	5	2	4!	1	1
Permitted Phases						4				2		
Actuated Green, G (s)		8.8		38.5	38.5	38.5		7.2	65.2	103.7		19.5
Effective Green, g (s)		8.8		38.5	38.5	38.5		7.2	65.2	103.7		19.5
Actuated g/C Ratio		0.06		0.24	0.24	0.24		0.05	0.41	0.65		0.12
Clearance Time (s)		7.0		7.0	7.0	7.0		7.0	7.0	7.0		7.0
Vehicle Extension (s)		2.5		2.0	2.0	2.0		1.5	3.0	2.0		1.5
Lane Grp Cap (vph)		185		423	376	378		81	2679	1074		438
v/s Ratio Prot		c0.02		c0.14	0.12			0.03	c0.42	0.07		c0.09
v/s Ratio Perm						0.04				0.11		
v/c Ratio		0.44		0.60	0.51	0.15		0.59	1.04	0.27		0.73
Uniform Delay, d1		73.2		53.9	52.6	47.9		75.0	47.4	12.0		67.7
Progression Factor		1.00		1.00	1.00	1.00		1.36	0.79	0.92		1.29
Incremental Delay, d2		1.2		1.5	0.5	0.1		5.4	27.4	0.0		3.9
Delay (s)		74.5		55.4	53.1	47.9		107.7	64.6	11.1		91.2
Level of Service		Ε		Е	D	D		F	Е	В		F
Approach Delay (s)		74.5			52.2				59.1			
Approach LOS		Е			D				E			
Intersection Summary												
HCM 2000 Control Delay			48.7	H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capacity	ratio		0.84									
Actuated Cycle Length (s)			160.0		um of los				28.0			
Intersection Capacity Utilization	1		92.4%	IC	U Level	of Service			F			
Analysis Period (min)			15									
! Phase conflict between lane	groups	S										

	Ţ	4
Movement	SBT	SBR
Lare Configurations	↑ ↑↑	JDIN.
Traffic Volume (vph)	1958	37
Future Volume (vph)	1958	37
Ideal Flow (vphpl)	1950	1950
Total Lost time (s)	7.0	7.0
Lane Util. Factor	0.91	1.00
Frt	1.00	0.85
Flt Protected	1.00	1.00
Satd. Flow (prot)	5271	1579
Flt Permitted	1.00	1.00
Satd. Flow (perm)	5271	1579
Peak-hour factor, PHF	0.99	0.99
Adj. Flow (vph)	1978	37
RTOR Reduction (vph)	0	19
Lane Group Flow (vph)	1978	18
Heavy Vehicles (%)	1970	5%
Turn Type	NA	Perm
Protected Phases	NA 6	Fellil
Permitted Phases	U	6
Actuated Green, G (s)	77.5	77.5
Effective Green, g (s)	77.5	77.5
Actuated g/C Ratio	0.48	0.48
Clearance Time (s)	7.0	7.0
Vehicle Extension (s)	3.0	3.0
Lane Grp Cap (vph)	2553	764
v/s Ratio Prot	c0.38	0.04
v/s Ratio Perm	0.77	0.01
v/c Ratio	0.77	0.02
Uniform Delay, d1	34.0	21.5
Progression Factor	0.62	1.00
Incremental Delay, d2	1.8	0.0
Delay (s)	22.8	21.6
Level of Service	C	С
Approach Delay (s)	32.1	
Approach LOS	С	
Intersection Summary		

	۶	→	•	•	←	•	₹I	•	†	/	>	+
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations	*	4	7	*	र्स	77		ă	### #		1,1	ተተተ
Traffic Volume (vph)	183	19	140	157	29	416	33	90	2098	76	335	2005
Future Volume (vph)	183	19	140	157	29	416	33	90	2098	76	335	2005
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)	6.0	6.0	6.0	6.0	6.0	6.0		7.0	7.0		7.0	7.0
Lane Util. Factor	0.95	0.95	1.00	0.95	0.95	0.88		1.00	*0.75		0.97	0.91
Frt	1.00	1.00	0.85	1.00	1.00	0.85		1.00	0.99		1.00	1.00
Flt Protected	0.95	0.96	1.00	0.95	0.97	1.00		0.95	1.00		0.95	1.00
Satd. Flow (prot)	1760	1780	1658	1709	1754	2888		1852	5656		3594	5271
Flt Permitted	0.95	0.96	1.00	0.95	0.97	1.00		0.95	1.00		0.95	1.00
Satd. Flow (perm)	1760	1780	1658	1709	1754	2888		1852	5656		3594	5271
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	185	19	141	159	29	420	33	91	2119	77	338	2025
RTOR Reduction (vph)	0	0	129	0	0	221	0	0	2	0	0	0
Lane Group Flow (vph)	102	102	12	94	94	199	0	124	2194	0	338	2025
Heavy Vehicles (%)	0%	0%	0%	3%	0%	1%	0%	0%	3%	0%	0%	1%
Turn Type	Split	NA	Prot	Split	NA	pt+ov	Prot	Prot	NA		Prot	NA
Protected Phases	8	8	8	4	4	4 1	5	5	2		1	6
Permitted Phases												
Actuated Green, G (s)	13.9	13.9	13.9	14.3	14.3	39.2		14.9	86.9		18.9	90.9
Effective Green, g (s)	13.9	13.9	13.9	14.3	14.3	39.2		14.9	86.9		18.9	90.9
Actuated g/C Ratio	0.09	0.09	0.09	0.09	0.09	0.25		0.09	0.54		0.12	0.57
Clearance Time (s)	6.0	6.0	6.0	6.0	6.0			7.0	7.0		7.0	7.0
Vehicle Extension (s)	2.0	2.0	2.0	2.0	2.0			1.5	3.0		1.5	3.0
Lane Grp Cap (vph)	152	154	144	152	156	707		172	3071		424	2994
v/s Ratio Prot	c0.06	0.06	0.01	c0.06	0.05	0.07		0.07	c0.39		c0.09	c0.38
v/s Ratio Perm												
v/c Ratio	0.67	0.66	0.09	0.62	0.60	0.28		0.72	0.71		0.80	0.68
Uniform Delay, d1	70.8	70.8	67.2	70.2	70.1	49.0		70.5	27.3		68.7	24.2
Progression Factor	1.00	1.00	1.00	1.00	1.00	1.00		0.78	1.44		0.98	1.15
Incremental Delay, d2	8.8	8.0	0.1	5.2	4.4	0.1		4.1	0.5		7.7	1.0
Delay (s)	79.6	78.8	67.3	75.4	74.6	49.1		59.0	39.6		74.7	28.9
Level of Service	Е	Ε	Е	Е	Е	D		Ε	D		Е	С
Approach Delay (s)		74.3			57.1				40.7			35.1
Approach LOS		Е			Е				D			D
Intersection Summary												
HCM 2000 Control Delay				H	CM 2000	Level of	Service		D			
HCM 2000 Volume to Capac	ity ratio		0.72									
Actuated Cycle Length (s)	, ,		Sum of lost time (s)					26.0				
Intersection Capacity Utilizat	ion		79.5%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Movement	SBR
Lant Configurations	ĕ ĕ
Traffic Volume (vph)	37
Future Volume (vph)	37
Ideal Flow (vphpl)	1950
Total Lost time (s)	7.0
Lane Util. Factor	1.00
Frt	0.85
Fit Protected	1.00
	1658
Satd. Flow (prot)	
Flt Permitted	1.00
Satd. Flow (perm)	1658
Peak-hour factor, PHF	0.99
Adj. Flow (vph)	37
RTOR Reduction (vph)	16
Lane Group Flow (vph)	21
Heavy Vehicles (%)	0%
Turn Type	Perm
Protected Phases	
Permitted Phases	6
Actuated Green, G (s)	90.9
Effective Green, g (s)	90.9
Actuated g/C Ratio	0.57
Clearance Time (s)	7.0
Vehicle Extension (s)	3.0
Lane Grp Cap (vph)	941
v/s Ratio Prot	
v/s Ratio Perm	0.01
v/c Ratio	0.02
Uniform Delay, d1	15.1
Progression Factor	1.00
Incremental Delay, d2	0.0
Delay (s)	15.1
Level of Service	В
Approach Delay (s)	
Approach LOS	
Intersection Summary	

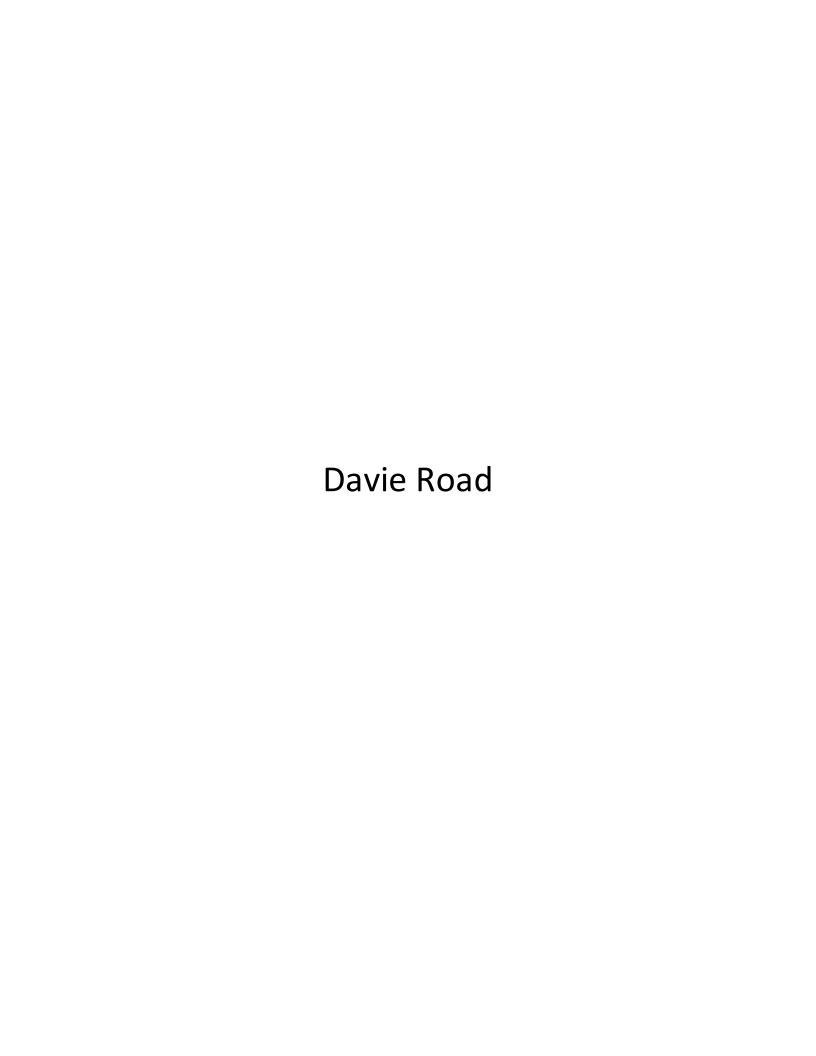
	۶	→	•	•	—	•	1	†	/	L	/	
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL	SBT
Lane Configurations	¥	413-	7					ተተተ	7		ሽኘ	ተተተ
Traffic Volume (vph)	375	350	614	0	0	0	0	1911	787	1	258	1834
Future Volume (vph)	375	350	614	0	0	0	0	1911	787	1	258	1834
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)	7.0	7.0	7.0					7.0	4.0		7.0	7.0
Lane Util. Factor	0.91	0.86	0.91					0.91	1.00		0.97	0.91
Frt	1.00	0.93	0.85					1.00	0.85		1.00	1.00
Flt Protected	0.95	1.00	1.00					1.00	1.00		0.95	1.00
Satd. Flow (prot)	1653	3060	1508					5219	1625		3210	5271
Flt Permitted	0.95	1.00	1.00					1.00	1.00		0.95	1.00
Satd. Flow (perm)	1653	3060	1508					5219	1625		3210	5271
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	379	354	620	0	0	0	0	1930	795	1	261	1853
RTOR Reduction (vph)	0	13	87	0	0	0	0	0	0	0	0	0
Lane Group Flow (vph)	341	683	229	0	0	0	0	1930	795	0	262	1853
Heavy Vehicles (%)	2%	4%	0%	0%	0%	0%	0%	2%	2%	0%	12%	1%
Turn Type	Perm	NA	Perm					NA	Free	Prot	Prot	NA
Protected Phases		12						4 10		2	2	2 4 10
Permitted Phases	12		12						Free			
Actuated Green, G (s)	47.0	47.0	47.0					75.0	160.0		17.0	99.0
Effective Green, g (s)	47.0	47.0	47.0					75.0	160.0		17.0	99.0
Actuated g/C Ratio	0.29	0.29	0.29					0.47	1.00		0.11	0.62
Clearance Time (s)	7.0	7.0	7.0								7.0	
Vehicle Extension (s)	3.0	3.0	3.0								3.0	
Lane Grp Cap (vph)	485	898	442					2446	1625		341	3261
v/s Ratio Prot								c0.37			c0.08	0.35
v/s Ratio Perm	0.21	0.22	0.15						0.49			
v/c Ratio	0.70	0.76	0.52					0.79	0.49		0.77	0.57
Uniform Delay, d1	50.3	51.4	47.1					35.8	0.0		69.6	17.9
Progression Factor	1.00	1.00	1.00					1.35	1.00		1.22	0.59
Incremental Delay, d2	4.6	3.8	1.0					1.4	8.0		11.6	0.2
Delay (s)	54.9	55.2	48.1					49.6	0.8		96.5	10.8
Level of Service	D	Е	D					D	Α		F	В
Approach Delay (s)		53.5			0.0			35.4				21.4
Approach LOS		D			Α			D				С
Intersection Summary												
HCM 2000 Control Delay	Control Delay 34.6		Н	CM 2000	Level of	Service		С				
•	M 2000 Volume to Capacity ratio 0.82											
Actuated Cycle Length (s)			160.0		um of lost				28.0			
Intersection Capacity Utilizat	ion		80.6%	IC	CU Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Traffic Volume (vph) 0 Future Volume (vph) 0 Ideal Flow (vphpl) 1950 Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF 0.99 Adj. Flow (vph) 0 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Heavy Vehicles (%) 0% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Porm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS	Movement	SBR
Traffic Volume (vph) Future Volume (vph) Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF O.99 Adj. Flow (vph) Cane Group Flow (vph) Uane Group Flow (vph) Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Port v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Future Volume (vph) Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) ORTOR Reduction (vph) Lane Group Flow (vph) Uane Group Flow (vph) Frotected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		0
Ideal Flow (vphpl) Total Lost time (s) Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) ORTOR Reduction (vph) Lane Group Flow (vph) Heavy Vehicles (%) O% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Prot v/s Ratio Port v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Total Lost time (s) Lane Util. Factor Frt Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Peak-hour factor, PHF 0.99 Adj. Flow (vph) 0 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Heavy Vehicles (%) 0% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Port v/s Ratio Port v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		1950
Lane Util. Factor Frt Flt Protected Satd. Flow (prot) Flt Permitted Satd. Flow (perm) Peak-hour factor, PHF Adj. Flow (vph) RTOR Reduction (vph) Lane Group Flow (vph) Heavy Vehicles (%) Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Peak-hour factor, PHF 0.99 Adj. Flow (vph) 0 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Heavy Vehicles (%) 0% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Fit Protected Satd. Flow (prot) Fit Permitted Satd. Flow (perm) Peak-hour factor, PHF 0.99 Adj. Flow (vph) 0 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Heavy Vehicles (%) 0% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	Frt	
Fit Permitted Satd. Flow (perm) Peak-hour factor, PHF 0.99 Adj. Flow (vph) 0 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Heavy Vehicles (%) 0% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	Flt Protected	
Fit Permitted Satd. Flow (perm) Peak-hour factor, PHF 0.99 Adj. Flow (vph) 0 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Heavy Vehicles (%) 0% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS	Satd. Flow (prot)	
Peak-hour factor, PHF 0.99 Adj. Flow (vph) 0 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Heavy Vehicles (%) 0% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Peak-hour factor, PHF 0.99 Adj. Flow (vph) 0 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Heavy Vehicles (%) 0% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS	Satd. Flow (perm)	
Adj. Flow (vph) 0 RTOR Reduction (vph) 0 Lane Group Flow (vph) 0 Heavy Vehicles (%) 0% Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		0.99
RTOR Reduction (vph) Lane Group Flow (vph) Heavy Vehicles (%) Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Lane Group Flow (vph) Heavy Vehicles (%) Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Heavy Vehicles (%) Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach LOS		
Turn Type Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		0%
Protected Phases Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Permitted Phases Actuated Green, G (s) Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Effective Green, g (s) Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	Actuated Green, G (s)	
Actuated g/C Ratio Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Clearance Time (s) Vehicle Extension (s) Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	,	
Lane Grp Cap (vph) v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	Vehicle Extension (s)	
v/s Ratio Prot v/s Ratio Perm v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	Lane Grp Cap (vph)	
v/c Ratio Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS		
Uniform Delay, d1 Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	v/s Ratio Perm	
Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	v/c Ratio	
Progression Factor Incremental Delay, d2 Delay (s) Level of Service Approach Delay (s) Approach LOS	Uniform Delay, d1	
Delay (s) Level of Service Approach Delay (s) Approach LOS		
Delay (s) Level of Service Approach Delay (s) Approach LOS	Incremental Delay, d2	
Approach Delay (s) Approach LOS		
Approach LOS		
Approach LOS	Approach Delay (s)	
latana artian Communica		
Interception Silmman/	Intersection Summary	

	۶	→	*	•	←	4	₹ì	1	†	<i>></i>	/	\
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBL	SBT
Lane Configurations				ሻ	4î>	7		<u>ሕ</u> ኘ	ተተተ			4111
Traffic Volume (vph)	0	0	0	484	261	734	3	188	2096	0	0	1606
Future Volume (vph)	0	0	0	484	261	734	3	188	2096	0	0	1606
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)				7.0	7.0	7.0		7.0	7.0			7.0
Lane Util. Factor				0.91	0.86	0.91		0.97	0.91			0.86
Frt				1.00	0.92	0.85		1.00	1.00			0.98
Flt Protected				0.95	0.99	1.00		0.95	1.00			1.00
Satd. Flow (prot)				1669	3049	1493		3594	5219			6433
Flt Permitted				0.95	0.99	1.00		0.95	1.00			1.00
Satd. Flow (perm)				1669	3049	1493		3594	5219			6433
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	0	0	0	489	264	741	3	190	2117	0	0	1622
RTOR Reduction (vph)	0	0	0	0	7	87	0	0	0	0	0	21
Lane Group Flow (vph)	0	0	0	386	731	283	0	193	2117	0	0	1899
Heavy Vehicles (%)	0%	0%	0%	1%	1%	1%	0%	0%	2%	0%	0%	2%
Turn Type				Perm	NA	Perm	Prot	Prot	NA			NA
Protected Phases					12		10	10	2 4 10			2 4
Permitted Phases				12		12						
Actuated Green, G (s)				47.0	47.0	47.0		17.0	99.0			75.0
Effective Green, g (s)				47.0	47.0	47.0		17.0	99.0			75.0
Actuated g/C Ratio				0.29	0.29	0.29		0.11	0.62			0.47
Clearance Time (s)				7.0	7.0	7.0		7.0				
Vehicle Extension (s)				3.0	3.0	3.0		3.0				
Lane Grp Cap (vph)				490	895	438		381	3229			3015
v/s Ratio Prot								0.05	c0.41			0.30
v/s Ratio Perm				0.23	0.24	0.19						
v/c Ratio				0.79	0.82	0.65		0.51	0.66			0.63
Uniform Delay, d1				51.9	52.5	49.3		67.5	19.6			32.0
Progression Factor				1.00	1.00	1.00		0.60	0.32			0.92
Incremental Delay, d2				8.2	5.8	3.3		0.6	0.3			0.2
Delay (s)				60.1	58.3	52.5		41.4	6.5			29.5
Level of Service				E	E	D		D	Α			С
Approach Delay (s)		0.0			57.3				9.4			29.5
Approach LOS		Α			Е				Α			С
Intersection Summary												
HCM 2000 Control Delay			28.7	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capacit	y ratio		0.78									
Actuated Cycle Length (s)			160.0		um of lost				28.0			
Intersection Capacity Utilization	n		80.6%	IC	U Level	of Service			D			
Analysis Period (min)			15									
c Critical Lane Group												

Movement	SBR
Lane Configurations	
Traffic Volume (vph)	295
Future Volume (vph)	295
Ideal Flow (vphpl)	1950
Total Lost time (s)	
Lane Util. Factor	
Frt	
Flt Protected	
Satd. Flow (prot)	
FIt Permitted	
Satd. Flow (perm)	
Peak-hour factor, PHF	0.99
Adj. Flow (vph)	298
RTOR Reduction (vph)	0
Lane Group Flow (vph)	0
Heavy Vehicles (%)	1%
Turn Type	
Protected Phases	
Permitted Phases	
Actuated Green, G (s)	
Effective Green, g (s)	
Actuated g/C Ratio	
Clearance Time (s)	
Vehicle Extension (s)	
Lane Grp Cap (vph)	
v/s Ratio Prot	
v/s Ratio Perm	
v/c Ratio	
Uniform Delay, d1	
Progression Factor	
Incremental Delay, d2	
Delay (s)	
Level of Service	
Approach Delay (s)	
Approach LOS	
Intersection Summary	

		٠	→	•	•	←	•	•	†	/	L	>
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL
Lane Configurations		ሕጎ	^	77	ሽኘ	^	7	ሻሻ	^ ^	7		ሽሽ
Traffic Volume (vph)	4	166	401	768	559	436	297	278	1968	582	1	202
Future Volume (vph)	4	166	401	768	559	436	297	278	1968	582	1	202
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)		6.5	6.5	7.0	6.5	6.5	6.5	7.0	7.0	7.0		7.0
Lane Util. Factor		0.97	0.95	0.88	0.97	0.95	1.00	0.97	0.91	1.00		0.97
Frpb, ped/bikes		1.00	1.00	0.99	1.00	1.00	1.00	1.00	1.00	0.99		1.00
Flpb, ped/bikes		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00
Frt		1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85		1.00
Flt Protected		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00		0.95
Satd. Flow (prot)		3594	3668	2862	3558	3668	1641	3558	5219	1603		3558
Flt Permitted		0.95	1.00	1.00	0.95	1.00	1.00	0.95	1.00	1.00		0.95
Satd. Flow (perm)		3594	3668	2862	3558	3668	1641	3558	5219	1603		3558
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	4	168	405	776	565	440	300	281	1988	588	1	204
RTOR Reduction (vph)	0	0	0	85	0	0	119	0	0	200	0	0
Lane Group Flow (vph)	0	172	405	691	565	440	181	281	1988	388	0	205
Confl. Peds. (#/hr)				1						1		
Heavy Vehicles (%)	0%	0%	1%	1%	1%	1%	1%	1%	2%	2%	0%	1%
Turn Type	Prot	Prot	NA	pm+ov	Prot	NA	Perm	Prot	NA	Perm	Prot	Prot
Protected Phases	7	7	4	5	3	8		5	2		1	1
Permitted Phases				4			8			2		
Actuated Green, G (s)		11.2	29.5	42.5	23.5	41.8	41.8	13.0	68.1	68.1		11.9
Effective Green, g (s)		11.2	29.5	42.5	23.5	41.8	41.8	13.0	68.1	68.1		11.9
Actuated g/C Ratio		0.07	0.18	0.27	0.15	0.26	0.26	0.08	0.43	0.43		0.07
Clearance Time (s)		6.5	6.5	7.0	6.5	6.5	6.5	7.0	7.0	7.0		7.0
Vehicle Extension (s)		1.5	2.0	1.5	1.5	2.0	2.0	1.5	3.0	3.0		1.5
Lane Grp Cap (vph)		251	676	760	522	958	428	289	2221	682		264
v/s Ratio Prot		0.05	0.11	c0.07	c0.16	0.12		c0.08	c0.38			0.06
v/s Ratio Perm				0.17			0.11			0.24		
v/c Ratio		0.69	0.60	0.91	1.08	0.46	0.42	0.97	0.90	0.57		0.78
Uniform Delay, d1		72.7	59.8	56.9	68.2	49.6	49.1	73.3	42.6	34.8		72.7
Progression Factor		1.23	0.77	0.76	0.94	0.96	0.92	1.16	0.85	0.57		1.19
Incremental Delay, d2		6.0	0.9	14.2	63.3	0.1	0.2	37.3	4.5	2.5		11.1
Delay (s)		95.3	47.1	57.5	127.3	47.8	45.2	122.7	40.6	22.2		97.7
Level of Service		F	D	Е	F	D	D	F	D	С		F
Approach Delay (s)			59.2			81.6			44.9			
Approach LOS			Е			F			D			
Intersection Summary												
HCM 2000 Control Delay			52.8	Н	ICM 2000	Level of S	Service		D			
HCM 2000 Volume to Capac	ity ratio		0.95									
Actuated Cycle Length (s)			160.0		um of lost				27.0			
Intersection Capacity Utilizat	ion		95.0%	IC	CU Level of	of Service			F			
Analysis Period (min)			15									


	↓	4
Movement	SBT	SBR
Lare Configurations	^	7
Traffic Volume (vph)	1915	48
Future Volume (vph)	1915	48
Ideal Flow (vphpl)	1950	1950
Total Lost time (s)	7.0	7.0
Lane Util. Factor	0.91	1.00
Frpb, ped/bikes	1.00	0.98
Flpb, ped/bikes	1.00	1.00
Frt	1.00	0.85
Flt Protected	1.00	1.00
Satd. Flow (prot)	5219	1599
Flt Permitted	1.00	1.00
Satd. Flow (perm)	5219	1599
Peak-hour factor, PHF	0.99	0.99
Adj. Flow (vph)	1934	48
RTOR Reduction (vph)	0	28
Lane Group Flow (vph)	1934	20
Confl. Peds. (#/hr)		3
Heavy Vehicles (%)	2%	2%
Turn Type	NA	Perm
Protected Phases	6	
Permitted Phases		6
Actuated Green, G (s)	67.0	67.0
Effective Green, g (s)	67.0	67.0
Actuated g/C Ratio	0.42	0.42
Clearance Time (s)	7.0	7.0
Vehicle Extension (s)	3.0	3.0
Lane Grp Cap (vph)	2185	669
v/s Ratio Prot	0.37	009
v/s Ratio Prot v/s Ratio Perm	0.37	0.01
	0.00	0.01
v/c Ratio	0.89	
Uniform Delay, d1	42.9	27.4
Progression Factor	0.73	1.00
Incremental Delay, d2	5.2	0.1
Delay (s)	36.3	27.4
Level of Service	D	С
Approach Delay (s)	41.9	
Approach LOS	D	
Intersection Summary		

	•	•	4	†	↓	4		
Movement	EBL	EBR	NBL	NBT	SBT	SBR		
Lane Configurations	ሻሻ	7	ሻሻ	^	^	7		
Traffic Volume (vph)	176	233	235	2098	1879	141		
Future Volume (vph)	176	233	235	2098	1879	141		
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950		
Total Lost time (s)	6.0	6.0	7.0	7.0	7.0	7.0		
Lane Util. Factor	0.97	1.00	0.97	0.91	0.91	1.00		
Frpb, ped/bikes	1.00	0.98	1.00	1.00	1.00	1.00		
Flpb, ped/bikes	1.00	1.00	1.00	1.00	1.00	1.00		
Frt	1.00	0.85	1.00	1.00	1.00	0.85		
Flt Protected	0.95	1.00	0.95	1.00	1.00	1.00		
Satd. Flow (prot)	3523	1631	3390	5219	5219	1641		
Flt Permitted	0.95	1.00	0.08	1.00	1.00	1.00		
Satd. Flow (perm)	3523	1631	298	5219	5219	1641		
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99		
Adj. Flow (vph)	178	235	237	2119	1898	142		
RTOR Reduction (vph)	0	217	0	0	0	22		
Lane Group Flow (vph)	178	18	237	2119	1898	120		
Confl. Peds. (#/hr)	170	1	201	2110	1330	120		
Heavy Vehicles (%)	2%	0%	6%	2%	2%	1%		
Turn Type	Prot	Perm	pm+pt	NA	NA	Perm		
Protected Phases	4	. 31111	5	2	6	7 01111		
Permitted Phases		4	2			6		
Actuated Green, G (s)	12.5	12.5	134.5	134.5	118.0	118.0		
Effective Green, g (s)	12.5	12.5	134.5	134.5	118.0	118.0		
Actuated g/C Ratio	0.08	0.08	0.84	0.84	0.74	0.74		
Clearance Time (s)	6.0	6.0	7.0	7.0	7.0	7.0		
Vehicle Extension (s)	2.0	2.0	2.0	3.0	3.0	3.0		
Lane Grp Cap (vph)	275	127	434	4387	3849	1210		
v/s Ratio Prot	c0.05	121	0.03	c0.41	0.36	1210		
v/s Ratio Perm	30.00	0.01	c0.43	JJ. T I	0.00	0.07		
v/c Ratio	0.65	0.14	0.55	0.48	0.49	0.10		
Uniform Delay, d1	71.6	68.8	8.0	3.4	8.7	5.9		
Progression Factor	1.00	1.00	3.22	2.85	0.14	0.02		
Incremental Delay, d2	3.9	0.2	0.4	0.2	0.4	0.1		
Delay (s)	75.5	69.0	26.3	10.0	1.6	0.2		
Level of Service	7 0.0 E	E	C C	A	A	A		
Approach Delay (s)	71.8			11.6	1.5	, .		
Approach LOS	E			В	A			
Intersection Summary								
	12.5	Ш	CM 2000	Level of Servic	2	В		
CM 2000 Control Delay			0.58	П	CIVI ZUUU	Level of Servic	5	D
CM 2000 Volume to Capacity ratio			160.0	C	um of los	t time (e)	20	0.0
	etuated Cycle Length (s)					of Service	20	л.0 В
Analysis Period (min)	tersection Capacity Utilization			IC	o Level	OI SELVICE		D
Analysis Fellou (IIIIII)			15					

	۶	-	•	•	←	•	₹I	1	†	/	L	/
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations		र्स	7	ሻ	₽			ሽኘ	↑ ↑₽			Ä
Traffic Volume (vph)	169	0	195	37	9	5	5	152	2105	12	11	4
Future Volume (vph)	169	0	195	37	9	5	5	152	2105	12	11	4
Ideal Flow (vphpl)	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950
Total Lost time (s)		6.0	6.0	6.0	6.0			7.0	7.0			7.0
Lane Util. Factor		1.00	1.00	1.00	1.00			0.97	0.91			1.00
Frpb, ped/bikes		1.00	0.98	1.00	1.00			1.00	1.00			1.00
Flpb, ped/bikes		1.00	1.00	1.00	1.00			1.00	1.00			1.00
Frt		1.00	0.85	1.00	0.95			1.00	1.00			1.00
Flt Protected		0.95	1.00	0.95	1.00			0.95	1.00			0.95
Satd. Flow (prot)		1816	1615	1852	1846			3559	5267			1852
Flt Permitted		0.75	1.00	0.95	1.00			0.95	1.00			0.95
Satd. Flow (perm)		1431	1615	1852	1846			3559	5267			1852
Peak-hour factor, PHF	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Adj. Flow (vph)	171	0	197	37	9	5	5	154	2126	12	11	4
RTOR Reduction (vph)	0	0	141	0	5	0	0	0	0	0	0	0
Lane Group Flow (vph)	0	171	56	37	9	0	0	159	2138	0	0	15
Confl. Peds. (#/hr)			3									
Heavy Vehicles (%)	2%	0%	1%	0%	0%	0%	0%	1%	1%	0%	0%	0%
Turn Type	Perm	NA	Perm	Split	NA		Prot	Prot	NA		Prot	Prot
Protected Phases		4		8	8		5	5	2		1	1
Permitted Phases	4		4									
Actuated Green, G (s)		22.0	22.0	6.4	6.4			10.9	103.6			2.0
Effective Green, g (s)		22.0	22.0	6.4	6.4			10.9	103.6			2.0
Actuated g/C Ratio		0.14	0.14	0.04	0.04			0.07	0.65			0.01
Clearance Time (s)		6.0	6.0	6.0	6.0			7.0	7.0			7.0
Vehicle Extension (s)		2.0	2.0	2.0	2.0			1.5	3.0			1.5
Lane Grp Cap (vph)		196	222	74	73			242	3410			23
v/s Ratio Prot				c0.02	0.00			c0.04	c0.41			0.01
v/s Ratio Perm		c0.12	0.03									
v/c Ratio		0.87	0.25	0.50	0.13			0.66	0.63			0.65
Uniform Delay, d1		67.6	61.6	75.2	74.1			72.7	16.7			78.7
Progression Factor		1.00	1.00	1.00	1.00			1.13	1.77			0.97
Incremental Delay, d2		31.2	0.2	1.9	0.3			4.4	0.8			27.0
Delay (s)		98.8	61.8	77.2	74.4			86.2	30.4			103.4
Level of Service		F	Е	Е	Е			F	С			F
Approach Delay (s)		79.0			76.4				34.2			
Approach LOS		E			Е				С			
Intersection Summary												
HCM 2000 Control Delay			30.7	H	CM 2000	Level of S	Service		С			
HCM 2000 Volume to Capa	acity ratio		0.68									
Actuated Cycle Length (s)			160.0	Sı	um of lost	time (s)			26.0			
Intersection Capacity Utiliza	ation		81.0%			of Service			D			
Analysis Period (min)			15									
0 111 11 0												

Synchro 10 Report Page 9 03/05/2020 Baseline

	↓	4
Movement	SBT	SBR
Lanesonfigurations	^ ^	#
Traffic Volume (vph)	1920	91
Future Volume (vph)	1920	91
Ideal Flow (vphpl)	1950	1950
Total Lost time (s)	7.0	7.0
Lane Util. Factor	0.91	1.00
Frpb, ped/bikes	1.00	1.00
Flpb, ped/bikes	1.00	1.00
Frt	1.00	0.85
Flt Protected	1.00	1.00
Satd. Flow (prot)	5271	1594
Flt Permitted	1.00	1.00
Satd. Flow (perm)	5271	1594
Peak-hour factor, PHF	0.99	0.99
Adj. Flow (vph)	1939	92
RTOR Reduction (vph)	1939	38
Lane Group Flow (vph)	1939	54
	1939	54
Confl. Peds. (#/hr)	40/	4%
Heavy Vehicles (%)	1%	
Turn Type	NA	Perm
Protected Phases	6	_
Permitted Phases	0.4 =	6
Actuated Green, G (s)	94.7	94.7
Effective Green, g (s)	94.7	94.7
Actuated g/C Ratio	0.59	0.59
Clearance Time (s)	7.0	7.0
Vehicle Extension (s)	3.0	3.0
Lane Grp Cap (vph)	3119	943
v/s Ratio Prot	0.37	
v/s Ratio Perm		0.03
v/c Ratio	0.62	0.06
Uniform Delay, d1	21.1	13.8
Progression Factor	0.75	1.00
Incremental Delay, d2	0.6	0.1
Delay (s)	16.5	13.9
Level of Service	В	В
Approach Delay (s)	17.0	
Approach LOS	В	
**		
Intersection Summary		

	₾	۶	→	•	•	•	•	•	†	/	L	-
Movement	EBU	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBU	SBL
Lane Configurations		Ä	4î		ă	†	7	Ä	^	7		Ä
Traffic Volume (vph)	5	192	70	183	73	76	94	28	827	78	22	143
Future Volume (vph)	5	192	70	183	73	76	94	28	827	78	22	143
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0		6.0
Lane Util. Factor		1.00	1.00		1.00	1.00	1.00	1.00	0.95	1.00		1.00
Frt		1.00	0.89		1.00	1.00	0.85	1.00	1.00	0.85		1.00
Flt Protected		0.95	1.00		0.95	1.00	1.00	0.95	1.00	1.00		0.95
Satd. Flow (prot)		1770	1660		1770	1863	1583	1770	3539	1583		1770
Flt Permitted		0.47	1.00		0.26	1.00	1.00	0.21	1.00	1.00		0.20
Satd. Flow (perm)		876	1660		484	1863	1583	391	3539	1583		380
Peak-hour factor, PHF	0.85	0.85	0.85	0.85	0.90	0.90	0.90	0.85	0.85	0.85	0.95	0.95
Adj. Flow (vph)	6	226	82	215	81	84	104	33	973	92	23	151
RTOR Reduction (vph)	0	0	62	0	0	0	94	0	0	42	0	0
Lane Group Flow (vph)	0	232	235	0	81	84	10	33	973	50	0	174
Turn Type	custom	pm+pt	NA		pm+pt	NA	Perm	pm+pt	NA	Perm	custom	pm+pt
Protected Phases		7	4		3	8		5	2			1
Permitted Phases	7	4			8		8	2		2	1	6
Actuated Green, G (s)		42.2	26.7		24.9	15.4	15.4	91.9	87.6	87.6		105.8
Effective Green, g (s)		42.2	26.7		24.9	15.4	15.4	91.9	87.6	87.6		105.8
Actuated g/C Ratio		0.26	0.17		0.16	0.10	0.10	0.57	0.55	0.55		0.66
Clearance Time (s)		6.0	6.0		6.0	6.0	6.0	6.0	6.0	6.0		6.0
Vehicle Extension (s)		1.5	2.0		1.5	2.0	2.0	1.5	3.0	3.0		1.5
Lane Grp Cap (vph)		347	277		151	179	152	261	1937	866		357
v/s Ratio Prot		c0.09	c0.14		0.03	0.05		0.00	0.27			c0.04
v/s Ratio Perm		0.09			0.05		0.01	0.07		0.03		0.29
v/c Ratio		0.67	0.85		0.54	0.47	0.07	0.13	0.50	0.06		0.49
Uniform Delay, d1		50.1	64.7		60.0	68.4	65.8	15.7	22.6	16.9		14.0
Progression Factor		1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00		1.91
Incremental Delay, d2		3.8	19.8		1.8	0.7	0.1	0.1	0.9	0.1		0.3
Delay (s)		53.9	84.5		61.9	69.1	65.8	15.8	23.5	17.0		27.0
Level of Service		D	F		Е	Е	Е	В	С	В		С
Approach Delay (s)			71.1			65.7			22.8			
Approach LOS			Е			E			С			
Intersection Summary												
HCM 2000 Control Delay			41.7	H	ICM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	acity ratio		0.62									
Actuated Cycle Length (s)			160.0	S	Sum of lost	time (s)			24.0			
Intersection Capacity Utiliz	ation		71.2%	10	CU Level o	of Service)		С			
Analysis Period (min)			15									

c Critical Lane Group

	↓	4
Movement	SBT	SBR
Lanesconfigurations	^	7
Traffic Volume (vph)	1045	474
Future Volume (vph)	1045	474
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	6.0	6.0
Lane Util. Factor	0.95	1.00
Frt	1.00	0.85
Flt Protected	1.00	1.00
Satd. Flow (prot)	3539	1583
Flt Permitted	1.00	1.00
Satd. Flow (perm)	3539	1583
Peak-hour factor, PHF	0.95	0.95
Adj. Flow (vph)	1100	499
RTOR Reduction (vph)	0	136
Lane Group Flow (vph)	1100	363
Turn Type	NA	Perm
Protected Phases	6	_
Permitted Phases	^	6
Actuated Green, G (s)	95.5	95.5
Effective Green, g (s)	95.5	95.5
Actuated g/C Ratio	0.60	0.60
Clearance Time (s)	6.0	6.0
Vehicle Extension (s)	3.0	3.0
Lane Grp Cap (vph)	2112	944
v/s Ratio Prot	c0.31	
v/s Ratio Perm		0.23
v/c Ratio	0.52	0.38
Uniform Delay, d1	18.9	16.9
Progression Factor	1.81	3.44
Incremental Delay, d2	0.8	1.1
Delay (s)	35.0	59.2
Level of Service	С	Е
Approach Delay (s)	41.0	
Approach LOS	D	
Internation Comme		
Intersection Summary		

	•	→	•	•	←	•	₹I	1	†	~	L	\
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations		4		ሻ	₽			Ä	ተተተ	7		ሕ ኘ
Traffic Volume (vph)	11	1	8	169	1	267	27	0	992	116	2	330
Future Volume (vph)	11	1	8	169	1	267	27	0	992	116	2	330
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0		6.0	6.0			6.0	6.0	6.0		6.0
Lane Util. Factor		1.00		1.00	1.00			1.00	0.91	1.00		0.97
Frt		0.95		1.00	0.85			1.00	1.00	0.85		1.00
Flt Protected		0.97		0.95	1.00			0.95	1.00	1.00		0.95
Satd. Flow (prot)		1716		1770	1584			1770	5085	1583		3433
FIt Permitted		0.32		0.73	1.00			0.15	1.00	1.00		0.95
Satd. Flow (perm)		570		1364	1584			274	5085	1583		3433
Peak-hour factor, PHF	0.53	0.53	0.53	0.79	0.79	0.79	0.77	0.77	0.77	0.77	0.95	0.95
Adj. Flow (vph)	21	2	15	214	1	338	35	0	1288	151	2	347
RTOR Reduction (vph)	0	12	0	0	174	0	0	0	0	48	0	0
Lane Group Flow (vph)	0	26	0	214	165	0	0	35	1288	103	0	349
Turn Type	Perm	NA		Perm	NA		custom	pm+pt	NA	Perm	Prot	Prot
Protected Phases		4			8			5	2		1	1
Permitted Phases	4			8			5	2		2		
Actuated Green, G (s)		28.6		28.6	28.6			98.8	94.6	94.6		18.8
Effective Green, g (s)		28.6		28.6	28.6			98.8	94.6	94.6		18.8
Actuated g/C Ratio		0.18		0.18	0.18			0.62	0.59	0.59		0.12
Clearance Time (s)		6.0		6.0	6.0			6.0	6.0	6.0		6.0
Vehicle Extension (s)		2.0		2.0	2.0			1.5	3.0	3.0		2.0
Lane Grp Cap (vph)		101		243	283			208	3006	935		403
v/s Ratio Prot					0.10			0.00	0.25			c0.10
v/s Ratio Perm		0.05		c0.16				0.10		0.07		
v/c Ratio		0.25		0.88	0.58			0.17	0.43	0.11		0.87
Uniform Delay, d1		56.5		64.0	60.2			12.0	17.9	14.3		69.4
Progression Factor		1.00		1.00	1.00			0.67	0.63	0.42		1.00
Incremental Delay, d2		0.5		28.1	2.0			0.1	0.4	0.2		16.9
Delay (s)		57.0		92.2	62.2			8.2	11.8	6.2		86.2
Level of Service		Е		F	Е			Α	В	Α		F
Approach Delay (s)		57.0			73.8				11.1			
Approach LOS		Е			Е				В			
Intersection Summary												
HCM 2000 Control Delay			27.2	Н	CM 2000	Level of	Service		С			
HCM 2000 Volume to Capaci	ty ratio		0.60									
Actuated Cycle Length (s)			160.0	S	um of lost	time (s)			18.0			
Intersection Capacity Utilization	on		64.4%	IC	U Level o	of Service	e		С			
Analysis Period (min)			15									

c Critical Lane Group

	ļ	4
Movement	SBT	SBR
Lare Configurations	1 17	
Traffic Volume (vph)	1480	3
Future Volume (vph)	1480	3
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	6.0	
Lane Util. Factor	0.91	
Frt	1.00	
Flt Protected	1.00	
Satd. Flow (prot)	5084	
Flt Permitted	1.00	
Satd. Flow (perm)	5084	
Peak-hour factor, PHF	0.95	0.95
Adj. Flow (vph)	1558	3
RTOR Reduction (vph)	0	0
Lane Group Flow (vph)	1561	0
Turn Type	NA	
Protected Phases	6	
Permitted Phases		
Actuated Green, G (s)	109.2	
Effective Green, g (s)	109.2	
Actuated g/C Ratio	0.68	
Clearance Time (s)	6.0	
Vehicle Extension (s)	3.0	
Lane Grp Cap (vph)	3469	
v/s Ratio Prot	c0.31	
v/s Ratio Perm		
v/c Ratio	0.45	
Uniform Delay, d1	11.6	
Progression Factor	1.00	
Incremental Delay, d2	0.4	
Delay (s)	12.1	
Level of Service	В	
Approach Delay (s)	25.6	
Approach LOS	С	
Intersection Summary		
intersection Summary		

	ᄼ	-	•	•	•	•	•	†	<i>></i>	>	ţ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4îb	7					ħβ	7	7	^	
Traffic Volume (vph)	190	420	654	0	0	0	0	562	710	39	1161	0
Future Volume (vph)	190	420	654	0	0	0	0	562	710	39	1161	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		7.0	7.0					7.0	7.0	7.0	7.0	
Lane Util. Factor		0.91	0.91					0.91	0.91	1.00	0.95	
Frt		0.95	0.85					0.95	0.85	1.00	1.00	
Flt Protected		0.99	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (prot)		3203	1441					3208	1441	1770	3539	
Flt Permitted		0.99	1.00					1.00	1.00	0.95	1.00	
Satd. Flow (perm)		3203	1441					3208	1441	1770	3539	
Peak-hour factor, PHF	0.85	0.85	0.85	0.92	0.92	0.92	0.93	0.93	0.93	0.91	0.91	0.91
Adj. Flow (vph)	224	494	769	0	0	0	0	604	763	43	1276	0
RTOR Reduction (vph)	0	25	143	0	0	0	0	41	261	0	0	0
Lane Group Flow (vph)	0	1001	318	0	0	0	0	899	166	43	1276	0
Turn Type	Perm	NA	Prot					NA	custom	Prot	NA	
Protected Phases		1	1					3 4	3 4 5	2	2345	
Permitted Phases	1											
Actuated Green, G (s)		20.9	20.9					34.0	65.1	60.0	132.1	
Effective Green, g (s)		20.9	20.9					34.0	65.1	60.0	132.1	
Actuated g/C Ratio		0.13	0.13					0.20	0.39	0.36	0.79	
Clearance Time (s)		7.0	7.0							7.0		
Vehicle Extension (s)		2.0	2.0							3.0		
Lane Grp Cap (vph)		400	180					653	561	635	2799	
v/s Ratio Prot			0.22					c0.28	0.12	0.02	c0.36	
v/s Ratio Perm		0.31										
v/c Ratio		2.50	1.77					1.38	0.30	0.07	0.46	
Uniform Delay, d1		73.0	73.0					66.5	35.2	35.1	5.7	
Progression Factor		1.00	1.00					1.00	1.00	0.56	0.02	
Incremental Delay, d2		683.1	367.6					179.3	0.1	0.1	0.0	
Delay (s)		756.2	440.7					245.8	35.3	19.9	0.1	
Level of Service		F	F					F	D	В	Α	
Approach Delay (s)		658.4			0.0			180.0			0.8	
Approach LOS		F			Α			F			Α	
Intersection Summary												
HCM 2000 Control Delay			293.8	H	CM 2000	Level of	Service		F			
HCM 2000 Volume to Capac	city ratio		1.06									
Actuated Cycle Length (s)			167.0	Sı	um of lost	time (s)			35.0			
Intersection Capacity Utilizat	ion		98.6%		U Level o				F			
Analysis Period (min)			15									
0 111 11 0												

c Critical Lane Group

	-	•	•	←	1	/		
Movement	EBT	EBR	WBL	WBT	NBL	NBR		
Lane Configurations			*	414	ሻሻ			
Traffic Volume (vph)	0	0	1200	617	752	0		
Future Volume (vph)	0	0	1200	617	752	0		
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900		
Total Lost time (s)	1000	1000	7.0	7.0	7.0	1000		
Lane Util. Factor			0.91	0.91	0.97			
Frt			1.00	1.00	1.00			
Flt Protected			0.95	0.98	0.95			
Satd. Flow (prot)			1610	3309	3433			
Flt Permitted			0.95	0.98	0.95			
Satd. Flow (perm)			1610	3309	3433			
Peak-hour factor, PHF	0.92	0.92	0.94	0.94	0.79	0.79		
Adj. Flow (vph)	0.92	0.32	1277	656	952	0.79		
RTOR Reduction (vph)	0	0	0	000	0	0		
Lane Group Flow (vph)	0	0	638	1295	952	0		
Turn Type	0	<u> </u>	Split	NA	Prot	<u> </u>		
Protected Phases			2 3	2 3	145			
Permitted Phases			۷ ۵	۷ ۵	143			
Actuated Green, G (s)			69.0	69.0	84.0			
Effective Green, g (s)			69.0	69.0	84.0			
Actuated g/C Ratio			0.41	0.41	0.50			
Clearance Time (s)			0.41	0.41	0.50			
Vehicle Extension (s)								
			CCE	1267	1706			
Lane Grp Cap (vph)			665	1367	1726			
v/s Ratio Prot			c0.40	0.39	c0.28			
v/s Ratio Perm			0.00	0.05	0.55			
v/c Ratio			0.96	0.95	0.55			
Uniform Delay, d1			47.6	47.2	28.5			
Progression Factor			1.00	1.00	0.51			
Incremental Delay, d2			24.7	13.5	0.0			
Delay (s)			72.4	60.7	14.7			
Level of Service	0.0		E	E 64.6	B			
Approach LOS	0.0			64.6	14.7			
Approach LOS	А			Е	В			
Intersection Summary								
HCM 2000 Control Delay			48.1	Н	CM 2000	Level of Service	D	
HCM 2000 Volume to Capa	acity ratio		0.85					
Actuated Cycle Length (s)			167.0		um of lost		35.0	
Intersection Capacity Utiliza	ation		108.4%	IC	CU Level c	of Service	G	
Analysis Period (min)			15					
o Critical Lana Craun								

SR 7

		•	•	•	†	ļ	4			
Movement	EBU	EBL	EBR	NBL	NBT	SBT	SBR			
Lane Configurations		ă	7	ă	ተተተ	^	7			
Traffic Volume (vph)	1	494	83	64	2379	1913	262			
Future Volume (vph)	1	494	83	64	2379	1913	262			
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900			
Total Lost time (s)		6.0	6.0	7.0	7.0	7.0	7.0			
_ane Util. Factor		1.00	1.00	1.00	0.91	0.91	1.00			
Frt		1.00	0.85	1.00	1.00	1.00	0.85			
FIt Protected		0.95	1.00	0.95	1.00	1.00	1.00			
Satd. Flow (prot)		1770	1583	1770	5085	5085	1583			
Flt Permitted		0.95	1.00	0.05	1.00	1.00	1.00			
Satd. Flow (perm)		1770	1583	99	5085	5085	1583			
Peak-hour factor, PHF	0.78	0.78	0.78	0.94	0.94	0.97	0.97			
Adj. Flow (vph)	1	633	106	68	2531	1972	270			
RTOR Reduction (vph)	0	0	41	0	0	0	112			
_ane Group Flow (vph)	0	634	65	68	2531	1972	158			
Turn Type	Prot	Prot	Perm	pm+pt	NA	NA	Perm			
Protected Phases	4	4	-	1	2	2	-			
Permitted Phases			4	2			2			
Actuated Green, G (s)		44.0	44.0	96.0	89.2	89.2	89.2			
Effective Green, g (s)		44.0	44.0	96.0	89.2	89.2	89.2			
Actuated g/C Ratio		0.28	0.28	0.60	0.56	0.56	0.56			
Clearance Time (s)		6.0	6.0	7.0	7.0	7.0	7.0			
Vehicle Extension (s)		2.0	2.0	1.5	3.0	3.0	3.0			
ane Grp Cap (vph)		486	435	130	2834	2834	882			
//s Ratio Prot		c0.36		c0.02	c0.50	0.39				
//s Ratio Perm			0.04	0.29			0.10			
//c Ratio		1.30	0.15	0.52	0.89	0.70	0.18			
Jniform Delay, d1		58.0	43.8	21.5	31.2	25.6	17.4			
Progression Factor		1.00	1.00	1.00	1.00	1.00	1.00			
ncremental Delay, d2		151.4	0.1	1.7	4.8	1.4	0.4			
Delay (s)		209.4	43.9	23.2	36.0	27.0	17.9			
_evel of Service		F	D	С	D	С	В			
Approach Delay (s)		185.7			35.7	25.9				
Approach LOS		F			D	С				
ntersection Summary										
HCM 2000 Control Delay			51.7	Н	CM 2000	Level of	Service)	
HCM 2000 Volume to Capacity	y ratio		1.00							
Actuated Cycle Length (s)			160.0	S	um of lost	time (s)		20.0)	
ntersection Capacity Utilizatio	n		84.6%		U Level o				=	
Analysis Period (min)			15							

	۶	-	\rightarrow	•	•	•	₹I	1	†	/	L	>
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBU	NBL	NBT	NBR	SBU	SBL
Lane Configurations	ă	f)		ă	4	7		ă	ተተተ	7		Ä
Traffic Volume (vph)	136	58	110	435	96	73	45	205	1958	588	14	37
Future Volume (vph)	136	58	110	435	96	73	45	205	1958	588	14	37
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)	6.0	6.0		6.0	6.0	6.0		7.0	7.0	7.0		7.0
Lane Util. Factor	1.00	1.00		0.95	0.95	1.00		1.00	0.91	1.00		1.00
Frt	1.00	0.90		1.00	1.00	0.85		1.00	1.00	0.85		1.00
Flt Protected	0.95	1.00		0.95	0.97	1.00		0.95	1.00	1.00		0.95
Satd. Flow (prot)	1770	1680		1681	1715	1583		1770	5085	1583		1770
Flt Permitted	0.95	1.00		0.95	0.97	1.00		0.04	1.00	1.00		0.05
Satd. Flow (perm)	1770	1680		1681	1715	1583		83	5085	1583		90
Peak-hour factor, PHF	0.84	0.84	0.84	0.88	0.88	0.88	0.97	0.97	0.97	0.97	0.96	0.96
Adj. Flow (vph)	162	69	131	494	109	83	46	211	2019	606	15	39
RTOR Reduction (vph)	0	35	0	0	0	66	0	0	0	145	0	0
Lane Group Flow (vph)	162	165	0	301	302	17	0	257	2019	461	0	54
Turn Type	Split	NA		Split	NA	Perm	custom	pm+pt	NA	custom	custom	pm+pt
Protected Phases	4	4		3	3			5	2			1
Permitted Phases						3	5	2		23	1	6
Actuated Green, G (s)	23.1	23.1		41.4	41.4	41.4		116.5	102.4	150.8		90.0
Effective Green, g (s)	23.1	23.1		41.4	41.4	41.4		116.5	102.4	150.8		90.0
Actuated g/C Ratio	0.12	0.12		0.21	0.21	0.21		0.58	0.51	0.75		0.45
Clearance Time (s)	6.0	6.0		6.0	6.0	6.0		7.0	7.0			7.0
Vehicle Extension (s)	2.0	2.0		2.0	2.0	2.0		1.5	3.0			1.5
Lane Grp Cap (vph)	204	194		347	355	327		272	2603	1193		100
v/s Ratio Prot	0.09	c0.10		c0.18	0.18			c0.13	0.40			0.02
v/s Ratio Perm						0.01		c0.42		0.29		0.22
v/c Ratio	0.79	0.85		0.87	0.85	0.05		0.94	0.78	0.39		0.54
Uniform Delay, d1	86.1	86.7		76.6	76.3	63.6		70.3	39.5	8.5		37.4
Progression Factor	1.00	1.00		1.00	1.00	1.00		1.00	1.00	1.00		1.00
Incremental Delay, d2	17.7	26.6		19.2	16.9	0.0		39.2	2.3	0.1		3.2
Delay (s)	103.8	113.4		95.9	93.2	63.6		109.5	41.8	8.6		40.5
Level of Service	F	F		F	F	Е		F	D	Α		D
Approach Delay (s)		109.1			90.8				40.9			
Approach LOS		F			F				D			
Intersection Summary												
HCM 2000 Control Delay			56.0	H	CM 2000	Level of	Service		Е			
HCM 2000 Volume to Capac	city ratio		0.93									
Actuated Cycle Length (s)			200.0	Sı	Sum of lost time (s) 26.0							
Intersection Capacity Utilizat	ion		93.2%	IC	U Level	of Servic	е		F			
Analysis Period (min)			15									

c Critical Lane Group

	ļ	4
Movement	SBT	SBR
Lanesconfigurations	ተተተ	7
Traffic Volume (vph)	1726	78
Future Volume (vph)	1726	78
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	7.0	7.0
Lane Util. Factor	0.91	1.00
Frt	1.00	0.85
Flt Protected	1.00	1.00
Satd. Flow (prot)	5085	1583
Flt Permitted	1.00	1.00
Satd. Flow (perm)	5085	1583
Peak-hour factor, PHF	0.96	0.96
Adj. Flow (vph)	1798	81
RTOR Reduction (vph)	0	47
Lane Group Flow (vph)	1798	34
Turn Type	NA	Perm
Protected Phases	6	
Permitted Phases	00.0	6
Actuated Green, G (s)	82.9	82.9
Effective Green, g (s)	82.9	82.9
Actuated g/C Ratio	0.41	0.41
Clearance Time (s)	7.0	7.0
Vehicle Extension (s)	3.0	3.0
Lane Grp Cap (vph)	2107	656
v/s Ratio Prot	0.35	
v/s Ratio Perm		0.02
v/c Ratio	0.85	0.05
Uniform Delay, d1	53.0	35.0
Progression Factor	1.00	1.00
Incremental Delay, d2	4.6	0.1
Delay (s)	57.7	35.2
Level of Service	Е	D
Approach Delay (s)	56.3	
Approach LOS	Е	
Intersection Summary		
intersection Summary		

		۶	-	•	F	•	←	•	•	†	~	>
Movement	EBU	EBL	EBT	EBR	WBU	WBL	WBT	WBR	NBL	NBT	NBR	SBL
Lane Configurations		Ä	^	7		Ä	^	7		र्स	7	
Traffic Volume (vph)	6	44	947	47	40	24	572	109	88	17	69	318
Future Volume (vph)	6	44	947	47	40	24	572	109	88	17	69	318
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Total Lost time (s)		6.0	6.0	6.0		6.0	6.0	6.0		6.0	6.0	
Lane Util. Factor		1.00	0.95	1.00		1.00	0.95	1.00		1.00	1.00	
Frt		1.00	1.00	0.85		1.00	1.00	0.85		1.00	0.85	
Flt Protected		0.95	1.00	1.00		0.95	1.00	1.00		0.96	1.00	
Satd. Flow (prot)		1770	3539	1583		1770	3539	1583		1788	1583	
Flt Permitted		0.33	1.00	1.00		0.15	1.00	1.00		0.29	1.00	
Satd. Flow (perm)		619	3539	1583		282	3539	1583		539	1583	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.86	0.86	0.86	0.86	0.61	0.61	0.61	0.75
Adj. Flow (vph)	7	49	1052	52	47	28	665	127	144	28	113	424
RTOR Reduction (vph)	0	0	0	28	0	0	0	67	0	0	70	0
Lane Group Flow (vph)	0	56	1052	24	0	75	665	60	0	172	43	0
Turn Type	custom	pm+pt	NA	Perm	custom	pm+pt	NA	Perm	pm+pt	NA	custom	pm+pt
Protected Phases		1	6			5	2		7	4	4	3
Permitted Phases	1	6		6	5	2		2	4		4	8
Actuated Green, G (s)		80.0	74.4	74.4		83.6	76.2	76.2		60.2	60.2	
Effective Green, g (s)		80.0	74.4	74.4		83.6	76.2	76.2		60.2	60.2	
Actuated g/C Ratio		0.50	0.47	0.47		0.52	0.48	0.48		0.38	0.38	
Clearance Time (s)		6.0	6.0	6.0		6.0	6.0	6.0		6.0	6.0	
Vehicle Extension (s)		1.5	3.0	3.0		1.5	3.0	3.0		2.5	2.5	
Lane Grp Cap (vph)		349	1645	736		216	1685	753		202	595	
v/s Ratio Prot		0.01	c0.30			c0.02	0.19				0.03	
v/s Ratio Perm		0.07		0.02		0.17		0.04		0.32		
v/c Ratio		0.16	0.64	0.03		0.35	0.39	0.08		0.85	0.07	
Uniform Delay, d1		21.2	32.6	23.3		23.2	27.0	22.8		45.8	32.0	
Progression Factor		1.00	1.00	1.00		1.00	1.00	1.00		1.00	1.00	
Incremental Delay, d2		0.1	0.8	0.0		0.4	0.7	0.2		27.2	0.0	
Delay (s)		21.3	33.4	23.3		23.6	27.7	23.0		73.0	32.0	
Level of Service		С	С	С		С	С	С		Е	С	
Approach Delay (s)			32.4				26.7			56.8		
Approach LOS			С				С			Е		
Intersection Summary												
HCM 2000 Control Delay			47.0	H	ICM 2000	Level of	Service		D			
HCM 2000 Volume to Capa	city ratio		0.85									
Actuated Cycle Length (s)			160.0	5	Sum of los	t time (s)			24.0			
Intersection Capacity Utiliza	ition		73.4%		CU Level	of Service			D			
Analysis Period (min)			15									

c Critical Lane Group

	↓	4
Movement	SBT	SBR
Lane Configurations	4	7
Traffic Volume (vph)	9	128
Future Volume (vph)	9	128
Ideal Flow (vphpl)	1900	1900
Total Lost time (s)	6.0	6.0
Lane Util. Factor	1.00	1.00
Frt	1.00	0.85
Flt Protected	0.95	1.00
Satd. Flow (prot)	1776	1583
Flt Permitted	0.57	1.00
Satd. Flow (perm)	1055	1583
Peak-hour factor, PHF	0.75	0.75
Adj. Flow (vph)	12	171
RTOR Reduction (vph)	0	79
Lane Group Flow (vph)	436	92
Turn Type	NA	Perm
Protected Phases	8	
Permitted Phases		8
Actuated Green, G (s)	60.2	60.2
Effective Green, g (s)	60.2	60.2
Actuated g/C Ratio	0.38	0.38
Clearance Time (s)	6.0	6.0
Vehicle Extension (s)	2.5	2.5
Lane Grp Cap (vph)	396	595
v/s Ratio Prot	- 550	- 000
v/s Ratio Perm	c0.41	0.06
v/c Ratio	1.10	0.16
Uniform Delay, d1	49.9	33.1
Progression Factor	1.00	1.00
Incremental Delay, d2	75.3	0.1
Delay (s)	125.2	33.1
Level of Service	F	C
Approach Delay (s)	99.3	
Approach LOS	F	
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	•	
Intersection Summary		

	-	•	•	←	4	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	↑ ↑					7
Traffic Volume (veh/h)	1289	173	0	0	0	116
Future Volume (Veh/h)	1289	173	0	0	0	116
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	1401	188	0	0	0	126
Pedestrians						
Lane Width (ft)						
Walking Speed (ft/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (ft)						
pX, platoon unblocked						
vC, conflicting volume			1589		1495	794
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			1589		1495	794
tC, single (s)			4.1		6.8	6.9
tC, 2 stage (s)					0.0	0.0
tF (s)			2.2		3.5	3.3
p0 queue free %			100		100	62
cM capacity (veh/h)			409		114	331
Direction, Lane #	EB 1	EB 2	NB 1			
Volume Total	934	655	126			
Volume Left	0	000	0			
Volume Right	0	188	126			
cSH	1700	1700	331			
Volume to Capacity	0.55	0.39	0.38			
			43			
Queue Length 95th (ft)	0.0	0.0	22.4			
Control Delay (s)	0.0	0.0				
Lane LOS	0.0		C			
Approach Delay (s)	0.0		22.4			
Approach LOS			С			
Intersection Summary						
Average Delay			1.6			
Intersection Capacity Utiliz	zation		55.0%	IC	U Level o	of Service
Analysis Period (min)			15			
,						

Appendix D – Safety Analysis Field Review Notes & Fatal, Bicycle, and Pedestrian Crash Details

FATAL CRASH INFORMATION

FATAL CRASH INFORMATION

This section describes the vehicular fatal crashes which took place on the study segments during the five-year study period.

1. NW/SW 136TH AVENUE

There were no fatal crashes on this corridor during the study period.

2. FLAMINGO ROAD

There was one fatal crash along Flamingo Road during the 5-year study period. The fatal crash was a run-off-the-road accident involving a southbound vehicle running into a canal at SW 13th Street and Flamingo Road, on December 19, 2015 at approximately 4:00 AM during dark unlighted and dry road surface conditions. No alcohol/drug use or contributing action was documented.

3. HIATUS ROAD

There were no fatal crashes occurring on Hiatus Road during the 5-year study period.

4. NOB HILL ROAD

There was one fatal crash occurring along Nob Hill Road during the 5-year study period. The fatal crash involved a southbound vehicle striking a tree in the median of Nob Hill Road, 350 feet north of SW 25th Court, on November 28, 2017, at approximately 1:33 AM during darknot lighted and dry road surface conditions. Neither alcohol/drug use nor contributing action were documented.

5. PINE ISLAND ROAD

There were 3 fatal crashes occurring during the five-year study period along University Drive/SR-817 including one in 2014, one in 2015, and one in 2018.

The first fatal was a left-turn collision involving a northbound vehicle who was turning left at the intersection of Pine Island Road and Nova Drive on November 9, 2014, at approximately 6:27 PM, under dark-lighted and wet road surface conditions. The driver of Vehicle 1, attempted to perform a northbound-left maneuver at the intersection, but failed to yield the right-of-way, colliding with Vehicle 2, which was traveling southbound.

The second fatal was a fixed object collision involving a motorist driving northbound on Pine Island Road losing control and striking a concrete light-pole on the northeast corner of the intersection of Pine Island Road and Peters Road on July 30, 2015 at approximately 3:19 AM under dark-lighted and dry road surface conditions. The driver was found to have been under the influence of alcohol at the time of the collision. Additionally, the passenger of the vehicle, who suffered the fatal injuries, was ejected from the vehicle due to lack of proper restraint.

The third fatal was a rear-end involving a motorcyclist that was traveling eastbound just west of the intersection of Pine Island Road and eastbound SR 84. Vehicle 1 attempted to switch lanes within a tight space, and rear-ended Vehicle 2 (scooter), as a result the motorcyclist was ejected. The collision took place on January 9, 2018, at approximately 6:58 AM under daylight and wet road surface conditions. The driver of vehicle 1 was found to have been operating their motorized vehicle in a careless manner.

6. UNIVERSITY DRIVE/SR-817

There were 7 fatal crashes occurring during the 5-year study period along University Drive/SR-817 including one (1) in 2013, one (1) one in 2014, none (0) in 2015, three (3) in 2016, two (2) in 2017.

ARTERIAL CONNECTIVITY STUDY ALONG I-595 CORRIDOR FM#441954-1-12-01

The first fatal was a pedestrian collision involving a non-motorist crossing Peters Road northbound just west of University Drive/SR 817 being struck by an eastbound vehicle on September 9, 2013 at approximately 9:00 PM under dark-lighted and clear road surface conditions. Neither alcohol nor drug use were suspected, no contributing action was documented.

The second fatal crash was a rear-end collision involving two vehicles traveling northbound on University Drive/SR 817 near Block #2600 on June 24, 2014 at approximately 4:52 PM under daylight and dry road surface conditions. The police report highlights that the deceased person was 95 years old and that their age and poor health are contributing factors to the passing of the aforementioned. Neither alcohol/drug use nor contributing action were documented.

The third fatal crash was a curb collision involving a motorcycle traveling northbound on University Drive/SR 817 losing control and being ejected after striking the curb 500 feet north of SR 84 on February 11, 2016 at approximately 11:06 PM under dark-lighted and wet surface conditions. It should be noted that the road pavement was wet at this time due to a nearby sprinkler system. Neither alcohol/drug use nor contributing action were documented.

The fourth fatal crash was a rear-end collision involving a vehicle traveling northbound striking a truck at University Drive/SR 817 and Federated Road on September 14, 2016 at approximately 1:05 AM under Dark-Lighted and Dry roadway surface conditions. Alcohol or drug use were not suspected, no contributing action was documented.

The fifth fatal crash was an angle collision involving a northbound and an eastbound vehicle at the intersection of University Drive/SR 817 and 1900 Block on June 9, 2016 at approximately 3:16 AM under dark-lighted and dry road surface conditions. Both alcohol and drug use were suspected contributing factors in this accident, the driver at fault was cited with a DUI and vehicular manslaughter.

The sixth fatal crash was a curb collision involving a southbound vehicle veering off the roadway onto the curb and then striking an eastbound vehicle that was stopped at SW 13th Place at the intersection with University Drive/SR 817 on May 9, 2017 at approximately 1:09 PM under Daylight and dry road surface conditions. No alcohol or drug use were suspected, no contributing action was documented.

The seventh fatal crash was an angle collision involving a southbound vehicle and westbound vehicle at the intersection of University Drive/SR 817 and Nova drive on August 13, 2017 at approximately 9:00 PM under dark-lighted and dry road surface conditions. Alcohol was a suspected factor in this crash, no contributing action was documented.

7. DAVIE ROAD

There was one fatal crash occurring along Davie Road during the 5-year study period. The fatal was an angle collision involving a northbound and westbound vehicle at the intersection of Davie Road and Access Road on January 22, 2017 at 10:25 AM under daylight and dry road surface conditions. Neither alcohol nor drug use were documented in this crash, however, it was determined that the northbound vehicle was traveling at a high rate of speed which was a contributing factor in this collision.

8. SR 7/US-441

There were 10 fatal crashes occurring during the 5-year study period on SR 7/US-441 including one (1) fatal crash in 2013, one (1) in 2014, one (1) in 2015, four (4) in 2016, and three (3) in 2017.

The first fatal crash was a left-turn collision involving two vehicles, one traveling Northbound and the other one traveling Southbound, colliding the intersection of SR 7/US-441 and SW 20th Street, on September 5, 2013 at approximately 9:37 PM under dark-lighted and dry road

ARTERIAL CONNECTIVITY STUDY ALONG I-595 CORRIDOR FM#441954-1-12-01

surface conditions. Drug or alcohol use were not suspected, no contributing action was documented, it is unknown which vehicle attempted to turn left.

The second fatal crash was a pedestrian collision involving a non-motorist crossing westbound who was struck on SR 7/US-441 approximately 500 feet north of SW 20th Street, on September 4, 2014 at approximately 10:50 PM, under Dark-Lighted and Dry roadway surface conditions. The pedestrian was under the influence of alcohol and drugs at the time of the accident, however the driver was sober. Additionally, the pedestrian was found to be at fault for crossing in the direct path of the vehicle failing to give enough distance/time to the driver to react.

The third fatal crash was a left-turn collision involving a motorcyclist traveling northbound striking a dump truck that was making a southbound U-Turn on SR 7/US-441 approximately 675 feet North of Powell's Road on September 18, 2015 at approximately 7:37 AM under daylight and dry road surface conditions. Alcohol/drug use were not suspected in this crash, the driver of the southbound vehicle was found to be at fault due to failure to yield the right of way.

The fourth fatal crash was a ran off-road non-collision involving northbound vehicle on the Ramp from Westbound SR 84 losing control and running off road into the canal parallel to Westbound SR 84 on May 13, 2016 at approximately 10:43 PM under dark-not lighted and dry road surface conditions. No Alcohol/drug use or contributing actions were documented.

The fifth fatal crash was a sideswipe collision involving three southbound vehicles on Southbound SR 7/US-441 near the Eastbound SR 84 Ramp. The crash occurred as a Vehicle (1) exiting the ramp lost control of their vehicle, in attempt to avoid hitting Vehicle 1, Vehicle 2 swerved to its left colliding with Vehicle 3, which then struck a tree on the Median. The crash occurred on April 12, 2016 at approximately 6:55 AM under dark-lighted conditions and dry road surface conditions. None of the drivers were suspected of alcohol or drug use.

The sixth fatal crash was a pedestrian collision involving a non-motorist crossing westbound who was struck on SR 7/US-441 near 30000 Block south of SW 20th Street on August 31, 2016 at approximately 8:34 PM under dark-lighted and dry road surface conditions. Neither alcohol/drug use nor contributing action were documented.

The seventh fatal crash was a rear-end collision involving a northbound motorcycle striking a vehicle at the intersection of SR 7/US-441 at Oakes Road on December 18, 2016 at approximately 4:4 PM under daylight and dry road surface conditions. Neither alcohol/drug use nor contributing action were documented.

The eighth fatal crash was a ran off-road collision involving a vehicle on SR 7/US-441 near 2900 Block on April 8, 2017 at approximately 3:46 AM under dark-lighted conditions and dry road surface conditions. Alcohol and drug use were suspected in this crash, no contributing action was suspected.

The ninth fatal crash was a fixed-object collision involving a northbound vehicle striking a streetlight pole on SR 7/US-441 at 2300 Block on February 2, 2017 at approximately 3:18 AM under dark-lighted conditions and dry road surface conditions. No alcohol or drug use was suspected, and no contributing action was documented.

The tenth fatal crash was a bicycle collision involving a bicyclist struck by a northbound vehicle while crossing SR 7/US-441 westbound at 1800 block on September 19, 2017 at approximately 5:59 PM under daylight and dry road surface conditions. Neither alcohol/drug use nor contributing action were documented.

PEDESTRIAN AND BICYCLE CRASH INFORMATION

PEDESTRIAN AND BICYCLE CRASH INFORMATION

The following sections detail the pedestrian and bicycle crashes which occurred during the five-year study period. For each segment, pedestrian and bicycle crashes which occurred away from an intersection hotspot were described as part of the overall corridor, otherwise they were included in the intersection hotspot section.

1. NW/SW 136TH AVENUE

1.1 Overall Corridor

Along the study segment of the NW/SW 136th Avenue corridor, there were 4 pedestrian crashes and 2 bicycle crashes during the five-year study period including:

- 2014 Bicycle Collision on NW/SW 136th Avenue north of Westbound SR 84
- 2014 Pedestrian Collision on NW/SW 136th Avenue at Westbound SR 84 (Hotspot)
- 2014 Bicycle Collision on NW/SW 136th Avenue at Eastbound SR 84 (Hotspot)
- 2015 Pedestrian Collision on NW/SW 136th Avenue at Westbound SR 84 (Hotspot)
- 2015 Pedestrian Collision on NW/SW 136th Avenue just north of NW 2nd Street (**Hotspot**)
- 2016 Pedestrian Collision on NW/SW 136th Avenue at NW 8th Street (**Hotspot**)

The 2014 Bicycle Collision occurring on NW/SW 136th Avenue north of westbound SR 84 involved a bicyclist turning left from the IKEA driveway and colliding with the front of a vehicle which was northbound on NW/SW 136th Avenue on May 28, 2014, at approximately 4:42 PM under daylight and dry road surface conditions. The cyclist was found to have been at fault for failing to obey traffic signs.

1.2 NW/SW 136th Avenue at Westbound and Eastbound SR 84

There were two pedestrian crashes occurring at NW/SW 136th Avenue and westbound SR 84, both of which proved to be fatal.

The first fatal pedestrian collision involved a westbound-crossing pedestrian colliding with a northbound vehicle approximately 300 feet south of westbound SR 84 on April 28, 2014 at approximately 5:17 PM, during daylight and dry road surface conditions. The pedestrian was suspected of having been improperly standing in the roadway, and was also suspected and tested positive for alcohol consumption at the time of incident, having a BAC level of 0.240.

The second pedestrian collision was a fatal hit and run involving a westbound-crossing pedestrian colliding with a southbound vehicle at the intersection of SW 136th Avenue and Westbound SR 84, on October 11, 2015 at approximately 1:42 AM, during dark-lighted and dry road surface conditions. No alcohol/drug use was documented, but it was determined that the pedestrian had been improperly crossing the street at the time of the collision.

Additionally, there was one bicycle collision occurring at the intersection of NW/SW 136th Avenue at Westbound SR 84. The bicycle collision involved a cyclist crossing the south leg of the intersection being struck by a northbound vehicle who failed to remain at the crash scene on July 3, 2014 at approximately 3:45 PM under daylight and dry road surface conditions. No contributing action or alcohol use were documented as the driver of the phantom vehicle was not contacted.

1.3 NW/SW 136th Avenue at NW 2nd Street

There was one pedestrian collision that occurred on NW/SW 136th Avenue and NW 2nd Street. The collision occurred on NW/SW 136th Avenue just north of the intersection as a pedestrian stepped onto the road into the path of a northbound travel vehicle on June 10, 2015 at approximately 9:55 PM under dark-lighted and dry road surface conditions. It was determined that the pedestrian was inattentive and was improperly standing on the roadway.

1.4 NW/SW 136th Avenue at NW 8th Street

There was one pedestrian collision occurring at the intersection of NW/SW 136th Avenue at NW 8th Street during the five-year study period. The collision occurred as a southbound pedestrian on the east leg of the intersection attempted to cross from the median, however, the pedestrian failed to yield to an eastbound vehicle and was struck on May 30, 2016 at approximately 2:05 PM under daylight and dry road surface conditions.

2. FLAMINGO ROAD

2.1 Overall Corridor

The Flamingo Road corridor experienced two pedestrian and nine bicycle crashes during the five-year study period including:

- 2013 Bicycle Collision on Flamingo Road at SW 12th Street
- 2013 Bicycle Collision on Flamingo Road at W Broward Boulevard (**Hotspot**)
- 2014 Bicycle Collision on Flamingo Road Avenue at Eastbound SR 84 (1) (Hotspot)
- 2014 Bicycle Collision on Flamingo Road at Eastbound SR 84 (2) (Hotspot)
- 2014 Bicycle Collision on Flamingo Road at Eastbound SR 84 (3) (**Hotspot**)
- 2015 Pedestrian Collision on Flamingo Road at Eastbound SR 84 (Hotspot)
- 2016 Bicycle Collisions on Flamingo Road at SW 12th Street
- 2016 Bicycle Collision on Flamingo Road South of Eastbound SR 84 (**Hotspot**)
- 2016 Bicycle Collision on Flamingo Road at SW 6th Court
- 2017 Bicycle Collision on Flamingo Road at NW 8th Street
- 2017 Pedestrian Collision on Flamingo Road at W Broward Boulevard (**Hotspot**)

The 2013 bicycle collision on Flamingo Road at SW 12th Street involved a southbound bicycle colliding with an eastbound vehicle on November 18, 2013 at approximately 5:40 AM under

dark-lighted and dry road surface conditions. The driver of the vehicle was found to be at fault for failing to yield the right of way as they attempted to turn right onto Flamingo Road.

The 2016 bicycle collision on Flamingo Road at SW 12th Street involved a southbound bicyclist being struck by an eastbound vehicle on May 18, 2016 at approximately 7:50 AM under daylight and wet road surface conditions. The driver of the vehicle failed to see the bicyclist crossing the intersection at the time of the collision.

The 2016 bicycle collision on Flamingo Road at SW 6th Court involved a southbound bicyclist being struck by an eastbound vehicle on February 23, 2016 at 7:26 PM under dark-not lighted and dry road surface conditions. The bicycle was found to be at fault for not operating their bicycle with the proper night-time equipment.

The 2017 Bicycle Collision on Flamingo Road at NW 8th Street involved a northbound vehicle colliding with a bicyclist that was crossing the intersection northbound across the west leg on the crosswalk on February 7, 2017 at 6:43 PM under dark-lighted and dry road surface conditions. The bicyclist was found to be a fault for not operating their bicycle with the proper night-time equipment.

2.2 Flamingo Road at Broward Boulevard

The pedestrian collision involved an eastbound vehicle turning right at the intersection colliding with an eastbound crossing non-motorist on the south leg on July 7, 2017 at approximately 5:10 PM under daylight and dry road surface conditions. The vehicle's driver was found to be at fault for being inattentive and failing to see the bicyclist.

The bicycle collision involved a westbound bicycle crossing on the north leg on the crosswalk being struck by a southbound vehicle on May 19, 2013 at approximately 11:45 AM under daylight and dry road surface conditions. The bicyclist was unable to finish crossing the intersection prior to the southbound light turning green, causing the vehicle to collide with the bicyclist.

2.3 Flamingo Road at Eastbound/Westbound SR 84

There was one bicycle collision occurring on Flamingo Road at Westbound SR 84. This collision involved a northbound bicyclist that was struck by a westbound vehicle along SR 84 on February 24, 2016 at approximately 4:18 PM under daylight and dry road surface conditions. The driver was found to be at fault due to careless/negligent driving which caused resulted in the collision.

There were four bicycle collisions occurring on Flamingo Road at Eastbound SR 84:

The first bicycle collision involved a southbound bicycle colliding with an eastbound vehicle that had turned left onto the U-Turn Lane at the intersection on July 3, 2014 at approximately 12:28 PM under daylight and dry road surface conditions. The bicyclist left the site of the accident following the collision.

The second bicycle collision involved a northbound bicyclist crossing the east leg of the road being struck by an eastbound vehicle at on April 20, 2014 at approximately 10:31 AM under daylight and dry road surface conditions. The bicyclist was found to be at fault for failing to yield the right of way since the driver had a green light at the time of the collision.

The third bicycle collision involved a northbound bicyclist that was crossing the intersection northbound on the west leg, who was struck by an eastbound vehicle on December 17, 2014 at approximately 5:00 PM under daylight and dry road surface conditions. It was determined that the bicyclist was at fault for failing to yield the right of way as the bicyclist had a "don't cross" signal at the time of the collision.

The fourth bicycle collision involved a northbound bicycle turning right and striking an eastbound vehicle on March 17, 2015 at approximately 8:17 AM under daylight and dry road surface conditions. The bicyclist was found to have been inattentive at the time of the collision.

3. HIATUS ROAD

3.1 Overall Corridor

There were 2 pedestrian crashes reported during the five-year study period including:

- 2014 Hiatus Road at W Broward Boulevard (**Hotspots**)
- 2018 Hiatus Road at Scarborough Drive

The Pedestrian Collision occurring on Hiatus Drive at Scarborough Drive involved a westbound crossing pedestrian in the middle of the intersection who was struck by a southbound vehicle on June 30, 2014 at approximately 5:35 PM under daylight and dry road surface conditions. It should be noted that the pedestrian was a small child who got loose from his family at an intersection that had no crosswalk.

3.2 Hiatus Road at Broward Boulevard

The pedestrian collision at Hiatus Road and Broward Boulevard involved a westbound crossing pedestrian on the north leg of the intersection who was struck by a westbound vehicle that was turning right at the intersection on August 8, 2018 at approximately 2:11 PM under daylight and dry road surface conditions. The driver failed to yield the right of way to the pedestrian on the crosswalk.

4. NOB HILL ROAD

4.1 Overall Corridor

There were four bicycle crashes and one pedestrian crash reported along the study segment of Nob Hill Road, including:

- 2014 Bicycle Collision at Nob Hill Road and Eastbound SR 84 (Hotspot)
- 2016 Bicycle Collision at Nob Hill Road and Westbound SR 84 (Hotspot)

- 2017 Bicycle Collision at Nob Hill Road and Westbound SR 84 (Hotspot)
- 2017 Bicycle Collision at Nob Hill Road and Torchwood Avenue
- 2018 Bicycle Collision at Nob Hill Road and Westbound SR 84 (Hotspot)

The Bicycle Collision at Nob Hill Road and Torchwood Avenue involved a northbound bicycle colliding head on with a southbound vehicle on October 6, 2017 at approximately 6:20 PM under Daylight and Dry Road Surface Conditions. The bicycle was found to be at fault for riding in the wrong way.

4.2 Nob Hill Road at Eastbound/Westbound SR 84

There were three bicycle collisions occurring at Nob Hill Road at Westbound SR 84:

The first bicycle collision involved a westbound bicyclist crossing across the northbound leg of the intersection colliding with a westbound vehicle that was making a right-turn at the intersection on November 20, 2016 at approximately 10:11 PM under dark-lighted and dry road surface conditions. The driver and bicyclist never saw each other prior to the collision.

The second bicycle collision involved a westbound bicycle colliding with a westbound vehicle on November 10, 2017 at approximately at 8:10 AM under daylight and dry road surface conditions. The bicyclist was found at fault for wrong-way driving.

The third bicycle collision involved a westbound bicycle colliding with a southbound vehicle on July 24, 2018 at approximately 12:30 PM under daylight at dry road surface conditions. The bicyclist was found to be at fault for failing to yield the right of way.

There was one pedestrian collision occurring at Eastbound SR 84. The collision involved an eastbound crossing non-motorist across the south leg of the intersection colliding with a southbound vehicle on September 27, 2014 at approximately 12:50 PM under daylight and dry road surface conditions. It was determined that the pedestrian failed to yield the right-of-way and crossed while the vehicle had the right-of-way.

5. PINE ISLAND ROAD

5.1 Overall Corridor

There were 3 pedestrian crashes and 3 bicycle crashes reported during the five-year period including:

- 2014 Pedestrian Collision at Pine Island Road and Orange Grove Drive (1)
- 2014 Pedestrian Collision at Pine Island Road and Orange Grove Drive (2)
- 2014 Pedestrian Collision at Pine Island Road and Eastbound SR 84 (Hotspot)
- 2015 Bicycle Collision at Pine Island Road and SW 24th Street
- 2015 Bicycle Collision at Pine Island Road and SW 6th Court (Hotspot)
- 2017 Bicycle Collision at Pine Island Road and Westbound SR 84 (Hotspot)

The first pedestrian collision at Pine Island Road and Orange Grove Drive involved a northbound crossing pedestrian across the west leg of the intersection being struck by an eastbound vehicle turning right on September 19, 2014 at approximately 11:18 AM under daylight and dry road surface conditions. The driver fled the scene after striking the pedestrian.

The second pedestrian collision at Pine Island Road and Orange Grove Drive involved a northbound crossing pedestrian across the west leg of the intersection being struck by an eastbound vehicle turning right on May 2, 2014 at approximately 12:13 PM under daylight and dry road surface conditions. The driver fled the scene after striking the pedestrian.

The bicycle collision at Pine Island Road and SW 24th Street involved an eastbound bicyclist crossing the south leg of the intersection being struck by a southbound vehicle on January 22, 2015 at approximately 3:34 PM under daylight and dry road surface conditions. The bicyclist was found to be at fault for failing to obey traffic signs.

5.2 Pine Island Road at SW 6th Court

There was a bicycle collision occurring at Pine Island Road and SW 6th Court. The collision involved a westbound bicyclist and a westbound vehicle on SW 6th Court coming to the intersection with Pine Island Road. The bicyclist attempted to cross the street without looking for oncoming traffic and struck the vehicle on January 25, 2015 at approximately 4:25 PM under daylight and dry road surface conditions. The bicyclist was found to be at fault for Failure to Yield the Right-of-Way.

5.3 Pine Island Road at Eastbound/Westbound SR 84

There was a pedestrian collision on Pine Island Road at Eastbound SR 84. The collision involved a westbound pedestrian crossing the south leg of the intersection being struck by a northbound vehicle making a right turn on October 9, 2014 at approximately 7:50 AM under daylight and dry road surface conditions. The vehicle fled the scene after the collision.

There was a bicycle collision occurring at Pine Island Road at Westbound SR 84. The collision involved a southbound bicyclist crossing the east leg of the intersection colliding with a westbound vehicle turning right at the intersection on April 10, 2017 at approximately 3:59 PM under daylight and dry road surface conditions. The bicyclist was found to be at fault for failing to obey traffic signs.

6. UNIVERSITY DRIVE/SR-817

6.1 Overall Corridor

There were 13 pedestrian and 8 bicycle crashes reported during the five-year study period, these include:

- 2013 Pedestrian Collision at University Drive/SR 817 and Westbound SR 84 (Hotspot)
- 2013 Pedestrian Collision at University Drive/SR 817 and Peters Road (1) (Hotspot)
- 2013 Pedestrian Collision at University Drive/SR 817 and Peters Road (2) (Hotspot)

- 2013 Fatal Pedestrian Collision at University Drive/SR 817 and Peters Road (Hotspot)
- 2013 Bicycle Collision at University Drive/SR 817 and SW 6th Street
- 2013 Bicycle Collision at University Drive/SR 817 and SW 30th Street
- 2013 Bicycle Collision at University Drive/SR 817 and Eastbound SR 84 (Hotspot)
- 2014 Pedestrian Collision at University Drive/SR 817 0.2 miles South of Eastbound SR 84
- 2014 Pedestrian Collision at University Drive/SR 817 0.15 miles South of Nova Drive
- 2014 Pedestrian Collision at University Drive/SR 817 0.12 miles North of SW 30th Street
- 2014 Bicycle Collision at University Drive/SR 817 and Eastbound SR 84 (Hotspot)
- 2015 Bicycle Collision at University Drive/SR 817 just South of Nova Drive (Hotspot)
- 2015 Bicycle Collision at University Drive/SR 817 and SW 30th Street
- 2015 Pedestrian Collision at University Drive/SR 817 0.10 miles south of Eastbound SR 84
- 2016 Pedestrian Collision at University Drive/SR 817 and SW 30th Street
- 2016 Pedestrian Collision at 2200 University Drive/SR 817
- 2016 Pedestrian Collision at University Drive/SR 817 and Nova Drive (Hotspot)
- 2017 Pedestrian Collision at University Drive/SR 817 just north of Peters Road (Hotspot)
- 2017 Bicycle Collision at University Drive/SR 817 south of Peters Road
- 2017 Bicycle Collision at University Drive/SR 817 at Nova Drive (Hotspot)
- 2017 Pedestrian Collision at 7600 SW 30th Street

The 2013 bicycle collision at University Drive/SR 817 and SW 6th Street involved a southbound crossing bicyclist across the west leg of the intersection colliding with an eastbound vehicle on June 23, 2013 at approximately 11:55 AM under daylight and dry road surface conditions. The bicyclist was found to be at fault for being inattentive.

The 2013 bicycle collision occurring at SW 30th Street involved a bicyclist crossing southbound across the east leg of the intersecting colliding with the passenger side of a

vehicle that was traveling westbound stopped at the left turn lane on December 22, 2013 at approximately 4:00 PM under daylight and dry road surface conditions. The bicyclist was believed to be at fault but fled the scene after the collision.

The 2014 pedestrian collision occurring 0.20 miles south of Eastbound SR 84 on University Drive/SR 817 involved an eastbound crossing pedestrian being struck by a southbound vehicle on December 26, 2014 at approximately 10:10 PM under dark-lighted and dry road surface

The 2014 pedestrian collision occurring 0.15 miles south of Nova Drive involved a southbound crossing non-motorist across the west leg of the driveway of 2600 University Drive/SR 817 being struck by an eastbound vehicle that was stopped at the driveway on June 23, 2013 at approximately 11:55 AM under daylight and dry road surface conditions. Both parties were found to be at fault since the pedestrian was inattentive and the driver negligently tried to incorporate onto traffic on University Drive/SR 817.

The 2014 pedestrian collision occurring 0.12 miles north of SW 30th Street involved a pedestrian crossing on the east leg approximately at 2700 University Drive/SR 817 being struck by a southbound vehicle making a left turn. The collision occurred on September 11, 2014 at approximately 8:13 PM under dark-not-lighted and wet road surface conditions. The lack of lighting at the intersection, the raining conditions, and the pedestrian's dark clothes all contributed to the driver's inability to spot the pedestrian prior to the collision.

The 2015 bicycle collision occurring on University Drive/SR 817 at SW 30th Street involved an eastbound crossing bicyclist across the north leg of the intersection being struck by a westbound vehicle turning right at the intersection on February 10, 2015 at approximately 3:15 PM under daylight and dry road surface conditions. The Driver was found to be at fault for failing to obey a traffic sign which specifically stated that no turns were allowed when pedestrians/bicyclists were on the crosswalk.

The 2015 Pedestrian collision occurring on University Drive/SR 817 0.10 miles South of Eastbound SR 84 involved a southbound crossing Pedestrian on the west leg of the driveway at 1903 University Drive/SR 817 colliding with an eastbound vehicle on September 29, 2015 at 11:31 AM under daylight and dry road surface conditions. The Driver was found to be at fault for failing to yield the right of way to the crossing bicyclist.

The 2016 pedestrian collision occurring at University Drive/SR 817 and SW 30th Street involved an eastbound vehicle turning right colliding with an eastbound crossing pedestrian across the south leg of the intersection on August 6, 2016 at approximately 12:00 AM under dark-lighted and dry road surface conditions. The driver fled the scene after colliding with the pedestrian.

The 2016 pedestrian collision occurring at 2200 University Drive/SR 817 involved a westbound crossing pedestrian midblock being struck by a southbound vehicle on February 12, 2016 at approximately 10:43 PM under dark-not-lighted and dry road surface conditions. The pedestrian was suspected of alcohol or drug intoxication, and the lighting on the road did not allow the driver to spot the pedestrian with enough time to stop.

The 2017 bicycle collision occurring south of Peters Road on University Drive/SR 817 involved a bicyclist that was crossing northbound on the west sidewalk at 1333 University Drive/SR 817 being struck by an eastbound vehicle on January 18, 2017 at approximately 5:15 PM under daylight and dry road surface conditions. The driver was found to be at fault for failing to yield the right-of-way.

The 2017 pedestrian collision occurring at 7600 SW 30th Street involved a southbound crossing pedestrian who was standing on the median waiting to cross the eastbound leg of traffic being struck by a southbound pedestrian who was turning left onto SW 30th Street. The crash occurred on January 10, 2017 at 5:27 PM during daylight and on dry pavement. No citations were issued since both the pedestrian and driver were found to have been at fault.

6.2 University Drive/SR-817 at Peters Road

There were four pedestrian and zero bicycle crashes at this intersection.

The first pedestrian collision involved a pedestrian who walked southbound on the bicycle lane to avoid a large crowd on the sidewalk who was then struck by a southbound vehicle on May 21, 2013 at approximately 1:30 PM under daylight and wet surface conditions. The southbound vehicle fled the scene.

The second pedestrian collision involved a northbound crossing pedestrian west of the intersection who was struck by an eastbound vehicle as the pedestrian attempted to cross the street running to catch the county bus on June 28, 2013 at approximately 1:11 PM under daylight and dry road surface conditions.

The third pedestrian collision was a fatal crash occurring on September 9, 2013 at approximately 9:00 PM. This collision involved a pedestrian crossing Peters Road northbound just west of University Drive/SR 817 being struck by an eastbound vehicle under dark-lighted and clear road surface conditions. Neither alcohol nor drug use were suspected, no contributing action was documented.

The fourth Pedestrian collision involved a westbound crossing pedestrian north of the intersection being struck by a northbound vehicle on March 6, 2017 at approximately 9:36 AM under daylight and dry road surface conditions. The pedestrian was found to be at fault for improperly crossing the road at non-crossing zone.

6.3 University Drive/SR-817 at Nova Drive

There was one pedestrian and two bicycle crashes reported.

The first bicycle collision involved a westbound crossing bicycle across the north leg of the intersection being struck by a westbound vehicle that was turning right on February 7, 2017 at approximately 12:07 PM under daylight and dry road surface condition. Due to conflicting stories, neither the driver nor bicyclist were found to be at fault.

The second bicycle collision involved a northbound bicyclist who was struck by an eastbound vehicle who ran a stop sign just south of Nova Drive at 2600 University Drive/SR-817 on February 18, 2015 at approximately 3:30 PM under daylight and dry road surface condition. It was determined that both the driver and bicyclist were inattentive, which caused the collision, therefore no citations were issued.

The pedestrian collision involved a westbound crossing pedestrian across the north leg of the intersection being struck by a southbound vehicle on May 24, 2016 at approximately 8:43 PM under dark-lighted and dry road surface conditions. The pedestrian was found to have been at fault for failing to yield the right of way since the driver had the green light and therefore the right-of-way.

6.4 University Drive/SR-817 at Eastbound/Westbound SR 84

There was one pedestrian crash and no bicycle collisions occurring on University Drive/SR-817 at Westbound SR 84. The collision involved a pedestrian who was pan handling on Westbound SR 84 when he was struck by westbound vehicle which fled the scene on July 11, 2013 at approximately 7:12 PM under daylight and dry road surface conditions. The pedestrian was suspected of alcohol use.

There were two bicycle and zero pedestrian crashes occurring on University Drive/SR-817 at Eastbound SR 84.:

The first bicycle collision involved a westbound crossing bicyclist on the south side of the leg being struck by a southbound vehicle on July 25, 2013 at approximately 11:40 AM during daylight and dry road surface condition. The bicyclist was found to be at fault for failing to yield the right-of-way.

The second bicycle collision involved an eastbound bicyclist who was struck by an eastbound vehicle on June 24, 2014 at 6:42 PM under daylight and wet surface conditions. The vehicle fled the scene after the collision took place.

7. DAVIE ROAD

7.1 Overall Corridor

There were three pedestrian crashes and one bicycle crash reported during the five-year study period including:

- 2014 Pedestrian Collision at 3200 Davie Road
- 2014 Pedestrian Collision at 3500 Davie Road
- 2015 Bicycle Collision at Davie Road just south of W Signature Drive
- 2016 Pedestrian Collision at Davie Road and Nova Drive (Hotspot)

The pedestrian collision occurring at 3200 Davie Road involved a forklift running over a trailer spotter workman that was standing near the trailer on October 9, 2014 at approximately 11:34 AM during daylight and dry road surface conditions.

The pedestrian collision occurring at 3500 Davie Road involved a non-motorist crossing southbound across the east leg of the intersection being struck by a westbound vehicle turning right on January 14, 2014 at approximately 8:30 AM under daylight and dry road surface conditions. The vehicle fled the scene after the collision.

The bicycle collision occurring at 3500 Davie Road involved a bicyclist that was crossing southbound across the west leg of the intersection being struck by an eastbound vehicle that was turning right on September 2, 2015 at approximately 1:01 PM under daylight at dry road surface conditions. The driver of the vehicle was found to be at fault as he failed to spot the bicyclist prior to performing the right turn.

7.2 Davie Road at Nova Drive

There was a pedestrian collision occurring on Davie Road at Nova Drive. The collision involved a pedestrian crossing westbound midblock across Davie Road being struck by a northbound vehicle on June 2, 2016 at approximately 12:05 PM under daylight and dry road

surface conditions. The pedestrian was found to be at fault for failing to yield the right of way.

8. SR 7/US-441

8.1 Overall Corridor

There were 10 pedestrian and eight bicycle crashes reported during the five-year study period including:

- 2013 Bicycle Collision at SR 7/US-441 just north of SW 19th Street
- 2013 Bicycle Collision at SR 7/US-441 just north of SW 20th Street (1) **(Hotspot)**
- 2013 Bicycle Collision at SR 7/US-441 and SW 20th Street (2) (Hotspot)
- 2014 Fatal Pedestrian Collision at SR 7/US-441 and Fern Road
- 2014 Pedestrian Collision at SR 7/US-441 and SW 20th Street (1) (Hotspot)
- 2014 Pedestrian Collision at SR 7/US-441 and SW 20th Street (2) (Hotspot)
- 2014 Pedestrian Collision at SR 7/US-441 and SW 20th Street (3) (Hotspot)
- 2014 Pedestrian Collision at SR 7/US-441 and SW 20th Street (4) (Hotspot)
- 2014 Bicycle Collision at SR 7/US-441 and Fern Road
- 2014 Bicycle Collision at SR 7/US-441 0.27 miles north of Oakes Road
- 2015 Bicycle Collision at 3911 SR 7/US-441
- 2016 Pedestrian Collision at SR 7/US-441 and SW 20th Street (Hotspot)
- 2016 Pedestrian Collision at 2700 SR 7/US-441
- 2016 Fatal Pedestrian Collision at SR 7/US-441 and Oakes Road (Hotspot)
- 2017 Bicycle Collision at SR 7/US-441 and SW 18th Street
- 2017 Pedestrian Collision at SR 7/US-441 and SW 20th Street (Hotspot)
- 2017 Bicycle Collision at southbound SR 7/US-441 and the on-ramp to Eastbound I 595
- 2017 Pedestrian Collision at SR 7/US-441 and SW 20th Street (Hotspot)

The 2013 bicycle collision occurring at SR 7/US-441 just north of SW 19th Street involved a southbound crossing vehicle on the east sidewalk across the driveway of 1680 SR 7/US-441 being struck by a westbound vehicle on June 24, 2013 at approximately 4:44 PM under daylight and dry road surface conditions. The driver was found to be at fault for failing to yield the right of way.

The first 2014 pedestrian collision was a fatal crash involving a non-motorist crossing westbound who was struck on SR 7/US-441 just south of Fern Road, on September 4, 2014 at approximately 10:50 PM, under Dark-Lighted and Dry roadway surface conditions. The pedestrian was under the influence of alcohol and drugs at the time of the accident, however the driver was sober. Additionally, the pedestrian was found to be at fault for crossing in the direct path of the vehicle failing to give enough distance/time to the driver to react.

The second 2014 bicycle collision at SR 7/US-441 and Fern Road involved a southbound crossing cyclist on the bicycle lane approaching the intersection when he struck a vehicle that was switching lanes on February 11, 2014 at approximately 8:21 AM under daylight and clear road surface conditions. No contributing action was documented.

The 2014 bicycle collision at SR 7/US-441, 0.27 miles north of Oakes Road, involved a westbound crossing bicyclist who entered the travel path of a northbound vehicle, which was towing a trailer, on July 19, 2014 at approximately 8:15 AM under daylight and dry road surface conditions. Additionally, the driver was operating the vehicle without a valid driver's license, although the bicyclist was found to have been responsible for the collision.

The 2015 bicycle collision occurring at 3911 SR 7/US-441 involved a westbound vehicle striking a northbound crossing bicyclist across the east leg on October 27, 2015 at approximately 2:30 PM under daylight and dry road surface conditions. The driver was found to be at fault due to failing to yield the right-of-way.

The 2016 pedestrian collision at 2700 SR 7/US-441 involved a northbound vehicle striking a pedestrian who was crossing eastbound on October 29, 2016 at approximately 9:48 AM under daylight and wet road surface conditions. The driver was coming down the ramp from I-595 and claimed that his vehicle had "locked up," subsequently the driver was found at fault for failure to operate the vehicle with due care due to the weather conditions.

The 2017 bicycle collision on SR 7/US-441 at SW 18th Street involved a midblock westbound crossing bicyclist being struck by a northbound vehicle on the left turn lane approaching SW 18th Street on September 19, 2017 at approximately 5:59 PM under daylight and dry road surface conditions. The bicyclist was found to have been at fault for failing to yield the right of way.

The 2017 bicycle collision on southbound SR 7/US-441 at the on ramp to Eastbound I-595 involved a westbound crossing pedestrian across the ramp being struck by a northbound vehicle that was merging onto the ramp from SR 7/US-441 on January 27, 2017 at approximately 9:49 PM under dark-lighted and dry road surface conditions.

8.2 SR 7/US-441 at SW 20th Street

There were seven pedestrian and two bicycle crashes reported at the intersection of SR 7/US-441 and SW 20th Street, during the referenced five-year study period.

The first 2013 bicycle collision involved a northbound crossing bicyclist at the intersection of SR 7/US-441 and SW 20th Street being struck by an eastbound vehicle on January 29, 2013 at approximately 8:30 AM under daylight and dry road surface conditions. The bicyclist admitted to being responsible for the collision due to failing to yield the right of way.

The second 2013 bicycle collision involved a northbound crossing bicyclist across the east leg of the intersection colliding with an eastbound vehicle May 25, 2013 at approximately 12:14 AM under dark-lighted and dry road surface conditions. Both the bicyclist and driver were

ARTERIAL CONNECTIVITY STUDY ALONG I-595 CORRIDOR FM#441954-1-12-01

under the influence of alcohol at the time of the collision. Additionally, the bicyclist failed to cross the street with the green light.

The first 2014 Pedestrian collision involved a pedestrian crossing eastbound across the north leg of the intersection colliding with a northbound vehicle at March 20, 2014 at approximately 1:00 AM under dark-light and dry road surface conditions. The pedestrian was found to have been at fault for failing to yield the right of way.

The second 2014 Pedestrian collision involved a pedestrian crossing westbound at SR 7/US-441 across the north leg being struck by a northbound vehicle on January 19, 2014 at approximately 11:10 PM under dark-lighted and dry road surface conditions. The pedestrian was found to be at fault for failing to yield the right of way.

The third 2014 Pedestrian collision involved a pedestrian crossing eastbound across the North Leg of the intersection being struck by a northbound vehicle on March 20, 2014 at approximately 1:00 AM under dark-lighted and dry road surface conditions. The driver of the vehicle failed to remain at the scene of the accident.

The fourth 2014 Pedestrian collision involved a pedestrian crossing eastbound midblock north of the intersection, being struck by a northbound vehicle on April 29, 2014 at approximately 9:28 PM under dark-lighted and dry road surface conditions. The pedestrian was found to have been at fault due to failing to yield the right-of-way to the vehicle.

The 2016 Pedestrian collision involved a westbound pedestrian, midblock crossing the north leg of the intersection being struck by a southbound vehicle on October 23, 2016 at approximately 7:00 AM at dawn under dry road surface conditions. The pedestrian was found to have been at fault due to failure to yield the right-of-way.

The first 2017 Pedestrian collision involved a westbound crossing pedestrian that was soliciting money being struck by a northbound on February 1, 2017 at approximately 9:23

AM under daylight and dry road surface conditions. The pedestrian was found to have been at fault due to failure to use the crosswalk.

The second 2017 Pedestrian collision involved a southbound midblock crossing pedestrian being struck by a westbound vehicle on October 31, 2017 at approximately 6:34 AM under Dark-not lighted and dry road surface conditions. The pedestrian was found to have been at fault due to failure to yield the right-of-way.

FIELD REVIEWS

FIELD REVIEWS

Field reviews were performed to identify any safety deficiencies which would potentially contribute to the occurrence of traffic crashes. Additionally, operational reviews were also performed for several locations, however the changes in travel patterns caused by the Covid-19 pandemic, prevented a complete operational review of each of the hotspots identified.

1. SW/NW 136TH AVENUE

The following is a description of the field reviews performed along SW/NW 136th Avenue.

1.1 SW/NW 136th Avenue at NW 8th Street

A field review of SW/NW 136th Avenue at NW 8th Street was conducted on January 29, 2020; the following observations were recorded:

General Observations:

• Pavement, as well as pavement marking deficiencies, were observed. Striping and pavement messages were deteriorated, and barely visible (see below).

- Of the eight (8) signal heads at the intersection, only four (4) had backplates.
- There is sidewalk along on both sides of all four (4) sides of the intersection, except on a small piece of the northwest corner (see below).

Traffic Operation Observations:

- Traffic appeared to operate at acceptable levels during the AM and PM Periods.
- In the morning, traffic flowed heavier in the northbound direction, while in the afternoon traffic flowed southbound.
- All queues cleared within the existing phase lengths

1.2 SW/NW 136th Avenue at NW 2nd Street

A field review at SW/NW 136th Avenue and NW 2nd Street was conducted on January 29th, 2020; the following observations were recorded:

General Observations:

• Northbound traffic light signal head may be obstructed due to trees covering them (see below).

Traffic Operation Observations:

- Traffic appeared to operate at acceptable levels during the AM and PM Peak Periods
- In the morning, traffic flowed heavier in the northbound direction, while in the afternoon traffic flowed southbound.
- Northbound Left-Turn vehicles may conflict with vehicle turning right from the southbound approach.

1.3 SW/NW 136th Avenue at Westbound and Eastbound SR 84

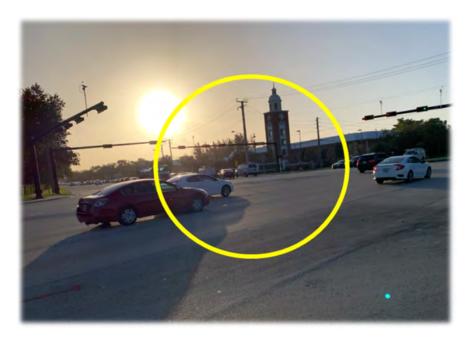
A field review of SW/NW 136th Avenue at Westbound/Eastbound SR 84 could not be properly assessed due to construction being done at this location during the time the field reviews were conducted.

2. FLAMINGO ROAD

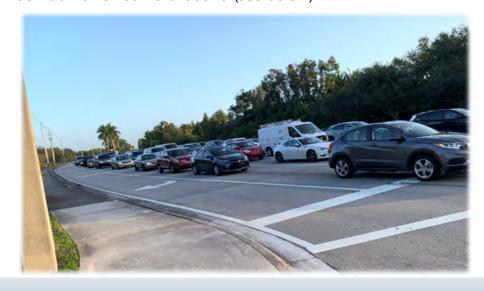
The following is a description of the field reviews performed along Flamingo Road.

2.1 Flamingo Road at Broward Boulevard

A field review of Flamingo Road at W Broward Boulevard was conducted on February 13, 2020; the following observations were recorded:


General Observations:

- The field review at the intersection revealed that the pavement appeared to be in good condition, and pavement markings were easily visible.
- No physical deficiencies were identified at the intersection.


Traffic Operations Observations:

• The AM peak hour revealed that American Heritage School, on the southeast corner attracts a large volume of both pedestrians and vehicles from 7:30 – 8:00 AM.

- Congestion on the northbound right lane backs up, sometimes spilling back onto the outermost northbound through lane.
- Vehicles dropping off students on the eastbound direction queue up east of the intersection as seen in (see below), and sometimes back up to the intersection further restricting the flow of the northbound right movements.

• In the morning, traffic flowed heavier in the southbound direction, while in the afternoon traffic flowed northbound (see below)

2.2 Flamingo Road at SW 8th Street

A field review of Flamingo Road at SW 8th Street was conducted on February 13, 2020, the following observations were recorded:

General Observations:

• Field observations revealed that the delineators along the southbound right-turn lane were struck (see below).

• Visible dents on the guardrail near the northwest corner from a previous fixed-object collision were spotted (see below)

Traffic Operations:

- Traffic appeared to operate at acceptable levels during the AM and PM peak hours at this location.
- In the morning, traffic flowed heavier in the northbound direction, while in the afternoon traffic flowed southbound

2.3 Flamingo Road at Eastbound/Westbound SR 84

A field review of Flamingo Road Eastbound/Westbound SR 84 was conducted on February 13, 2020.

General Observations:

- The field review at the intersection revealed that the pavement appeared to be in good condition, and pavement markings were easily visible.
- No physical deficiencies were identified at the intersection.

Traffic Operations:

- During AM Period, the peak flow of traffic was along Eastbound SR 84
- In the AM Peak Period, Eastbound SR 84 Queues often did not clear within the existing phase, causing congestion and aggressive behavior (see below)

• In the PM Peak, traffic flowed heavier along Westbound SR 84, however, traffic was more balanced between Eastbound and Westbound SR 84.

3. HIATUS ROAD

A field review of Hiatus Road at Broward Boulevard was conducted on January 29, 2020; the following observations were recorded:

General Observations:

- The field review at the intersection revealed that the pavement appeared to be in good condition, and pavement markings were easily visible.
- There were no backplates installed for eastbound and westbound movements.
- There are limited light poles within the intersection, which could pose a lighting issue. Two
 light poles were located, one on the Northeast corner providing lighting for W Broward
 Boulevard, and one on the Southeast Corner providing lighting for Hiatus Road.

Traffic Operations:

- Traffic appeared to operate at acceptable levels during the AM and PM peak hour at this location.
- During the AM Peak, the heavier direction of traffic was southbound, during the PM peak it was northbound.

3.1 Hiatus Road at Eastbound and Westbound SR 84

A field review of Hiatus Road at Broward Boulevard was conducted on January 29,, 2020; the following observations were recorded:

General Observations:

- The field review at the intersection revealed that the pavement appeared to be in good condition, and pavement markings were easily visible.
- There were no backplates installed at the signal heads within the interchange
- There were no installed backplates for eastbound and westbound movements

Traffic Operations:

- During AM Period, the peak flow of traffic was along Eastbound SR 84, the queues often did not clear with each cycle.
- In the AM Peak hour review, it was noted that northbound vehicles turning right at Eastbound SR 84 sometimes spilled back blocking the northbound through lanes due to the length of the right-turn bay.

4. NOB HILL ROAD

A field review of Nob Hill Road at West Broward Boulevard was conducted on February 13, 2020.

4.1 Nob Hill Road at Broward Boulevard

A field review of Nob Hill Road at Broward Boulevard was conducted on February 13, 2020; the following observations were recorded:

General Observations:

• The sidewalk on the northeast corner of the intersection is damaged (see below). This could pose a risk to pedestrians traveling on the sidewalk at the intersection.

ARTERIAL CONNECTIVITY STUDY ALONG I-595 CORRIDOR FM#441954-1-12-01

• The westbound approach pavement markings are deteriorated and barely visible just west of the intersection (see below)

Traffic Operations:

- Traffic appeared to operate at an acceptable level of service during the AM and PM peak periods.
- In the AM Peak period, most of the traffic flowed southbound. No PM Peak hour review was performed for this location.

4.2 Nob Hill Road at Hawks View Boulevard

A field review of Nob Hill Road at Hawks View Boulevard was conducted on February 13, 2020; the following observations were recorded:

General Observations:

- Pavement conditions at the intersection appeared to be in acceptable conditions
- No backplates were present on the signal heads at this intersection.

Traffic Operations:

- Traffic appeared to operate at an acceptable level of service during the AM and PM peak periods.
- In the AM Peak period, most of the traffic flowed southbound. No PM Peak hour review was performed for this location.

4.3 Nob Hill Road at Eastbound/Westbound SR 84

A field review of Nob Hill Road at Eastbound/Westbound SR 84 was conducted on February 13, 2020; the following observations were recorded:

General Observations:

- Pavement conditions at the intersection appeared to be in acceptable conditions
- No backplates were present on the signal heads at this intersection.

Traffic Operation:

- During AM Period, the peak flow of traffic was along Eastbound SR 84, the queues did not always clear with each cycle.
- No PM Peak Hour review was performed for this location

5. PINE ISLAND ROAD

A field review of Pine Island Road at SW 3rd Street was conducted on February 20, 2020

5.1 Pine Island Road at SW 3rd Street

A field review of Pine Island Road at SW 3rd Street was conducted on February 20, 2020; the following observations were recorded:

General Observations:

- Pavement conditions at the intersection appeared to be in acceptable conditions
- No backplates were present on the signal heads at this intersection.
- Vehicles turning right at the intersection traveling in the westbound direction have their sight blocked by obstructions on the southeast corner of the intersection (see below)

Traffic Operations:

• In the AM Peak period, most of the traffic flowed southbound. No PM Peak hour review was performed for this location.

5.2 Pine Island Road at SW 6th Court

A field review of Pine Island Road at SW 6th Court was conducted on February 20, 2020; the following observations were recorded:

General Observations:

- The pavement at the intersection appeared to be in acceptable condition.
- No backplates were present on the signal heads at this intersection.
- Vehicles turning right at the intersection traveling in the westbound direction have their sight blocked by obstructions on the southeast corner of the intersection (see below).

Traffic Operations:

- Traffic appeared to operate at an acceptable level of service during the AM and PM peak periods.
- In the AM Peak period, most of the traffic flowed southbound. No PM Peak hour review was performed for this location.

5.3 Pine Island Road at Peters Road

A field review of Pine Island Road at Peters Road was conducted on February 20, 2020; the following observations were recorded.

General Observations:

- The pavement at the intersection appeared to be in acceptable condition.
- No deficiencies were spotted at this location

Traffic Operations:

- During AM Period, southbound traffic flow was congested when approaching south of the intersection reaching New River Canal Road
- No PM Peak Hour review was performed for this location

5.4 Pine Island Road at New River Canal Road

A field review of Pine Island Road at New River Canal Road was conducted on February 20, 2020; the following observations were recorded:

General Observations:

- The pavement at the intersection appeared to be in acceptable condition.
- Backplates are not present on the signal heads at this location.

Traffic Operations:

- During the AM Period, the peak flow of traffic was along Eastbound SR 84, the queues often did not clear with each cycle.
- Southbound traffic queues south of the intersection at Westbound SR 84 and often backs
 up to the intersection impeding westbound left-turns, eastbound right-turns, northbound
 left-turns, and southbound through movements from operating efficiently (see below)

• A PM peak hour review was not performed for this location.

5.5 Pine Island Road at Eastbound/Westbound SR 84

A field review of Pine Island Road at Eastbound/Westbound SR 84 was conducted on February 20, 2020; the following observations were recorded:

General Observations:

- The pavement at the intersection appeared to be in acceptable condition.
- Backplates are not present on the signal heads at this location.

Traffic Operations:

- During AM Period, the peak flow of traffic was along Eastbound SR 84, the queues often did not clear with each cycle.
- Traffic coming south from New River Canal Road came to a stop at the intersection of
 Westbound SR 84, this southbound queue often did not clear within the cycle and backed
 up to New River Canal Road (see below).

• No PM Peak Hour review was performed for this location.

6. UNIVERSITY DRIVE/SR-817

6.1 University Drive/SR-817 at Peters Road

A field review of University Drive/SR-817 at Peters Road was conducted on February 20, 2020; the following observations were recorded:

General Observations:

• Pavement conditions at the intersection appeared to be deteriorated and showed several locations where uneven pavement patches were performed for utility work (see below).

• No additional deficiencies were spotted

Traffic Operations:

- During the early afternoon (off-peak), traffic mostly flowed south along University
 Drive/SR-817, the queues often did not clear within each cycle, even during off-peak hours.
- PM peak hour review was performed at this intersection.

6.2 University Drive/SR-817 at Nova Drive

A field review of University Drive/SR-817 at Nova Drive was conducted on February 20, 2020; the following observations were recorded:

General Observations:

- The pavement at the intersection appeared to be in acceptable condition.
- No deficiencies were spotted at the intersection.

Traffic Operations:

• No peak hour review was performed at this intersection

6.3 University Drive/SR-817 at Eastbound/Westbound SR 84

A field review of University Drive/SR-817/SR 817 at Eastbound/Westbound SR 84 was conducted on February 20, 2020; the following observations were recorded:

General Observations:

• The pavement at the intersection appeared to be in acceptable condition.

Traffic Operations:

• No peak hour review was performed at this intersection

7. DAVIE ROAD

7.1 Davie Road at Nova Drive

A field review of Davie Road at Nova Drive was conducted on February 20, 2020; the following observations were recorded:

General Observations:

- Pavement conditions at the intersection appeared to be in acceptable conditions
- No deficiencies were spotted at the intersection

Traffic Operations:

- No peak hour review was performed at this intersection
- The site was visited at approximately 10:00 AM. At this time, due to McFatter Technical College and High School being located just south of the intersection, there was a large volume of school buses slowing the overall traffic flow at the intersection (see below)

7.2 Davie Road at Eastbound/Westbound SR 84

A field review of Davie Road at Eastbound/Westbound SR 84 was conducted on February 20, 2020; the following observations were recorded:

General Observations:

• The pavement at the intersection appeared to be in acceptable condition.

Traffic Operations:

- No peak hour review was performed at this intersection.
- This intersection was visited approximately at 10:30 AM, at this time, Westbound SR 84, particularly the left-turn lanes, seemed to queue up even during off-peak hours (see below).

8. SR 7/US-441

8.0 SR 7/US-441 at SW 20th Street

A field review of SR 7/US-441 at SW 20th Street was conducted on February 20, 2020; the following observations were recorded:

General Observations:

- The pavement at the intersection appeared to be in acceptable condition.
- No Backplates present on signal head at this intersection.

Traffic Operations:

- No peak hour review was performed at this intersection.
- An off-peak-hour field visit revealed a high volume of pedestrians and bicyclists within the area, additionally, aggressive pedestrian behavior (jaywalking, etc.) was seen at the intersection.

8.1 SR 7/US-441 at Oakes Road

A field review of SR 7/US-441 at Oakes Road was conducted on February 20, 2020; the following observations were recorded:

General Observations:

- Pavement conditions along SR 7/US-441 appeared to be acceptable.
- Pavement and pavement markings along Oakes Road reaching the intersection were deteriorated.

Appendix

Traffic Operations:

• No peak hour reviews were performed at this intersection.

• An off-peak hour review revealed a large volume of trucks and other heavy vehicles at the intersection (see below)

Appendix E – Crash Probable Causes and Potential Countermeasures Summary Tables

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Large left-turn Volume	-Provide protected only left-turn signal phases
							-Revise signal sequence
							-Retime signals
			Left-Turn	17	3.4		
						Restricted Sight Distance	-Modify left-turn phase
							-Install warning signs
						Too short yellow phases	-Increase yellow phases
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
1	NW/SW 136th Avenue	NW 8th Street					-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	30	6		-Increase curb radii
			Real-Ellu	30	0	Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
							-Adjust all-red clearance

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Large left-turn Volume	-Provide protected only left-turn signal phases
							-Revise signal sequence
							-Retime signals
			Left-Turn	32	6.4		
						Restricted Sight Distance	-Modify left-turn phase
							-Install warning signs
						Too short yellow phases	-Increase yellow phases
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
2	NW/SW 136th Avenue	NW 2nd Street					-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	28	5.6		-Increase curb radii
			Neur-Ellu	20	3.0	Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
							-Adjust all-red clearance

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						High Speeds	Traffic Enforcement
						Slippery Pavement	-Overlay existing pavement
			Wet	28	5.6		-Groove existing pavement
							-Skid proof Roadway
						Poor visibility	-Install/Improve roadway lighting
							-Install/Improve delineation markings
			Dark	49	9.8		-Install/Improve warning signs
						Poor sign quality	-Upgrade signing
							-Provide illuminated signs
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
3	Flamingo Road	W Broward Boulevard					-Provide adequate drainage
							-Groove Pavement
							Improve pavement
ı						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	97	19.4		-Increase curb radii
			Rear-Ellu	97	19.4	Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
1						Inadequate signal timing	-Adjust yellow phase
, l							-Provide progression through a set of signalized intersections
1 1							-Adjust all-red clearance

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Obstructions in or too close to roadway	-Remove obstacles -Install barrier curbing -Install breakaway features to light poles, signposts, etc.
			Fixed-Object	10	2	Excessive speed on approach	-Install guardrail -Install crash cushioning devices Traffic Enforcement
						Slippery Pavement	-Improve skid resistance
			Wet	10	2	Slippery Pavement	-Overlay existing pavement -Groove existing pavement -Skid proof Roadway
			Wet	10	2	Excessive speed on approach	Traffic Enforcement
						Restricted sight distance	-Remove sight obstructions -Install advanced markings to supplement signs
			Angle	11	2.2	Excessive speed on approach	Traffic Enforcement
4	Flamingo Road	SW 8th Street				Poor Signal Visability Inadequate Signal Timing	-Install advanced intersection warning signs -Retime signals
						Driver not aware of intersection	-Install/Improve warning signs
						Slippery Surface	-Consider flashing signal -Overlay pavement -Provide adequate drainage -Groove Pavement
						Large number of turning vehicles	Improve pavement -Modify left-turn phase -Increase curb radii
			Rear-End	22	4.4	Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs -Install backplates and visors -Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase -Provide progression through a set of signalized intersections -Adjust all-red clearance

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Large left-turn Volume	-Provide protected only left-turn signal phases
							-Revise signal sequence
							-Retime signals
			Left-Turn	36	7.2		
						Restricted Sight Distance	-Modify left-turn phase
							-Install warning signs
						Too short yellow phases	-Increase yellow phases
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	62	12.4		-Increase curb radii
			Rear-End	62	12.4	Excessive speed on approach	-Provide traffic enforcement
5	S Hiatus Road	W Broward Boulevard				Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
							-Adjust all-red clearance
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	23	4.6		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement
						Poor visibility	-Install/Improve roadway lighting
							-Install/Improve delineation markings
			Dark	44	8.8		-Install/Improve warning signs
						Poor sign quality	-Upgrade signing
1							-Provide illuminated signs

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	143	28.6		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
6	S Nob Hill Road	Broward Boulevard				Poor visibility of signals	-Install/Improve advanced warning signs
"	3 Nob Till Road	bi owai u boulevai u					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	43	8.6		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

ľ	o Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
	7 S Nob Hill Road	Hawks View Boulevard	Rear-End	49	9.8		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
			Rear-End	53	10.6	Large number of turning vehicles	-Modify left-turn phase
			Real-Ellu	55	10.6		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
8	Pine Island Road	New River Canal Road					-Add additional signal heads
0	Fille Island Road	New liver canal noda				Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Improper road maintenance	-Perform necessary road surface repairs
					į	Congestion	-Improve Signal Timing Progression
						Excessive vehicle speed	-Provide traffic enforcement
						Inadequate pavement markingss	-Install or refurbish center lines, lane lines, and pavement edge lines
			Sidoswino	27	5.4	Inadequate channelization	-Install refloctorized line, edges
			Sideswipe	27	5.4		-Install acceleration and deceleration lanes
							-Channel intersection
							-Provide turning bays
						Inadequate signing	-Place drection and lane change signs to give proper advance warning
							-Add illuminated name signs

N	o Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
	Pine Island Road	Peters Road	Rear-End	66	13.2		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	45	9		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
10	Pine Island Road	SW 6th Court				Poor visibility of signals	-Install/Improve advanced warning signs
10	Fille Island Road	3W dill Court					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	21	4.2		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

lo Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
					Driver not aware of intersection	-Install/Improve warning signs
						-Consider flashing signal
					Slippery Surface	-Overlay pavement
						-Provide adequate drainage
						-Groove Pavement
						Improve pavement
					Large number of turning vehicles	-Modify left-turn phase
11 Pine Island Road	SW 3rd Street	Rear-End	29	5.8		-Increase curb radii
					Excessive speed on approach	-Provide traffic enforcement
					Poor visibility of signals	-Install/Improve advanced warning signs
						-Install backplates and visors
						-Add additional signal heads
					Inadequate signal timing	-Adjust yellow phase
						-Provide progression through a set of signalized intersections

Restricted Sight Distance Restricted Sight Distance Remove sight obstruct -Improve pedestrian cre -Install/improve pedest Inadequate protection for pedestrians -Add pedestrian refgure Inadequate signal timing -Change timing of pede Inadequate signal phasing -Adjust Signal Timing Pedestrian/Bicycle Right-of-way Violations -Implement Education/ Excessive speed on approach -Enforcement Slippery Pavement -Overlay existing pavem -Groove existing pavem	Countermeasures
Slippery Surface	signs
Peters Road Peters Road Peters Road Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Right-of-way Violations Provide adequate drain decrease the furning vehicles Rear-End 330 66 Excessive speed on approach Excessive speed on approach Poor visibility of signals Inadequate signal timing Adjust yellow phase Provide progression the signal timing Pedestrian/Bicycle Pedestrian/Bicycle Ad pedestrian refgure Inadequate signal timing Inadequate signal timing Adjust signal many of the signal timing Inadequate signal timing Pedestrian/Bicycle Right-of-way Violations Inadequate signal timing Pedestrian/Bicycle Right-of-way Violations Implement Education/ Excessive speed on approach Inforcement Slippery Pavement Overlay existing paven Groove existing paven	
Rear-End Recassive speed on approach Inadequate signal timing Adjust yellow phase Provide progression th Inadequate signal timing Restricted Sight Distance Restricted Sight Distance Restricted Sight Distance Inadequate signal timing Adjust yellow phase Provide progression th Inmprove pedestrian Inadequate signal timing Adjust spliny obstruct Improve pedestrian refurr Inadequate signal timing Inadequate signal timing Adjust Signal mining Pedestrian/Bicycle Restricted Sight Distance Inadequate signal timing Inadequate signal timing Pedestrian refurr Adjust Signal mining Pedestrian/Bicycle Right-of-way Violations Implement Education/ Excessive speed on approach Inforcement Overlay existing paven Groove existing paven	
Rear-End Rear-E	age .
Rear-End 330 66 Excessive speed on approach Provide traffic enforce Poor visibility of signals Inadequate signal timing Pedestrian/Bicycle Pedestrian-Bicycle Pedestrian-Bicycle Pedestrian-Bicycle Pedestrian-Bicycle Pedestrian-Bicycle Pedestrian-Bicycle Pedestrian-Bicycle Pedestrian-Bicycle Pedestrian-Bicycle Pedestrian-Bicycle Bicycle Pedestrian-Bicycle Bicycle Pedestrian-Bicycle Bi	
Rear-End Recar-End Recar-End	
Excessive speed on approach - Provide traffic enforce Poor visibility of signals - Install/Improve advant -Install backplates and v -Add additional signal h -Inadequate signal timing - Adjust yellow phase -Provide progression th -Provide progress	
Pedestrian/Bicycle Pedest	
12 S University Drive Peters Road Peters Road Inadequate signal timing -Adjust yellow phase -Provide progression th Restricted Sight Distance -Remove sight obstruct -Improve pedestrian cre -Install/improve pedestrian cre -Install/improve pedestrian refigure -Install/improve pedestrian refigure -Install/improve pedestrian refigure -Install/improve pedestrian per -Install/improve	ient
Peters Road Peters Road Peters Road Pedestrian/Bicycle Inadequate signal timing -change timing of pede Inadequate signal timing -change timing of ped	d warning signs
12 S University Drive Peters Road Peters Road Restricted Sight Distance -Remove sight obstruct -Improve pedestrian crogure -Install/improve pedestrian refigure -Install/improve pedestrian Pedestrian/Bicycle 4 0.8 Pedestrian/Bicycle 4 0.8 Pedestrian/Bicycle 4 0.8 Inadequate signal timing -Change timing of pede -Install pedestrian barri -Install pedestrian barri -Install pedestrian barri -Install pedestrian periodical pedestrian periodical pedestrian periodical pedestrian periodical pedestrian pede	sors
S University Drive Peters Road Peters Road Peters Road Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Right-of-way Violations Implement Education/ Excessive speed on approach Provide progression th Restricted Sight Distance Inadequate protection for pedestrians -Add pedestrian refgure Inadequate signal timing Pedestrian/Bicycle Right-of-way Violations Implement Education/ Excessive speed on approach -Enforcement -Overlay existing pavem -Groove existing pavem -Groove existing pavem	ads
S University Drive Peters Road Peters Road Peters Road Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Pedestrian/Bicycle Add pedestrian periode a partial pedestrian periode a partial pedestrian periode a partial pedestrian periode a partial pedestrian/Bicycle Right-of-way Violations Excessive speed on approach Provide progression th Restricted Sight Distance Inadequate protection for pedestrians -Add pedestrian periode a partial pedestrian periode a partial pedestrian periode a partial pedestrian periode a partial pedestrian periode a partial pedestrian/Bicycle Right-of-way Violations Excessive speed on approach Provide progression th Restricted Sight Distance -Remove sight obstruct -Improve pedestrian periode a partial pedestrian pedestrian periode a partial pedestrian periode a partial pedestrian pedes	
Restricted Sight Distance -Remove sight obstruct -Improve pedestrian cre -Install/improve pedest -Inadequate protection for pedestrians -Add pedestrian refigure -Install pedestrian barri -Inadequate signal timing -Change timing of pede -Inadequate signal phasing -Adjust Signal Timing -Pedestrian/Bicycle Right-of-way Violations -Implement Education/ -Excessive speed on approach -Enforcement -Overlay existing pavem -Groove existing pavem	
Pedestrian/Bicycle 4 0.8 Pedestrian/Bicycle 4 0.8 Inadequate protection for pedestrians -Add pedestrian refgure -Install pedestrian barri Inadequate signal timing -Change timing of pede Inadequate signal phasing -Adjust Signal Timing Pedestrian/Bicycle Right-of-way Violations -Implement Education/ Excessive speed on approach -Install pedestrian barri -Change timing of pede Inadequate signal phasing -Adjust Signal Timing -Implement Education/ Excessive speed on approach -Implement Education/ -Implement Education/ -Implement Education/ -Implement Education/ -Implement Education/ -Implement Education/ -Install pedestrian parri -Install pedestrian cro -Install/improve pedestrian cro -Instal	ough a set of signalized intersections
Pedestrian/Bicycle 4 0.8 Inadequate protection for pedestrians -Add pedestrian refgure -Install pedestrian barri Inadequate signal timing -Install pedestrian barri Inadequate signal timing -Adjust Signal Timing Pedestrian/Bicycle Right-of-way Violations -Implement Education/ Excessive speed on approach -Enforcement -Overlay existing pavent -Groove existing pavent	ins
Pedestrian/Bicycle 4 0.8 Inadequate protection for pedestrians -Add pedestrian refgure -Install pedestrian barri Inadequate signal timing -Change timing of pede Inadequate signal phasing -Adjust Signal Timing Pedestrian/Bicycle Right-of-way Violations -Implement Education/ Excessive speed on approach -Install pedestrian barri -Adjust Signal Timing -Implement Education/ Excessive speed on approach -Install pedestrian barri -Add pedestrian parri -Install pedestrian barri -Add pedestrian parri -Install pedestrian barri -Add pedestrian parri -Install pedestrian barri -Add pedestrian parri -Install pedestrian barri -Add pedestrian parri -Install pedestrian barri -Add pedestrian parri -Install pedestrian barri -Add pedestrian parri -Install pedestrian barri -Add pedestrian parri -Install pedestrian barri -Add pedestrian parri -Install pedestrian barri -Add pedestrian parri	sings
Pedestrian/Bicycle 4 0.8 Inadequate signal timing Inadequate signal phasing Pedestrian/Bicycle Right-of-way Violations Implement Education/Excessive speed on approach Inadequate signal phasing Pedestrian/Bicycle Right-of-way Violations Implement Education/Excessive speed on approach Inadequate signal timing Pedestrian/Bicycle Right-of-way Violations Implement Education/Excessive speed on approach Inadequate signal timing Pedestrian/Bicycle Right-of-way Violations Implement Education/Excessive speed on approach Inadequate signal timing Pedestrian/Bicycle Right-of-way Violations Implement Education/Excessive speed on approach Inadequate signal timing Inadequate signal timing Pedestrian/Bicycle Right-of-way Violations Implement Education/Excessive speed on approach Inadequate signal timing Inadequate signal ti	an crossing signs
Inadequate signal timing -Change timing of pede Inadequate signal phasing -Adjust Signal Timing Pedestrian/Bicycle Right-of-way Violations -Implement Education/Excessive speed on approach -Enforcement -Coverlay existing pavern -Groove existing pavern	slands
Inadequate signal phasing -Adjust Signal Timing Pedestrian/Bicycle Right-of-way Violations -Implement Education/ Excessive speed on approach -Enforcement Slippery Pavement -Overlay existing pavem -Groove existing pavem	rs
Pedestrian/Bicycle Right-of-way Violations -Implement Education/ Excessive speed on approach -Enforcement Slippery Pavement -Overlay existing pavem -Groove existing pavem	rian phase
Excessive speed on approach -Enforcement Slippery Pavement -Overlay existing pavem -Groove existing pavem	
Slippery Pavement -Overlay existing pavem -Groove existing pavem	nforcement Program
-Groove existing pavem	
West 04 100	nt
Wet 84 16.8 -Skid proof Roadway	
Excessive speed on approach Traffic Enforcement	

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	322	64.4		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
13	S University Drive	Nova Drive				Poor visibility of signals	-Install/Improve advanced warning signs
13	3 Offiversity Drive	NOVA DIIVE					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	91	18.2		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs -Consider flashing signal
						Slippery Surface	-Overlay pavement -Provide adequate drainage
							-Groove Pavement
						Large number of turning vehicles	Improve pavement -Modify left-turn phase
			Rear-End	98	19.6		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
14	S University Drive	S 1900 Block				Poor visibility of signals	-Install/Improve advanced warning signs
14	3 University Drive	3 1900 BIOCK					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	27	5.4		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

N	o Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	120	24		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
1	S University Drive	S 2300 Block				Poor visibility of signals	-Install/Improve advanced warning signs
1 *	3 Offiversity Drive	3 2300 Block					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	29	5.8		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

N	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	80	16		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
1	S University Drive	SW 10th Street				Poor visibility of signals	-Install/Improve advanced warning signs
1	3 Offiversity Drive	SW TOTH Street					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	25	5		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

N	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
1	7 S University Drive	SW 13th Place	Rear-End	95	19		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	109	21.8		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
18	S University Drive	The Fountains				Poor visibility of signals	-Install/Improve advanced warning signs
10	3 Offiversity Drive	THE Fountains					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	32	5		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs -Consider flashing signal
						Slippery Surface	-Overlay pavement
						Shippery Surface	-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	36	7.2	Large number of turning vertices	-Increase curb radii
			Redi-Ellu	30	7.2	Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
						Tool visibility of signals	-Install backplates and visors
							-Add additional signal heads
							Add ddditional signal nedds
19	Davie Road	Nova Drive				Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Large left-turn Volume	-Provide protected only left-turn signal phases
							-Revise signal sequence
							-Retime signals
			Left-Turn	14	2.8		
						Restricted Sight Distance	-Modify left-turn phase
							-Install warning signs
						Too short yellow phases	-Increase yellow phases
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	15	3		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	97	19.4		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
20	State Road 7	SW 20th Street					-Add additional signal heads
20	State Road 7	SW Zuth Street					
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Restricted Sight Distance	-Remove sight obstructions
							-Improve pedestrian crossings
							-Install/improve pedestrian crossing signs
						Inadequate protection for pedestrians	-Add pedestrian refgure islands
			Pedestrian/Bicycle	9	1.8		-Install pedestrian barriers
						Inadequate signal timing	-Change timing of pedestrian phase
						Inadequate signal phasing	-Adjust Signal Timing
						Pedestrian/Bicycle Right-of-way Violations	-Implement Education/Enforcement Program
						Excessive speed on approach	-Enforcement

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	71	14.2		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
21	State Road 7	Oakes Road				Poor visibility of signals	-Install/Improve advanced warning signs
21	State Road 7	Oakes Roau					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	25	5		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	78	15.6		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
22	Westbound State Road 84	SW/NW 136th Avenue					-Add additional signal heads
	Westboulld State Road 84	SW/NW 150th Avenue					
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Restricted Sight Distance	-Remove sight obstructions
							-Improve pedestrian crossings
							-Install/improve pedestrian crossing signs
						Inadequate protection for pedestrians	-Add pedestrian refgure islands
			Pedestrian/Bicycle	2	0.4		-Install pedestrian barriers
						Inadequate signal timing	-Change timing of pedestrian phase
						Inadequate signal phasing	-Adjust Signal Timing
						Pedestrian/Bicycle Right-of-way Violations	-Implement Education/Enforcement Program
1						Excessive speed on approach	-Enforcement

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	22	4.4		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
23	Flamings Bood	Westbound SR 84					-Groove Pavement
23	Flamingo Road	Westboullu 3K 64					Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	50	10		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

1	o Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
	4 Westbound State Road 84	S Hiatus Road	Rear-End	24	4.8		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	43	8.6		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
25	Westbound State Road 84	Nob Hill Road					
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	13	2.6		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement
						Poor visibility	-Install/Improve roadway lighting
						1 Ool visibility	-Install/Improve roadway lighting
			Deal	27	F 4		-Install/Improve defineation markings -Install/Improve warning signs
			Dark	27	5.4	Door sign quality	
						Poor sign quality	-Upgrade signing
					1		-Provide illuminated signs

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	90	18		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
26	Westbound State Road 84	Pine Island Road				Poor visibility of signals	-Install/Improve advanced warning signs
20	Westboulld State Road 64	Fille Islanu Noau					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Poor visibility	-Install/Improve roadway lighting
							-Install/Improve delineation markings
			Dark	61	12.2		-Install/Improve warning signs
						Poor sign quality	-Upgrade signing
							-Provide illuminated signs

ı	lo Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
	27 S University Drive	Westbound SR 84	Rear-End	272	54.4		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	76	15.2		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	60	12		-Skid proof Roadway
28	Westbound State Road 84	Davie Road				Excessive speed on approach	Traffic Enforcement
						Obstructions in or too close to roadway	-Remove obstacles
							-Install barrier curbing
							-Install breakaway features to light poles, signposts, etc.
			Fixed-Object	31	6.2		-Install guardrail
			rixed-Object	31	0.2		-Install crash cushioning devices
						Excessive speed on approach	Traffic Enforcement
						Slippery Pavement	-Improve skid resistance
						Improper road maintenance	-Perform necessary road surface repairs
						Congestion	-Improve Signal Timing Progression
						Excessive vehicle speed	-Provide traffic enforcement
						Inadequate pavement markingss	-Install or refurbish center lines, lane lines, and pavement edge lines
			Cidocuino	40	0.6	Inadequate channelization	-Install refloctorized line, edges
			Sideswipe	48	9.6		-Install acceleration and deceleration lanes
							-Channel intersection
							-Provide turning bays
						Inadequate signing	-Place drection and lane change signs to give proper advance warning
							-Add illuminated name signs

ľ	o Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
1	9 Eastbound State Road 84	NW/SW 136th Avenue	Rear-End	92	18.4		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	75	15		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	215	43		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
20	Flaminas Bood	Eastbound SR 84				Poor visibility of signals	-Install/Improve advanced warning signs
30	Flamingo Road	Edstbourid SK 84					-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Restricted Sight Distance	-Remove sight obstructions
							-Improve pedestrian crossings
							-Install/improve pedestrian crossing signs
						Inadequate protection for pedestrians	-Add pedestrian refgure islands
			Pedestrian/Bicycle	4	0.8		-Install pedestrian barriers
						Inadequate signal timing	-Change timing of pedestrian phase
						Inadequate signal phasing	-Adjust Signal Timing
						Pedestrian/Bicycle Right-of-way Violations	-Implement Education/Enforcement Program
						Excessive speed on approach	-Enforcement

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Slippery Pavement	-Overlay existing pavement
							-Groove existing pavement
			Wet	20	4		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement
						Poor visibility	-Install/Improve roadway lighting
							-Install/Improve delineation markings
			Dark	43	8.6		-Install/Improve warning signs
						Poor sign quality	-Upgrade signing
							-Provide illuminated signs
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
31	Eastbound State Road 84	Hiatus Road				Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	66	13.2		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
			Rear-End	132	26.4		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
32	Eastbound State Road 84	Nob Hill Road				Poor visibility of signals	-Install/Improve advanced warning signs
32	Lastboulla State Road 84	Nob IIII Koad					-Install backplates and visors
				1			-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections
						Slippery Pavement	-Overlay existing pavement
1							-Groove existing pavement
1			Wet	32	6.4		-Skid proof Roadway
						Excessive speed on approach	Traffic Enforcement

No	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures	
						Driver not aware of intersection	-Install/Improve warning signs	
							-Consider flashing signal	
						Slippery Surface	-Overlay pavement	
							-Provide adequate drainage	
							-Groove Pavement	
							Improve pavement	
						Large number of turning vehicles	-Modify left-turn phase	
			Rear-End	194	38.8		-Increase curb radii	
						Excessive speed on approach	-Provide traffic enforcement	
						Poor visibility of signals	-Install/Improve advanced warning signs	
		Eastbound State Road 84 Pine Island Road					-Install backplates and visors	
33	Fastbaund State Bood 94						-Add additional signal heads	
33	Eastbourid State Road 84	Pine Island Road						
						Inadequate signal timing	-Adjust yellow phase	
							-Provide progression through a set of signalized intersections	
						Restricted Sight Distance	-Remove sight obstructions	
							-Improve pedestrian crossings	
							-Install/improve pedestrian crossing signs	
						Inadequate protection for pedestrians	-Add pedestrian refgure islands	
			Pedestrian/Bicycle	3	0.6		-Install pedestrian barriers	
						Inadequate signal timing	-Change timing of pedestrian phase	
							Inadequate signal phasing	-Adjust Signal Timing
							Pedestrian/Bicycle Right-of-way Violations	-Implement Education/Enforcement Program
						Excessive speed on approach	-Enforcement	

	. Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	E Tatal	A	Probable Causes	Country	
N	Description Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average		Countermeasures	
						Driver not aware of intersection	-Install/Improve warning signs	
							-Consider flashing signal	
						Slippery Surface	-Overlay pavement	
							-Provide adequate drainage	
							-Groove Pavement	
							Improve pavement	
						Large number of turning vehicles	-Modify left-turn phase	
			Rear-End	231	46.2		-Increase curb radii	
						Excessive speed on approach	-Provide traffic enforcement	
						Poor visibility of signals	-Install/Improve advanced warning signs	
							-Install backplates and visors	
							-Add additional signal heads	
						Inadequate signal timing	-Adjust yellow phase	
3	S University Drive	Eastbound SR 84					-Provide progression through a set of signalized intersections	
						Slippery Pavement	-Overlay existing pavement	
							-Groove existing pavement	
			Wet	79	15.8		-Skid proof Roadway	
						Excessive speed on approach	Traffic Enforcement	
						Restricted Sight Distance	-Remove sight obstructions	
							-Improve pedestrian crossings	
							-Install/improve pedestrian crossing signs	
						Inadequate protection for pedestrians	-Add pedestrian refgure islands	
			Pedestrian/Bicycle	2	0.4		-Install pedestrian barriers	
						Inadequate signal timing	-Change timing of pedestrian phase	
							Inadequate signal phasing	-Adjust Signal Timing
						Pedestrian/Bicycle Right-of-way Violations	-Implement Education/Enforcement Program	
						Excessive speed on approach	-Enforcement	

r	o Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
	5 Eastbound State Road 84	Davie Road	Rear-End	115	23		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

N	Description	Identified Cluster	Intersection-wide Abnormal/Leading Crash Patterns	5-year Total	Average	Probable Causes	Countermeasures
						Driver not aware of intersection	-Install/Improve warning signs
							-Consider flashing signal
						Slippery Surface	-Overlay pavement
							-Provide adequate drainage
							-Groove Pavement
							Improve pavement
						Large number of turning vehicles	-Modify left-turn phase
3	Eastbound State Road 84	SW 75th Avenue	Rear-End	63	12.6		-Increase curb radii
						Excessive speed on approach	-Provide traffic enforcement
						Poor visibility of signals	-Install/Improve advanced warning signs
							-Install backplates and visors
							-Add additional signal heads
						Inadequate signal timing	-Adjust yellow phase
							-Provide progression through a set of signalized intersections

Appendix F – ARTPLAN Reports

ARTPLAN 2012 Conceptual Planning Analysis

Project Information

Analyst		Arterial Name	NW 136th Avenue (South of I- 595)	Study Period	Standard K							
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal							
Agency		То		Program	ARTPLAN 2012							
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012							
Arterial Class	1											
File Name		Users\lisa.juan\OneDrive - KH\143159000-RS&H I-595 Arterial Connectivity										
User Notes												

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.563	% Heavy Vehicles	1.8	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns	Left Turn Lanes	Left Turn Phasing	# Left Turn Lanes	LT Storage Length	Lett	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	#	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	25500	1292	2	40	45	Restrictive	No	N/A

Automobile LOS

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue Ratio		Speed (mph)	Segment LOS	
1 (to)	1137	3560	0.710	34.14	С		0.69	26.58	С	
Arterial Length	742 Weighted g/C		FFS elay	4X /X	reshold Delay 0.00	Auto Speed	26.58	Auto LOS	()	

Multimodal Segment Data

Segment #		Pave	1- 1	Side	Side Path Separation			Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	No	No	N/A	Yes	Typical	No	0	0.8	Poor	None

Pedestrian SubSegment Data

	% (% of Segment			Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to) 100			Yes			Typical			No		

Multimodal LOS

	Bicycle Street Link # Score LOS						Ped	lestrian		Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. E	Buses	LOS
1 (to)	4.39	Е	N/A	N/A				3.59	D		0.00	F
	Bicycle LOS	4.39	E			Pede LOS	stria	n 3.59 D		Bus LOS		0 F

ARTPLAN 2012 Conceptual Planning Analysis

Project Information

Analyst		Arterial Name	NW 136th Avenue (North of I- 595)	Study Period	Standard K							
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal							
Agency		То		Program	ARTPLAN 2012							
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012							
Arterial Class	1											
File Name		Users\lisa.juan\OneDrive - KH\143159000-RS&H I-595 Arterial Connectivity dy\MMLOS\NW136thAvenueNorth.xap										
User Notes												

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.563	% Heavy Vehicles	5	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns	Left Turn Lanes	Left Turn Phasing	# Left Turn Lanes	LT Storage Length	Lett	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	#	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	36500	1849	3	45	50	Restrictive	No	N/A

Automobile LOS

Segment #	Thru Mvmt Adj. Sat. Flow Rate Flow Rate		v/c	Control Delay	Int. App	- 1	Queue R	atio	Speed (mph)	Segment LOS
1 (to)	1627	3604	1.003	48.84		D		0.98	24.30	С
Arterial Length	Weighted g/C	1 11 45	FFS Delay	5/1/	reshold Delay	0.00	Auto Speed	###	Auto	###

Multimodal Segment Data

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	No	No	N/A	Yes	Typical	No	5	0.8	Poor	Typical

Pedestrian SubSegment Data

	% of Segment			Sidewalk			S	Barrier			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			Yes			Typical			No	

Multimodal LOS

	Bicyc Stree			Bicycle Sidepath			Ped	lestrian		Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	5.25	F	N/A	N/A				3.71	D		4.49	В
	Bicycle LOS	5.25	F			Pede: LOS	stria	n 3.71 D		Bus LOS	4.4	9 B

- * Service Volumes for the specific facility being analyzed, based on # of lanes from the intersection and segment data screens.
- ** Cannot be achieved based on input data provided.
- *** Not applicable for that level of service letter grade. See generalized tables notes for more details.
- # Under the given conditions, left turn lane storage is highly likely to overflow. The number of directional thru lanes should be reduced accordingly.
- ## Facility weighted g/C exceeds normally acceptable upper range (0.5); verify that g/C inputs are correct.
- ### Intersection capacity (ies) are exceeded for the full hour; an operational level analysis tool is more appropriate for this situation.

ARTPLAN 2012 Conceptual Planning Analysis

Project Information

Analyst		Arterial Name	Flamingo Road (south of I-595)	Study Period	Standard K						
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal						
Agency		То		Program	ARTPLAN 2012						
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012						
Arterial Class	1										
File Name		\Users\lisa.juan\OneDrive - KH\143159000-RS&H I-595 Arterial Connectivity udy\MMLOS\FlamingoRoadSouth.xap									
User Notes											

Arterial Data

К	0.09	PHF	1	Control Type	FullyActuated
D	0.54	% Heavy Vehicles	3.8	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	#	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	38000	1847	3	50	55	Restrictive	No	N/A

Automobile LOS

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Que	ue Ratio	Speed (mph)	Segment LOS
1 (to)	1625	3778	0.956	43.29		D	0.99	27.06	С
Arterial 0.6	Weighted g/C	1 11 45 1	FFS elay	46.30	nreshold Delay 0.00	Auto Spee	1 27.0	6 Auto	

Segment #		Pave	1- 1	Side			Sidewalk Roadway Separation	Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	No	No	N/A	No	N/A	No	0	0.8	Fair	None

Pedestrian SubSegment Data

	% (of Segn	nent	9	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			No	No			N/A			

	Bicyc Stree		Bicyc Sidepa				Ped	lestrian		Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. Buse	LOS
1 (to)	4.99	Е	N/A	N/A				5.49	F	0.0)0 F
	Bicycle LOS	4.99	Е			Pede .OS	stria	n 5.49 F		Bus LOS	.00 F

Project Information

Analyst		Arterial Name	Flamingo Road (north of I-595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\FlamingoRoa		S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.563	% Heavy Vehicles	3.3	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns	Left Turn Lanes	Left Turn Phasing		LT Storage Length	c/C	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	40500	2052	3	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay		pproach .OS	Queue R	Ratio	Speed (mph)	Segment LOS
1 (to)	1806	3681	1.090	86.3	1	F		#	17.64	Е
Arterial Length	742 Weighted g/C	11145	FFS Delay	89.89 T	hreshold Delay	2.77	Auto Speed	###	Auto LOS	###

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	No	No	N/A	No	N/A	No	4	0.8	Poor	Typical

Pedestrian SubSegment Data

	% (of Segn	nent	9	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			No	No			N/A			

	Bicyc Stree		Bicyc Sidepa			ı	Ped	lestrian		E	Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	4.84	Е	N/A	N/A				5.45	F		2.37	D
	Bicycle LOS	4.84	E			Pede: LOS	stria	n 5.45 F		Bus LOS	2.3	7 D

Project Information

Analyst		Arterial Name	Haitus Road (south of I- 595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\HiatusRoadS		S&H I-595 Arte	erial Connectivity	
User Notes	·	·			·

Arterial Data

К	0.09	PHF	1	Control Type	FullyActuated
D	0.563	% Heavy Vehicles	7.6	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	I FIOW I	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	17800	902	2	45	50	Restrictive	No	N/A

Segment #	Thru M Flow F	- 11	Adj. Sat Flow Rat	- 11	v/c	Contr Dela	- 1	proach OS	Queue	Ratio	Speed (mph)	Segment LOS
1 (to)		794	33	344	0.527	29	.89	C		0.47	30.14	С
Arterial Length	747	ighted g/C	0.45		FS elay	32.80	Thres Dela	0.00	Auto Speed	30.1	4 Auto	

Segment #		Pave	1- 1	Side	1		Sidewalk Roadway Separation	Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	No	No	N/A	Yes	Typical	No	0	0.8	Fair	None

Pedestrian SubSegment Data

	% (of Segn	nent	Sidewalk Separation						Barrier		
Segment #	1	2	3	1	2	3	1	1 2 3				
1 (to)	100			Yes		Typical				No		

	Bicyc Stree			Bicycle Sidepath			Pedestrian					
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. I	Buses	LOS
1 (to)	5.90	F	N/A	N/A				3.35	С		0.00	F
	Bicycle LOS	5.90	F			Pede LOS	stria	n 3.35 C		Bus LOS		0 F

Project Information

Analyst		Arterial Name	Haitus Road (north of I- 595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\HiatusRoadN		S&H I-595 Arte	erial Connectivity	
User Notes	·	·		·	

Arterial Data

К	0.09	PHF	1	Control Type	FullyActuated
D	0.563	% Heavy Vehicles	2.9	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	#	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	20000	1013	3	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	I	Queue R	atio	Speed (mph)	Segment LOS
1 (to)	891	3564	0.556	30.46		С		0.53	30.14	С
Arterial Length	Weighted g/C	1 11 45	FFS Delay	37.87	nreshold Delay 0.00		Auto Speed	30.14	4 Auto	(·

Segment #		Pave	1- 1	Side	1		Sidewalk Roadway Separation	Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Adjacent	No	0	0.8	Fair	None

Pedestrian SubSegment Data

	% (of Segn	nent	S	Sidewal	k	S	Barrier			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			Yes			Adjacent	No			

	Bicyc Stree			Bicycle Sidepath			Ped	estrian		Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	2.57	В	N/A	N/A				3.04	С		0.00	F
	Bicycle LOS	2.57	В			Pedes LOS	stria	n 3.04 C		Bus LOS	0.0	0 F

Project Information

Analyst		Arterial Name	Nob Hill Road (south of I- 595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From]	Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\NobHillRoad		S&H I-595 Arte	rial Connectivity	
User Notes	·		<u> </u>	·	

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.563	% Heavy Vehicles	3.8	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	25000	1267	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue R	atio	Speed (mph)	Segment LOS
1 (to)	1115	3578	0.693	33.68			0.67	28.55	С
Arterial Length	742 Weighted g/C	1 11 45 1	FFS elay	.3731	nreshold Delay 0.00	Auto Speed	28.5	Auto	C 11

Segment #		Pave	1- 1	Side	1		Sidewalk Roadway Separation	Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	No	No	N/A	Yes	Typical	No	0	0.8	Fair	None

Pedestrian SubSegment Data

	% (of Segn	nent	S	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			Yes			Typical	No			

	Bicyc Stree		Bicycle Sidepath			Ped	lestrian		Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. Buse	LOS
1 (to)	4.93	Е	N/A	N/A				3.74	D	0.0	00 F
	Bicycle LOS	4.93	Е			Pede LOS	stria	n 3.74 D		Bus LOS	.00 F

Project Information

Analyst		Arterial Name	Nob Hill Road (north of I- 595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal
Agency		То]	Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\NobHillRoad		S&H I-595 Arte	erial Connectivity	
User Notes				·	

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.563	% Heavy Vehicles	2.2	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	35000	1773	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue Ra		Speed (mph)	Segment LOS
1 (to)	1560	3732	0.929	41.82	D		0.95	25.75	С
Arterial Length	742 Weighted g/C	1 11 45 1	FFS elay	46.57	nreshold Delay	Auto Speed	25.75	Auto	(C)

Segment #	Outside Lane Width	Pave		Side	Side Path Separation			Protective	Bus			Bus Stop Type
1 (to)	Typical	Desirable	Yes	No	N/A	Yes	Wide	Yes	0	0.8	Fair	None

Pedestrian SubSegment Data

	% (of Segn	nent	Sidewalk			S	Barrier		
Segment #	1	2	3	1	2	3	1	2	3	1 2
1 (to)	100			Yes			Wide			Yes

	Bicycle Street			Bicycle Sidepath Pedestrian										Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. E	Buses	LOS			
1 (to)	2.77	С	N/A	N/A				3.89	D		0.00	F			
	Bicycle LOS	2.77	С			Pede LOS	stria	n 3.89 D		Bus LOS		0 F			

Project Information

Analyst			Nob Hill Road (north of I- 595)	Study Period	Standard K						
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal						
Agency		То		Program	ARTPLAN 2012						
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012						
Arterial Class	1										
File Name		\Users\lisa.juan\OneDrive - KH\143159000-RS&H I-595 Arterial Connectivity udy\MMLOS\NobHillRoadNorthBroward.xap									
User Notes											

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.563	% Heavy Vehicles	2.2	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns		Left Turn Lanes	Left Turn Phasing		LT Storage Length	Leπ α/C	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	#	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	31500	1596	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue R	latio	Speed (mph)	Segment LOS
1 (to)	1404	3723	0.838	38.09	D		0.86	26.93	С
Arterial Length	742 Weighted g/C	1 11 45 1	FFS elay	47.40	nreshold Delay 0.00	Auto Speed	26.93	Auto LOS	C 11

Segment #		Pave		Side	Side Path Separation			Protective	Bus			Bus Stop Type
1 (to)	Typical	Typical	No	No	N/A	Yes	Wide	Yes	0	0.8	Fair	None

Pedestrian SubSegment Data

	% (of Segn	nent	S	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			Yes			Wide			Yes	

	Bicyc Stree		Bicyc Sidepa			l	Ped	estrian		E	Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	4.65	Е	N/A	N/A				3.86	D		0.00	F
	Bicycle LOS	4.65	E			Pedes LOS	stria	n 3.86 D		Bus LOS	0.0	0 F

Project Information

Analyst		Arterial Name	Pine Island Road (south of I-595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	2				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\PineIslandR	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	CoordinatedActuated
D	0.563	% Heavy Vehicles	6	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	120	0.44	4	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	1000	35500	1799	3	35	40	Restrictive	No	N/A

Segment #		ru Mvmt ow Rate	Adj. Sat Flow Rat		Contr Dela	11	Approach LOS	Queue	Ratio	Speed (mph)	Segment LOS
1 (to)		1583	33	307 1.0	88 68	3.33		E	0.79	8.14	F
Arterial Length	2008	Weighted g/C	0.44	FFS Delay	71.70	Threshold Delay	33.15	Auto Speed	###	Auto LOS	###

Segment #	Outside Lane Width	Pave	1-	Side	Side Path Separation			Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Desirable	Yes	No	N/A	Yes	Adjacent	No	0	0.8	Fair	None

Pedestrian SubSegment Data

	% (of Segn	nent	Sidewalk			S	Barrier		
Segment #	1	2	3	1	2	3	1	2	3	1 2 3
1 (to)	100			Yes			Adjacent			No

	Bicyc Stree		Bicyc Sidepa				Ped	lestrian			Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. I	Buses	LOS
1 (to)	3.26	С	N/A	N/A				3.19	С		0.00	F
	Bicycle LOS	3.26	С			Pede LOS	stria	n 3.19 C		Bus LOS		0 F

Project Information

Analyst		Arterial Name	Pine Island Road (north of I-595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	2				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\PineIslandR	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	CoordinatedActuated
D	0.563	% Heavy Vehicles	3.4	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	120	0.44	4	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	1000	51500	2610	3	35	40	Restrictive	No	N/A

	Segment #		Mvmt v Rate	Adj. Sat Flow Rat	11	С	Contro Delay	- 11		pproach .OS	Queue I	Ratio	Speed (mph)	Segment LOS
	1 (to)		2297	34	1.4	165	270.	19		F		#	2.48	F
Ī	Arterial Length	2008 W	Veighted g/C	0.44	FFS Delay	2	274.01		eshold Delay	235.47	Auto Speed	###	Auto LOS	

Segment #	Outside Lane Width	Pave	1- 1	Side			Sidewalk Roadway Separation	Protective			Amenities	Bus Stop Type
1 (to)	Typical	Desirable	Yes	No	N/A	Yes	Adjacent	No	4	0.8	Fair	Typical

Pedestrian SubSegment Data

	% (of Segn	nent	5	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1 2 3	
1 (to)	100			Yes			Adjacent			No	

	Bicyc Stree		Bicyc Sidepa				Ped	estrian			Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	2.81	С	N/A	N/A				3.79	D		4.79	В
	Bicycle LOS	2.81	С			Pede LOS	stria	n 3.79 D		Bus LOS	4.7	9 B

Project Information

Analyst		Arterial Name	Pine Island Road (north of Broward)	Study Period	Standard K					
Date Prepared	3/25/2020 1:04:59 PM	From]	Modal Analysis	Multimodal					
Agency		То]	Program	ARTPLAN 2012					
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012					
Arterial Class	2									
File Name		\Users\lisa.juan\OneDrive - KH\143159000-RS&H I-595 Arterial Connectivity Ldy\MMLOS\PineIslandRoadNorthBroward.xap								
User Notes										

Arterial Data

K	0.09	PHF	1	Control Type	CoordinatedActuated
D	0.563	% Heavy Vehicles	3.4	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	120	0.44	4	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	1000	37500	1900	3	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay		pproach .OS	Queue R	latio	Speed (mph)	Segment LOS
1 (to)	1672	365	0 1.041	46.7	0	D		0.81	11.42	Е
Arterial Length	:008 Weighted	1 11 44 1	FFS Delay	49.65	hreshold Delay	7.69	Auto Speed	###	Auto	###

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	No	No	N/A	Yes	Adjacent	No	4	0.8	Fair	Typical

Pedestrian SubSegment Data

	% (of Segn	nent	S	Sidewal	k	S	Barrier			
Segment #	1 2 3 1 2 3 1 2 3				1	2 3					
1 (to)	100			Yes	Yes Adjacent					No	

	Bicyc Stree		Bicyc Sidepa			l	Ped	lestrian		Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	4.77	Е	N/A	N/A				3.74	D		3.99	С
	Bicycle LOS	4.77	E			Pede: LOS	stria	n 3.74 D		Bus LOS	3.99	9 C

Project Information

Analyst		Arterial Name	University Drive (south of I-595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\UniversityDı	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	2.8	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	62000	5574	3	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue R	atio	Speed (mph)	Segment LOS
1 (to)	4905	3704	2.943	804.60	F		#	2.82	F
Arterial Length	742 Weighted g/C	11145	FFS Delay	X14 19	reshold Delay 727.07	Auto Speed	###	Auto	###

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	6	0.8	Excellent	Typical

Pedestrian SubSegment Data

	% (of Segn	nent	5	Sidewal	k	S	Barrier		
Segment #	1	2	3	1	2	3	1	2	3	1 2
1 (to)	100			Yes	Yes Typical				No	

	Bicycle Street						Ped		Bus			
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	3.45	С	N/A	N/A				6.15	F		5.43	В
	Bicycle LOS	3.45	С			Pede LOS	stria	n 6.15 F		Bus LOS	5.4	3 B

Project Information

Analyst		Arterial Name	University Drive (north of I-595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From]	Modal Analysis	Multimodal
Agency		То]	Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\UniversityDı	•	RS&H I-595 Arte	erial Connectivity	
User Notes		•	·	·	

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.563	% Heavy Vehicles	2.5	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	83500	4231	3	45	50	Restrictive	No	N/A

Segment #	11	Mvmt Rate	Adj. Sat. Flow Rate	11	Contro Delay	I I	pproach LOS	Queue I	Ratio	Speed (mph)	Segment LOS
1 (to)		3723	37	18 2.226	-14455	5.36	A	A	#	-0.17	F
Arterial Length	6742 W	/eighted g/C	0.45	FFS Delay	- 14448.57	Threshold Delay	0.00	Auto Speed	###	Auto	###

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	6	0.8	Excellent	Typical

Pedestrian SubSegment Data

	% of Segment			S	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100	100			Yes			Typical			

	Bicyc Stree		Bicyc Sidepa					lestrian		Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. Bı	ıses	LOS
1 (to)	3.28	С	N/A	N/A				5.21	F		5.43	В
	Bicycle LOS	3.28	С			Pede: LOS	stria	n 5.21 F		Bus LOS	5.43	3 B

Project Information

Analyst		Arterial Name	Davie Road (south of I- 595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	2				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\DavieRoadS	•	S&H I-595 Arte	erial Connectivity	
User Notes		•			

Arterial Data

K	0.09	PHF	1	Control Type	CoordinatedActuated
D	0.563	% Heavy Vehicles	3.9	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns	Left Turn Lanes	Left Turn Phasing	# Left Turn Lanes	Channa	Left	Right Turn Lanes
	150	0.45	3	2	12	12		Protected		235		

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	46500	2356	3	35	40	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approa LOS	ch	Queue R	atio	Speed (mph)	Segment LOS
1 (to)	2073	3434	1.342	211.44		F		#	8.78	F
Arterial Length	742 Weighted g/C	0.45	FFS Delay	216.79 TI	nreshold Delay	'3	Auto Speed	###	Auto	###

Segment #	Outside Lane Width	Pave	1- 1	Side			Sidewalk Roadway Separation	Protective		I	Amenities	Bus Stop Type
1 (to)	Typical	Desirable	Yes	No	N/A	Yes	Adjacent	No	2	0.8	Fair	Typical

Pedestrian SubSegment Data

	% (of Segn	nent	5	Sidewal	k	S	Barrier		
Segment #	1	2	3	1	2	3	1	2	3	1 2 3
1 (to)	100			Yes	Adjacent				No	

	Bicyc Stree	Bicyc Sidepa				Ped	estrian		Bus			
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. E	Buses	LOS
1 (to)	2.94	С	N/A	N/A				3.67	D		2.39	D
	Bicycle LOS	2.94	С			Pede LOS	stria	n 3.67 D		Bus LOS		9 D

Project Information

Analyst		Arterial Name	US 441 (south of I- 595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From]	Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\US441South	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.545	% Heavy Vehicles	9.9	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns	Left Turn Lanes	Left Turn Phasing		LT Storage Length	c/C	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	52500	2575	3	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue Ra	itio	Speed (mph)	Segment LOS
1 (to)	2266	3401	1.481	284.63	F		#	7.21	F
Arterial Length	742 Weighted g/C	0.45	FFS .	288.89 I	reshold Delay	Auto Speed	###	Auto LOS	###

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	7	0.8	Poor	Typical

Pedestrian SubSegment Data

	% (of Segn	nent	S	idewal	k	S	Barrier			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100		Yes Typical					No			

	Bicyc Stree	Bicyc Sidepa				Ped	lestrian		Bus			
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	5.31	F	N/A	N/A				4.03	D		7.54	Α
	Bicycle LOS	5.31	F			Pede LOS	stria	n 4.03 D		Bus LOS	7.5	4 A

Project Information

Analyst		Arterial Name	US 441 (north of I- 595)	Study Period	Standard K
Date Prepared	3/25/2020 1:04:59 PM	From]	Modal Analysis	Multimodal
Agency		То]	Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\US441North	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.544	% Heavy Vehicles	4.3	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	50500	2472	3	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue R	Ratio	Speed (mph)	Segment LOS
1 (to)	2175	3635	1.330	205.30	F		#	9.44	F
Arterial Length	742 Weighted g/C	1 11 45	FFS Delay	209.42 Ti	nreshold Delay	Auto Speed	###	Auto LOS	

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	8	0.8	Fair	Typical

Pedestrian SubSegment Data

	% (of Segn	nent	S	Sidewalk			Separation			
Segment #	1	1 2 3			1 2 3		1 2		3	1	2 3
1 (to)	100	100					Typical	No			

	Bicyc Stree			Bicycle Sidepath			Ped	lestrian		Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. E	Buses	LOS
1 (to)	3.49	С	N/A	N/A				3.96	D		9.58	Α
	Bicycle LOS	3.49	С			Pede: LOS	stria	n 3.96 D		Bus LOS		8 A

Project Information

Analyst			US 441 (north of I- 595)	Study Period	Standard K						
Date Prepared	3/25/2020 1:04:59 PM	From		Modal Analysis	Multimodal						
Agency		То		Program	ARTPLAN 2012						
Area Type	Large Urbanized	Peak Direction	Northbound	Version Date	12/12/2012						
Arterial Class	1										
File Name		Users\lisa.juan\OneDrive - KH\143159000-RS&H I-595 Arterial Connectivity dy\MMLOS\US441NoSidewalk.xap									
User Notes	er Notes										

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.544	% Heavy Vehicles	4.3	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns	Left Turn Lanes	Left Turn Phasing		LT Storage Length	c/C	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	50500	2472	3	45	50	Restrictive	No	N/A

Segment # Thru Mvmt Flow Rate		-	Adj. Sat Flow Rat	11	Contro Delay	11	Int. Approach LOS		Ratio	Speed (mph)	Segment LOS
1 (to)		2175	36	35 1.33	0 205.	30	F		#	9.44	F
Arterial Length	Arterial 0.6742 Weighte		0.45	FFS Delay	209.42	Threshold Delay	122.30	Auto Speed	###	Auto LOS	

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	No	No	N/A	No	N/A	No	7	0.8	Poor	Typical

Pedestrian SubSegment Data

	% (of Segn	nent	S	idewal	k	S	Barrier			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			No			N/A			No	

	Bicyc Stree		Bicyc Sidepa			Pedestrian				Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	5.19	F	N/A	N/A				5.75	F		4.15	В
	Bicycle LOS	5.19	F			Pede: LOS	stria	n 5.75 F		Bus LOS	4.1	5 B

Project Information

Analyst		Arterial Name	SR 84WB_E of 136th Avenue	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То]	Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84WB_EI	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	2.3	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	#	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	11000	989	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue Ra		Speed (mph)	Segment LOS
1 (to)	870	3586	0.539	30.12	С		0.51	29.99	С
Arterial Length	742 Weighted g/C	1145	FFS elay	33.20	reshold Delay 0.00	Auto Speed	29.99	Auto LOS	С

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	1	0.8	Poor	Typical

Pedestrian SubSegment Data

	% (of Segn	nent	Sidewalk			S	Barrier			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			Yes	Yes Typical					No	

	Bicyc Stree		Bicyc Sidepa			Pedestrian				Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	2.72	В	N/A	N/A				3.25	С		0.94	F
	Bicycle LOS	2.72	В			Pedes LOS	stria	n 3.25 C		Bus LOS	0.9	4 F

Project Information

Analyst		Arterial Name	SR84EB_E of I-75	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84EB_EI7	•	S&H I-595 Arte	rial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	2	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns	Left Turn Lanes	Left Turn Phasing		LT Storage Length	Lett	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	. # 1	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	20000	1798	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue Ratio	Speed (mph)	Segment LOS
1 (to)	1582	3741	0.940	42.38	D	0.	97 25.59	С
Arterial Length	742 Weighted g/C		FFS Delay	4/13	reshold Delay 0.00	Auto Speed 2!	5.59 Aut	- (

Segment #		Pave		Side			Sidewalk Roadway Separation	Protective	Bus		Amenities	Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	1	0.8	Fair	Typical

Pedestrian SubSegment Data

	% of Segment Sidewalk Separation							Barrier			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			Yes			Typical			No	

	Bicyc Stree		Bicyc Sidepa				Ped	lestrian			Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	2.96	С	N/A	N/A				4.11	D		1.00	F
	Bicycle LOS	2.96	С			Pede LOS	stria	n 4.11 D		Bus LOS	1.0	0 F

Project Information

Analyst		Arterial Name	SR 84WB_E of 136th Avenue	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84WB_E1		S&H I-595 Arte	erial Connectivity	
User Notes			·		•

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	3.2	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	24000	2158	2	45	50	Restrictive	No	N/A

	Segment #	H	ru Mvmt ow Rate	Adj. Sat Flow Rat	11	с	Contro Delay			pproach OS		Queue R	atio	Speed (mph)	Segment LOS
E	1 (to)		1899	36	85 1.	L45	112.	89		I	F		#	14.60	F
	Arterial Length	5742	Weighted g/C	0.45	FFS Delay	1	18.47	_	shold lay	31.35		Auto Speed	###	Auto	###

Segment #		Pave	1- 1	Side			Sidewalk Roadway Separation	Protective	Bus			Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	No	N/A	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	5	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1 2 3	
1 (to)	100			No			N/A			No	

	Bicyc Stree		Bicyc Sidepa				Ped	estrian		E	Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. Bı	uses	LOS
1 (to)	3.32	С	N/A	N/A				5.68	F		0.59	F
	Bicycle LOS	3.32	С			Pede LOS	stria	ⁿ 5.68 F		Bus LOS	0.5	9 F

Project Information

Analyst		Arterial Name	SR84EB_E 136th Avenue	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84EB_E1:	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	5.2	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	24500	2203	2	45	50	Restrictive	No	N/A

Segment #	- 11	nru Mvmt low Rate	Adj. Sat Flow Rat	11	Control Delay	Int. Appr LOS		Queue R	Ratio	Speed (mph)	Segment LOS
1 (to)		1939	35	595 1.198	139.03	В	F		#	12.61	F
Arterial Length	.6742	Weighted g/C	0.45	FFS Delay	144.72 T	hreshold Delay	57.60	Auto Speed	###	Auto	

Segment #		Pave	1- 1	Side	Side Path Separation			Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	S	idewal	k	S	Barrier			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			Yes	Yes			Typical			

	Bicyc Stree		Bicyc Sidepa			l	Ped	estrian		В	us	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. Bu	ıses	LOS
1 (to)	3.86	D	N/A	N/A				4.54	Е		1.14	Е
	Bicycle LOS	3.86	D			Pede: LOS	stria	n 4.54 E		Bus LOS	1.14	4 E

Project Information

Analyst		Arterial Name	SR 84WB_E of Flamingo Road	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84WB_EF		S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	4.3	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	17500	1573	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay		proach OS	Queue R	latio	Speed (mph)	Segment LOS
1 (to)	1384	3621	0.849	38.54		D		0.85	26.81	С
Arterial Length	742 Weighted g/C	11145	FFS Delay	42.80 TI	hreshold Delay	0.00	Auto Speed	26.8	1 Auto	C 11

Segment #		Pave	1- 1	Side	1		Sidewalk Roadway Separation	Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	No	N/A	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	Sidewalk			S	Barrier			
Segment #	1	1 2 3			. 2 3			2	3	1	2 3
1 (to)	100	100			No			N/A			

	Bicyc Stree		Bicyc Sidepa	Pedestrian					Bus			
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. E	Buses	LOS
1 (to)	3.46	С	N/A	N/A				5.06	F		0.59	F
	Bicycle LOS	3.46	С			Pede LOS	stria	ⁿ 5.06 F		Bus LOS		9 F

Project Information

Analyst		Arterial Name	SR84_E of Flamingo Rd	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84EB_EFI	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	3.4	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns	Left Turn Lanes	Left Turn Phasing		LT Storage Length	Lett	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	· • #		Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	26500	2383	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate		Control Delay		pproach .OS	Queue R	latio	Speed (mph)	Segment LOS
1 (to)	2097	36	76 1.268	173.7	5	F		#	10.66	F
Arterial 0.6	Weighte g/C	d 0.45	FFS Delay	179.88	Threshold Delay	92.76	Auto Speed	###	Auto	###

Segment #		Pave	1- 1	Side	Side Path Separation			Protective	Bus			Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	S	idewal	k	S	Barrier			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100	100 Yes Typical				No					

	Bicyc Stree		Bicyc Sidepa						Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. Buses	LOS
1 (to)	3.41	С	N/A	N/A				4.73	Е	1.14	Е
	Bicycle LOS	3.41	С			edes OS	stria	ⁿ 4.73 E		Bus LOS 1.1	4 E

Project Information

Analyst		Arterial Name	SR 84WB_E of Haitus Road	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84WB_EH		S&H I-595 Arte	erial Connectivity	
User Notes		·	<u> </u>	·	·

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	2.8	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	. # I	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	14000	1259	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue R	latio	Speed (mph)	Segment LOS
1 (to)	1108	3621	0.680	33.34	(0.67	28.66	С
Arterial Length	742 Weighted g/C	1 11 45 1	FFS elay	36.95	nreshold Delay 0.00	Auto Speed	28.60	6 Auto	C 11

Segment #		Pave	1- 1	Side			Sidewalk Roadway Separation	Protective	Bus			Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	No	N/A	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	9	Sidewal	k	S	Barrier			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			No			N/A			No	

	Bicyc Stree		Bicycle Sidepath		Ped			lestrian		Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. I	Buses	LOS
1 (to)	2.98	С	N/A	N/A				4.73	Е		0.92	F
	Bicycle LOS	2.98	С			Pede LOS	stria	n 4.73 E		Bus LOS		2 F

Project Information

Analyst		Arterial Name	SR84EB - East of Hiatus Rd	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84EB_EH	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	2.8	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	16000	1439	2	45	50	Restrictive	No	N/A

	Segment :	#		ru Mvmt ow Rate	Adj. Sat Flow Ra	- 11	v/c	Contr Dela	-		pproach OS	Queu	e Ratio	Speed (mph)	Segment LOS
1	L (to)			1266	30	660	0.769	35	.83		Г		0.77	27.73	С
	Arterial Length	0.67	42	Weighted g/C	0.45		FS elay	39.81		reshold Delay	0.00	Auto Speed	27.7	3 Auto	- C

Segment #		Pave	1- 1	Side	Side Path Separation			Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	S	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			Yes			Typical			No	

	Bicyc Stree		Bicyc Sidepa		Pedestrian					Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. B	uses	LOS
1 (to)	3.04	С	N/A	N/A				3.73	D		1.08	Е
	Bicycle LOS	3.04	С			Pede: LOS	stria	n 3.73 D		Bus LOS	1.0	8 E

Project Information

Analyst		Arterial Name	SR 84WB_E of Nob Hill Road	Study Period	Standard K							
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal							
Agency		То		Program	ARTPLAN 2012							
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012							
Arterial Class	1											
File Name		\Users\lisa.juan\OneDrive - KH\143159000-RS&H I-595 Arterial Connectivity udy\MMLOS\SR84WB_ENobHill.xap										
User Notes												

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	2.9	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	#	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	16000	1439	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue F	Ratio	Speed (mph)	Segment LOS
1 (to)	1266	3655	0.770	35.86			0.77	27.72	С
Arterial Length	742 Weighted g/C	1 11 45	FFS elay	39.84	nreshold Delay 0.00	Auto Speed	27.7	2 Auto	C 11

Segment #		Pave	1- 1	Side	1		Sidewalk Roadway Separation	Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	No	N/A	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	9	Sidewal	k	S	Barrier			
Segment #	1	1 2 3			2	3	1	2	3	1	2 3
1 (to)	100			No			N/A		No		

	Bicyc Stree		Bicyc Sidepa				Ped	lestrian		Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. Buses	LOS
1 (to)	3.06	С	N/A	N/A				4.92	Е	0.92	F
	Bicycle LOS	3.06	С			Pede -OS	stria	n 4.92 E		Bus LOS 0.9	2 F

Project Information

Analyst		Arterial Name	SR84EB_E of Nob Hill Road	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84EB_EN	•	S&H I-595 Arte	rial Connectivity	
User Notes		·	_	·	·

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	3	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns	Left Turn Lanes	Left Turn Phasing	# Left Turn Lanes	LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	. # .	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	21000	1888	2	45	50	Restrictive	No	N/A

Segment #	II -	u Mvmt w Rate	Adj. Sat Flow Rat		//c	Contro Delay	11	Approach LOS	Queue R	atio	Speed (mph)	Segment LOS
1 (to)		1661	36	594 0	.999	47.	.76	I		#	24.17	С
Arterial 0.6	5742 \	Weighted g/C	0.45	FFS Dela		52.72	Threshold Delay	0.00	Auto Speed	24.17	Auto	(·

Segment #		Pave	1- 1	Side	Side Path Separation			Protective	Bus	1		Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	5	Sidewal	k	S	Barrier	
Segment #	1	2	3	3 1 2 3 1 2 3					1 2
1 (to)	100			Yes			Typical		No

	Bicyc Stree		Bicyc Sidepa				Ped	lestrian		E	Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. Bu	ıses	LOS
1 (to)	3.21	С	N/A	N/A				4.20	D		1.08	Е
	Bicycle LOS	3.21	С			Pede LOS	stria	n 4.20 D		Bus LOS	1.0	8 E

Project Information

Analyst		Arterial Name	SR 84WB_E of Pine Island Road	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From]	Modal Analysis	Multimodal
Agency		То]	Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84WB_EF		S&H I-595 Arte	rial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	2.8	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	24000	2158	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue R	latio	Speed (mph)	Segment LOS
1 (to)	1899	3704	1.139	110.09	F		#	14.85	F
Arterial Length	742 Weighted g/C	11145	FFS elay	115.67	reshold Delay 28.55	Auto Speed	###	. Auto	###

Segment #		Pave	1- 1	Side			Sidewalk Roadway Separation	Protective	Bus			Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	No	N/A	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	9	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1	2 3
1 (to)	100			No			N/A			No	

	Bicyc Stree			Bicycle Sidepath Pedestrian						Bus		
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. E	Buses	LOS
1 (to)	3.23	С	N/A	N/A				5.68	F		0.59	F
	Bicycle LOS	3.23	С			Pede LOS	stria	ⁿ 5.68 F		Bus LOS		9 F

Project Information

Analyst		Arterial Name	SR84EB_East of Pine Island Road	Study Period	Standard K						
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal						
Agency		То		Program	ARTPLAN 2012						
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012						
Arterial Class	1										
File Name		\Users\lisa.juan\OneDrive - KH\143159000-RS&H I-595 Arterial Connectivity udy\MMLOS\SR84EB_EPine.xap									
User Notes											

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	3.1	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	23500	2113	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue R	atio	Speed (mph)	Segment LOS
1 (to)	1859	3690	1.120	100.57	F		#	15.78	Е
Arterial Length	742 Weighted g/C	0.45	FFS elay	106.05	reshold Delay	Auto Speed	###	Auto	###

Segment #		Pave	1- 1	Side	Side Path Separation			Protective	Bus			Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	5	Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1 2	
1 (to)	100	100 Yes						No			

	Bicyc Stree		Bicyc Sidepa				Ped	estrian			Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. I	Buses	LOS
1 (to)	3.29	С	N/A	N/A				4.44	Е		0.92	F
	Bicycle LOS	3.29	С			Pede LOS	stria	n 4.44 E		Bus LOS		2 F

Project Information

Analyst		Arterial Name	SR 84WB_E of University Drive	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From		Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84WB_EU	•	S&H I-595 Arte	erial Connectivity	
User Notes					

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	5.8	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	SEG # Dir.Lanes	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	28000	2517	2	45	50	Restrictive	No	N/A

Segment #		ru Mvmt ow Rate	Adj. Sat Flow Rat		Contro Delay	11	pproach .OS	Queue F	Ratio	Speed (mph)	Segment LOS
1 (to)		2215	35	1.37	9 230.	71	F		#	8.52	F
Arterial Length	742	Weighted g/C	0.45	FFS Delay	237.18	Threshold Delay	150.06	Auto Speed	###	Auto LOS	###

Segment #		Pave	1- 1	Side			Sidewalk Roadway Separation	Protective	Bus			Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	No	N/A	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (% of Segment			Sidewalk			Separation			
Segment #	1	2	3	1	2	3	1	2	3	1 2	3
1 (to)	100			No	No			N/A			

	Bicyc Stree		Bicyc Sidepa				Ped	estrian		Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. Buses	LOS
1 (to)	4.08	D	N/A	N/A				6.07	F	0.74	1 F
	Bicycle LOS	4.08	D			Pede LOS	stria	ⁿ 6.07 F		Bus LOS 0.7	74 F

Project Information

Analyst		Arterial Name	SR84EB_E of University Drive	Study Period	Standard K
Date Prepared	3/24/2020 3:23:24 PM	From]	Modal Analysis	Multimodal
Agency		То		Program	ARTPLAN 2012
Area Type	Large Urbanized	Peak Direction	Eastbound	Version Date	12/12/2012
Arterial Class	1				
File Name	C:\Users\lisa.juan\OneDriv Study\MMLOS\SR84EB_EU	•	S&H I-595 Arte	erial Connectivity	
User Notes			·		

Arterial Data

K	0.09	PHF	1	Control Type	FullyActuated
D	0.999	% Heavy Vehicles	3.1	Base Sat. Flow Rate	1950

Automobile Intersection Data

Cross Street	Cycle Length	Thru g/C	Arr. Type	INT # Dir.Lanes	% Left Turns	% Right Turns		Left Turn Phasing		LT Storage Length	Left	Right Turn Lanes
	150	0.45	3	2	12	12	Yes	Protected	1	235	0.15	No

Automobile Segment Data

Segment #	Length	AADT	Hourly Vol.	#	Posted Speed	Free Flow Speed	Median Type	On-Street Parking	Parking Activity
1 (to)	3500	23500	2113	2	45	50	Restrictive	No	N/A

Segment #	Thru Mvmt Flow Rate	Adj. Sat. Flow Rate	v/c	Control Delay	Int. Approach LOS	Queue R	latio	Speed (mph)	Segment LOS
1 (to)	1859	3690	1.120	100.57		=	#	15.78	Е
Arterial Length	742 Weighted g/C	11145	FFS Delay	106 05	nreshold Delay	Auto Speed	###	Auto	###

Segment #		Pave	1- 1	Side	Side Path Separation			Protective	Bus			Bus Stop Type
1 (to)	Typical	Typical	Yes	No	N/A	Yes	Typical	No	1	0.8	Poor	None

Pedestrian SubSegment Data

	% (of Segn	nent	5	Sidewal	k	S	eparatior	1	Barrier
Segment #	1	2	3	1	2	3	1	2	3	1 2
1 (to)	100			Yes			Typical			No

	Bicyc Stree		Bicyc Sidepa				Ped	estrian			Bus	
Link #	Score	LOS	Score	LOS	1	2	3	Score	LOS	Adj. I	Buses	LOS
1 (to)	3.29	С	N/A	N/A				4.44	Е		0.92	F
	Bicycle LOS	3.29	С			Pede LOS	stria	n 4.44 E		Bus LOS		2 F

Appendix G – Bus Stop Information

Ma _l		Main Street	Cross Street	Service Direction	Stop Place ment	BCT Route(s) Served	Muni- cipality	Right-of- Way Type	Total Daily Stop Activity ¹	Shelter	Shelter Type	Bench ²		Bike Rack	Trash Can ²			Landing Pad	Shelter				ADA Class ³	Google Streetview Image
45	15/65	NW 136 AVE	NW 3 ST	NB	NEARSIDE	ROUTE 23	PLANTATION	LOCAL	0	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	А	
46	5266	NW 136 AVE	NW 2 ST	NB	FARSIDE	ROUTE 23	PLANTATION	COUNTY	0	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	А	
47	15/6/	NW 136 AVE	NW 6 ST	NB	FARSIDE	ROUTE 23	PLANTATION	COUNTY	0	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	А	
48	5268	NW 136 AVE	NW 8 ST	NB	NEARSIDE	ROUTE 23	PLANTATION	LOCAL	0	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	YES	А	
49	5269	NW 136 AVE	NW 8 ST	SB	FARSIDE	ROUTE 23	SUNRISE	LOCAL	0	NO	N/A	YES	Precast steel without seat divider (without advertising)	NO	YES	NO	YES	YES	NO	YES	YES	NO	F	
50	15//0	NW 136 AVE	NW 6 ST	SB	NEARSIDE	ROUTE 23	SUNRISE	LOCAL	0	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	F	

Map	BCT Stop ID # Main Street	Cross Street	Service Direction	Stop Place ment	BCT Route(s) Served	Muni- cipality	Right-of- Way Type	Total Daily Stop Activity ¹	Shelter	Shelter Type	Bench ²	Bench Type	Bike Rack	Trash Can ²		Side Walk	Landing Pad	Shelter Pad		ID Sticker	ADA Sticker		Google Streetview Image
51	5271 NW 136 AVE	NW 2 ST	SB	NEARSIDE	ROUTE 23	SUNRISE	LOCAL	0	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	F	
52	5272 NW 136 AVE	NW 3 ST	SB	FARSIDE	ROUTE 23	SUNRISE	LOCAL	0	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	F	
34	3591 FLAMINGO RD	BROWARD BLVD	NB	FARSIDE	ROUTE 22	PLANTATION	LOCAL	21	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	YES	NO	YES	YES	NO	YES	NO	NO	А	
35	3604 FLAMINGO RD	VISTA ISLES DR	SB	FARSIDE	ROUTE 22	SUNRISE	LOCAL	4	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	А	
40	4069 FLAMINGO RD	VISTA ISLES DR	SB	FARSIDE	ROUTE 22	SUNRISE	LOCAL	4	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	А	
41	4080 FLAMINGO RD	NW 8 ST	NB	NEARSIDE	ROUTE 22	SUNRISE	LOCAL	4	NO	N/A	NO	N/A	NO	NO	NO	NO	YES	NO	YES	YES	NO	NN	

Map		Main Street	Cross Street	Service Direction	Stop Place ment	BCT Route(s) Served	Muni- cipality	Right-of- Way Type	Total Daily Stop Activity ¹	Shelter	Shelter Type	Bench ²	Bench Type	Bike Rack	Trash Can ²		Side Walk	Landing Pad				ADA Sticker	ADA Class ³	Google Streetview Image
30	3572	PINE ISLAND RD	SW 3 ST	NB	FARSIDE	ROUTE 30	PLANTATION	COUNTY	34	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	YES	NO	YES	YES	NO	YES	YES	NO	F	
31	3573	PINE ISLAND RD	SW 3 ST	SB	FARSIDE	ROUTE 30	PLANTATION	COUNTY	19	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	NO	F	
32	3574	PINE ISLAND RD	SW 6 ST	NB	FARSIDE	ROUTE 30	PLANTATION	COUNTY	24	NO	N/A	YES	Precast steel and seat divider (with advertising)	NO	YES	NO	YES	YES	NO	YES	YES	NO	F	Printifoors
33	3575	PINE ISLAND RD	SW 6 ST	SB	FARSIDE	ROUTE 30	PLANTATION	COUNTY	19	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	NO	F	Liny's Tarson
03	0164	UNIVERSITY DR	NOVA DR	NB	FARSIDE	ROUTE 2, 12, & UNIVERSITY BREEZE	DAVIE	STATE	92	YES	Cast in place 4- column brick with metal roof and solar panels	YES	Precast steel with seat dividers (without advertising)	YES	YES	YES	YES	YES	YES	YES	YES	YES	А	
04	0165	UNIVERSITY DR	SW 13 PL	NB	NEARSIDE	ROUTE 2 & 12	PLANTATION	STATE	39	YES	Cast in place 2- column brick with shingled roof	YES (2)	Precast steel with seat divider (without advertising) and cast in place brick built into shelter base with no seat divider	NO	YES (2)	YES	YES	YES	YES	YES	YES	YES	А	

Map	_	Main Street	Cross Street	Service Direction	Stop Place ment	BCT Route(s) Served	Muni- cipality	Right-of- Way Type	Total Daily Stop Activity ¹	Shelter	Shelter Type	Bench ²	Bench Type	Bike Rack	Trash Can ²		Side Walk	Landing Pad	Shelter Pad		ID Sticker	ADA Sticker	ADA Class ³	Google Streetview Image
05	0166	UNIVERSITY DR	PETERS RD	NB	FARSIDE	ROUTE 2, 12, & UNIVERSITY BREEZE	PLANTATION	STATE	106	YES	Cast in place 2-column brick with shingled roof	YES (2)	Precast steel with seat divider (with advertising) and cast in place brick built into shelter base with no seat divider	NO	YES (2)	YES	YES	YES	YES	YES	YES	YES	А	
06	0277	UNIVERSITY DR	I-595	SB	FARSIDE	ROUTE 2 & 12	DAVIE	STATE	55	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	YES	YES	YES	NO	YES	YES	NO	А	SUMMY CONTRACTOR OF THE PARTY O
15	2469	UNIVERSITY DR	SW 10 ST	SB	FARSIDE	ROUTE 2 & 12	PLANTATION	STATE	6	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	YES	А	
16	3203	UNIVERSITY DR	SW 8 ST	NB	NEARSIDE	ROUTE 2 & 12	PLANTATION	STATE	24	YES	Cast in place 2-column brick with shingled roof	YES (2)	Precast steel with seat divider (with advertising) and cast in place brick built into shelter base with no seat divider	NO	YES (2)	NO	YES	YES	YES	YES	YES	YES	А	
21	3416	UNIVERSITY DR	K-MART	NB	OPPOSITE	ROUTE 2 & 12	DAVIE	STATE	43	YES	Cast in place 2- column brick with metal roof and solar panels	YES	Precast steel with seat divider (without advertising)	YES (2)	YES	NO	YES	YES	YES	YES	YES	YES	А	
22	3417	UNIVERSITY DR	SW 8 ST	SB	FARSIDE	ROUTE 2 & 12	PLANTATION	STATE	20	YES	Cast in place 2- column brick with shingled roof	YES (2)	Precast steel with seat divider (with advertising) and cast in place brick built into shelter base with no seat divider	NO	YES (2)	YES	YES	YES	YES	YES	YES	YES	А	

Map		Main Street	Cross Street	Service Direction	Stop Place- ment	BCT Route(s) Served	Muni- cipality	Right-of- Way Type	Total Daily Stop Activity ¹	Shelter	Shelter Type	Bench ²	Bench Type	Bike Rack	Trash Can ²		Side Walk	Landing Pad	Shelter Pad		ID Sticker	ADA Sticker	ADA Class ³	Google Streetview Image
23	3446	UNIVERSITY DR	SW 30 ST	NB		ROUTE 2 & UNIVERSITY BREEZE	DAVIE	STATE	122	YES	Cast in place 2- column brick with metal roof and solar panels	YES (2)	Precast steel with seat divider (one with and without advertising)	YES	YES	YES	YES	YES	YES	YES	YES	YES	А	
24	3448	UNIVERSITY DR	NOVA DR	SB		ROUTE 2 & UNIVERSITY BREEZE	DAVIE	STATE	85	YES	Cast in place 2- column brick with metal roof and solar panels	YES	Precast steel with seat divider (without advertising)	YES	YES	NO	YES	YES	YES	YES	YES	NO	А	
25	3449	UNIVERSITY DR	ARROWHE AD PLZ	SB	IN FRONT OF	ROUTE 2	DAVIE	STATE	9	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	YES	А	APPELA .
26	3450	UNIVERSITY DR	SW 30 ST	SB	NEARSIDE	ROUTE 2	DAVIE	STATE	7	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	YES	А	
27	3451	UNIVERSITY DR	SW 30 ST	SB	FARSIDE	ROUTE 2 & UNIVERSITY BREEZE	DAVIE	STATE	121	YES	Cast in place 2- column brick with metal roof and solar panels	YES (2)	Precast steel with seat divider (one with and without advertising)	YES (2)	YES	NO	YES	YES	YES	YES	YES	YES	А	
29	3495	UNIVERSITY DR	#2640	NB	IN FRONT OF	ROUTE 2	DAVIE	STATE	15	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	YES	А	

Map	_	Main Street	Cross Street	Service Direction	Stop Place ment	BCT Route(s) Served	Muni- cipality	Right-of- Way Type	Total Daily Stop Activity ¹	Shelter	Shelter Type	Bench ²	Bench Type	Bike Rack	Trash Can²	Bus Bay		Landing Pad				ADA Sticker	ADA Class ³	Google Streetview Image
36	3783	UNIVERSITY DR	PETERS RD	SB	NEARSIDE	ROUTE 2 & 12	PLANTATION	STATE	18	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	YES	NO	YES	YES	NO	YES	YES	YES	А	
42	4194	UNIVERSITY DR	SW 6 ST	SB	NEARSIDE	ROUTE 2 & 12	PLANTATION	STATE	20	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	YES	YES	YES	YES	NO	YES	YES	YES	А	
43	1 4254	UNIVERSITY DR	FEDERATE D RD	NB	NEARSIDE	ROUTE 2 & 12	PLANTATION	STATE	13	YES	Cast in place 2-column brick with shingled roof	YES (2)	Precast steel with seat divider (with advertising) and cast in place brick built into shelter base with no seat divider	NO	YES (2)	NO	YES	YES	YES	YES	YES	YES	А	
53	5637	UNIVERSITY DR	PETERS RD	SB	FARSIDE	ROUTE 2, 12, & UNIVERSITY BREEZE	PLANTATION	STATE	133	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	YES	NO	YES	YES	NO	YES	YES	YES	А	
01	0156	DAVIE RD	CRIMINAL JUSTICE	NB	OPPOSITE	ROUTE 9 &	DAVIE	COUNTY	3	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	NO	YES	YES	А	
02	0157	DAVIE RD	TOSCANA DR	NB	NEARSIDE	ROUTE 9 &	DAVIE	COUNTY	40	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	NO	YES	А	

Map		Main Street	Cross Street	Service Direction	Stop Place ment	BCT Route(s) Served	Muni- cipality	Right-of- Way Type	Total Daily Stop Activity ¹	Shelter	Shelter Type	Bench ²	Bench Type	Bike Rack	Trash Can ²		Side Walk	Landing Pad	Shelter Pad		ID Sticker	ADA Sticker	ADA Class ³	Google Streetview Image
07	0281	DAVIE RD	SILVER OAKS EN	SB	NEARSIDE	ROUTE 9 & 12	DAVIE	COUNTY	58	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	YES	А	
17	3378	DAVIE RD	REESE R SFWMD	SB	FARSIDE	ROUTE 9	DAVIE	COUNTY	15	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	YES	А	
18	3379	DAVIE RD	CRIMINAL JUSTICE	SB	IN FRONT OF	ROUTE 9 & 12	DAVIE	COUNTY	3	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	YES	А	SUB-WAY OF THE AREA OF THE ARE
19	3382	DAVIE RD	NOVA DR	NB	FARSIDE	ROUTE 9	DAVIE	COUNTY	42	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	YES	Α	97-505 ANALARI 97-412-30-24
20	3383	DAVIE RD	REESE R SHONEYS	NB	NEARSIDE	ROUTE 9	DAVIE	COUNTY	15	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	NO	NO	А	ADGESTISE NEEDS SEA-797-4131
38	3824	DAVIE RD	NOVA SE UNIVERSIT Y	SB	IN FRONT OF	ROUTE 9	DAVIE	COUNTY	4	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	YES	А	

Maŗ ID #		Main Street	Cross Street	Service Direction	Stop Place ment	BCT Route(s) Served	Muni- cipality	Right-of- Way Type	Total Daily Stop Activity ¹	Shelter	Shelter Type	Bench ²	Bench Type	Bike Rack	Trash Can ²		Side Walk	Landing Pad	Shelter Pad		ID Sticker	ADA Sticker	ADA Class ³	Google Streetview Image
44	4617	DAVIE RD	NOVA DR	SB	NEARSIDE	ROUTE 9	DAVIE	COUNTY	28	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	NO	NO	NO	А	
08	0709	SR 7 / US 441	RIVERLAN D RD	NB	F ARSIDE	ROUTE 18 & 441 BREEZE	ΙΙΔΙΠΙΕΚΙΙΔΙ	STATE	247	YES	Precast steel with solar panels	YES (2)	Precast steel with seat divider (with advertising) and precast steel built into shelter base with seat divider	YES	YES	NO	YES	YES	YES	YES	YES	NO	А	
09	1294	SR 7 / US 441	SW 19 ST	SB	NEARSIDE	ROUTE 18	BROWARD COUNTY	STATE	29	NO	N/A	NO	N/A	NO	YES	NO	YES	YES	NO	YES	YES	NO	А	
10	1295	SR 7 / US 441	U-PULL IT CAR SCRAP	SB	IN FRONT OF	ROUTE 18	DAVIE	STATE	8	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	А	
11	1383	SR 7 / US 441	POWELL R _U-PULL IT	NB	FARSIDE	ROUTE 18	HOLLYWOO D	STATE	11	NO	N/A	YES (2)	Concrete / wood combination (with advertising)	NO	NO	YES	NO	YES	YES	YES	YES	NO	А	
12	1384	SR 7 / US 441	OAKES RD	NB	NEARSIDE	ROUTE 18	DAVIE	STATE	53	NO	N/A	YES (2)	Concrete / wood combination (with advertising)	NO	NO	NO	NO	YES	YES	YES	YES	NO	А	VIVEN.

Ma ID		Main Street	Cross Street	Service Direction	Stop Place ment	BCT Route(s) Served	Muni- cipality	Right-of- Way Type	Total Daily Stop Activity ¹	Shelter	Shelter Type	Bench ²	Bench Type	Bike Rack	Trash Can ²		Side Walk	Landing Pad	Shelter Pad		ID Sticker		ADA Class ³	Google Streetview Image
13	1385	SR 7 / US 441	SW 18 ST	NB	NEARSIDE	ROUTE 18	FORT LAUDERDAL E	STATE	29	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	YES	NO	YES	YES	NO	YES	YES	NO	Α	
14	1386	SR 7 / US 441	SW 14 ST	NB	NEARSIDE	ROUTE 18	FORT LAUDERDAL E	STATE	29	NO	N/A	NO	N/A	NO	YES	NO	YES	YES	NO	NO	NO	NO	Α	
28	3487	SR 7 / US 441	OAKES RD	SB	FARSIDE	ROUTE 18	DAVIE	STATE	30	NO	N/A	YES	Precast steel with seat divider (with advertising)	NO	NO	NO	YES	YES	NO	YES	YES	NO	А	BA LUNBER
3	3823	SR 7 / US 441	SW 20 ST	SB	FARSIDE	ROUTE 9, 18, & 441 BREEZE	BROWARD COUNTY	STATE	365	YES	Precast steel with solar panels	YES	Precast steel built into shelter base with seat divider	YES	YES	NO	YES	YES	YES	NO	YES	YES	А	
39	3877	SR 7 / US 441	SW 16 ST	SB	NEARSIDE	ROUTE 18	BROWARD COUNTY	STATE	44	NO	N/A	NO	N/A	NO	NO	NO	YES	YES	NO	YES	YES	NO	А	

Notes:

- 1. Total daily stop activity is the combined boardings and alightings at each stop location. Ridership is based on a combination of counts collected by Broward County Transit (BCT) in 2011 and 2014.
- 2. Rows with (2) indicate the presence of multiple amenities of that type at a given stop location.
- 3. These represent internal BCT ADA classifications. A = Stop has an ADA-compliant 8'x5' landing pad. F = Stop is not ADA compliant, but has ADA-accessible infrastructure. N = Stop is not ADA compliant, does not have ADA-accessible infrastructure, but likely has potential right-of-way available to install.